
An Empirical Study of the Impact of Cloud Patterns
on Quality of Service (QoS)

Geoffrey Hecht1,2, Benjamin Jose-Scheidt1, Clément De Figueiredo1, Naouel Moha1, Foutse Khomh3

1Université du Québec à Montréal, Canada, 2Université Lille 1, France, 3SWAT, École Polytechnique de Montréal, Canada

geoffrey.hecht@courrier.uqam.ca, {benjamin.josescheidt, clement.defigueiredo}@viacesi.fr

moha.naouel@uqam.ca, foutse.khomh@polymtl.ca

Abstract—Cloud patterns are described as good solutions to
recurring design problems in a cloud context. These patterns are
often inherited from Service Oriented Architectures or Object-
Oriented Architectures where they are considered good practices.
However, there is a lack of studies that assess the benefits of
these patterns for cloud applications. In this paper, we conduct
an empirical study on a RESTful application deployed in the
cloud, to investigate the individual and the combined impact of
three cloud patterns (i.e., Local Database proxy, Local Sharding-
Based Router and Priority Queue Patterns) on Quality of Service
(QoS). We measure the QoS using the application’s response
time, average, and maximum number of requests processed
per seconds. Results show that cloud patterns doesn’t always
improve the response time of an application. In the case of the
Local Database proxy pattern, the choice of algorithm used to
route requests has an impact on response time, as well as the
average and maximum number of requests processed per second.
Combinations of patterns can significantly affect the QoS of
applications. Developers and software architects can make use
of these results to guide their design decisions.

Keywords—Cloud Patterns, Replication, Sharding, Priority
Queue, QoS.

I. INTRODUCTION

Design Patterns are general and reusable solutions to recur-

ring design problems. They were first introduced in software

engineering by Beck and Cunningham [1] in 1987 but really

gained popularity only after the publication of the book of

Gamma et al. [2] in 1994. Since then, design patterns have

been applied to all field of software engineering, including

Cloud Computing.

Most cloud patterns like Proxy Service, message queue or

Composed Service were adopted from SOA or parallel com-

puting [3]. These patterns were refined to take into account the

specificities and requirements of the cloud. For example, the

message queue pattern is usually used to allow asynchronous

messaging between two components. In the cloud context, this

pattern is used to reduce coupling between components and

thus allowing a better scalability and availability of the overall

application [4].

Despite several benchmarks and studies [5]–[7] compar-

ing cloud solutions and technologies that use patterns (e.g.,
NoSQL databases that use database sharding and message

queue patterns or message-oriented middleware), to the best

of our knowledge, there is a lack of studies that empirically

investigate the impact of multiple cloud patterns on the QoS of

applications. Consequently the benefits and tradeoffs of cloud

patterns are mostly intuitively discovered and not properly

validated. Moreover, the available benchmarks evaluated pat-

terns in isolation and did not considered possible interactions

between multiple patterns.

In this paper, we evaluate the impact on QoS of three cloud

patterns : the Local Database Proxy, Local Sharding-Based

Router and Priority Queue Patterns. The study is performed

using a RESTful cloud-based, data-centered and service based

application implemented with different combinations of the

aforementioned patterns. To measure the QoS we rely on the

following three metrics : response time, average and maximum

queries processed per second. Our objective is to provide

evidence to confirm or refute the claimed efficiency of these

patterns and comprehend the interplay between them.

The rest of the paper is organized as follows. Section II

presents background information and related works on the

impact of design patterns. Section III presents the design of

our experiments and section IV discusses the obtained results.

Section V concludes our study and outlines some avenues for

future works.

II. RELATED WORK

In this section, we briefly present the three patterns under

study in this paper and outline their benefits for cloud applica-

tions as identified in the literature. We also discuss the relevant

literature about cloud patterns evaluation.

Local Database Proxy : The Local Database proxy pattern

provides a read scalability on a relational database by using

data replication between master/slave databases and a proxy

to route requests [8]. All write requests are handled by the

master and replicated on its slaves while read requests are

processed by slaves. Unlike usual replication mechanisms

where application components access a predetermined replica

[9], with this pattern, components must use a local proxy

whenever they need to retrieve or write data. Using the Local

Database Proxy pattern, Microsoft [9] provided guidelines

for the replication in a cloud application. These two works

recommend implementing the Local Database Proxy pattern to

improve the scalability for data reads, as well as the availability

and resiliency of applications.

Local Sharding-Based Router : The Local Sharding-Based

Router is recommended when the need for scalability concerns

read and write operations [8]. Data are split among multiple

databases into functional groups called shards, requests are

2014 IEEE 6th International Conference on Cloud Computing Technology and Science

978-1-4799-4093-6/14 $31.00 © 2014 IEEE

DOI 10.1109/CloudCom.2014.141

278

processed by a local router to determine the suitable databases.

Data are split horizontally i.e., on rows, and each split must

be independent as much as possible. Multiple strategies can

be used to determine the sharding logic, a range of value, a

specific shard key or hashing can be used to distribute data

among the databases [9].

Priority Message Queue : Message Queues are First In

First Out (FIFO) queues typically used to delegate tasks to

background processing or to allow asynchronous communica-

tions between components. When different types of messages

exist, a Priority Message Queue can be used. Messages with

high priority values are received and processed more quickly

than those with lower priority values [9].Message Queues are

considered good practices for cloud applications, to design

loosely coupled components and to improve scalability [4].

Evaluation of Cloud Patterns : Ardagna et al. [10] em-

pirically evaluated the performance of five scalability patterns

for Platform as a service (PaaS) : Single, Shared, Clustered,

Multiple Shared and Multiple Clustered Platform Patterns. To

compare the performance of these patterns they measured the

response time and the number of transactions per second. They

also explored the effects of the addition and the removal of

virtual resources. Burtica et al. [6] provide a comprehensive

comparison and evaluation of no-SQL databases which make

use of multiple sharding and replication strategies to increase

performance. However they did not considered the impact of

these solutions on the QoS of the overall application and the

association with others patterns. Similarly, Cattel [5] examined

no-SQL and SQL data stores designed to scale by using

replication and sharding. His work highlighted the lack of

studies and benchmarks on these solutions. The performance

of priority queues has been evaluated by Alwakeel et al. [7].

In this work, the message queue is evaluated as a technical so-

lution in isolation, without considering application’s context.

III. STUDY DESIGN

This section presents the design of our study, which aims

to understand the impact of cloud patterns on the QoS of

applications and investigate potential interactions between

these patterns. We select three cloud patterns (i.e., Local

Database proxy, Local Sharding-Based Router and Priority

Queue Patterns) which are described as good design practices

by both academic and practitioners and address the following

research questions:

1) Does the implementation of Local Database proxy, Lo-

cal Sharding-Based Router or Priority Message Queue

Patterns affect the QoS of cloud applications?

2) Do interactions among Local Database proxy, Local

Sharding-Based Router and Priority Message Queue

Patterns affect the QoS of cloud applications?

To answer these research questions, we perform a series

of experimentations with multiple versions of an application

designed specifically to test the aforementioned cloud patterns.

The patterns were implemented with different algorithms

which are explained in section III-C. We analyzed eight

versions of the application, summarized in Table I. The Priority

Message Queue was combined with the two others patterns in

some experiments. The application was built around an SQL

Database. The results were collected by performing a series of

stress tests on the application (varying the number of requests)

and tracing their executions. The same test sets were used for

all the experimentations in order ensure comparable results.

The remainder of this section elaborates more on the details

of our experimentations.

A. Objects

The application used in this study is hosted on a GlassFish

4 application server. It is a distributed application (client-

server), which communicates through REST calls. We choose

MySQL as database because it’s one of the most popular

database for Cloud applications [11]. We use the Sakila sample

database [12] provided by MySQL. It’s a good sample for

experiments because it contains a large number of records and

it is consistent with existing databases.The test application was

fully developed using Java and is composed of about 3,500

lines of code and its size is 6 MB.

The master node has the following characteristics : 2 virtual

processors (CPU : Intel Xeon X5650) with 4GB RAM and

40GB disk space. This node is a virtual machine of a server

located on a separate network. We have 8 slave database nodes

: 4 on one server having each one virtual processor (CPU :

Intel QuadCore i5) with 256 MB RAM and 10 GB disk space.

The 4 others on a second server having other characteristics :

each Virtual Machine has one virtual processor (CPU : Intel

Core 2 Duo), 256 MB RAM and 10 GB disk space. All the

hardware is connected on a private network behind a switch.

All the servers are running Ubuntu 14.04 LTS as operating

system.

B. Design

In order to assess the benefits and the trade-offs of the

Local Database Proxy, the Local Sharding-Based Router and

the Priority Message Queue design patterns, we implemented

these patterns in the application described in Section III-A and

test them through the scenarios described in Section III-C. In

total we obtained 8 versions of the application as presented in

Table I. The basic version E0 don’t use any pattern.

TABLE I
EXPERIMENTAL DESIGNS

Pattern Algorithm Code Version

Basic Version E0

Local Database Proxy
Random Allocation E1
Round-Robin E2
Custom Load Balancing E3

Local Sharding-Based Router
Modulo Algorithm E4
Lookup Algorithm E5
Consistent Hashing E6

Priority Message Queue E7

C. Procedure

Experimentations were orchestrated using the different types

of requests (read, write and aggregation). For each type of

request, we simulated a client sending the request to a server

279

1000, 2500, 5000, 7500 and 10000 times. Each experimenta-

tion was performed five times in order to obtain an average

and with different amount of transactions (from 1 to 100 000).

It should be noted that the variation between two instances of

an experiment never exceeded a few hundreds milliseconds

under heavy loads. In the following, we describe the specific

experiments that were performed for each pattern.

Local Database Proxy Pattern : We performed two imple-

mentations of this pattern using respectively, the Random Allo-

cation Strategy and the Round-Robin Allocation Strategy [13].

We also implemented a Custom Load Balancing Strategy to

test a more reactive strategy.

The proxy is located between server and clients. A first

REST web service exposes a set of methods which are hitting

the database regarding different algorithms. These methods are

used in order to test the local database proxy pattern. The

queries are built using parameters such as the ID of a select

passed over the REST call. Once the query is built, it is sent

to the proxy.

The first work of the proxy is to identify if it is a read or

a write query by analyzing the first word of the query : if it

starts with “SELECT” then it is a read query, otherwise it is

a write. The next step is to route the query to a slave node.

The random algorithm chooses randomly an instance of the

pool. The round-robin chooses the next instance that has not

yet been used in the “round”, i.e., the first, then the second,

then the third,..., finally the first and so on. The customised

algorithm uses two metrics to evaluate the best slave node to

choose : the ping response time between the server and each

slave, and the number of active connections on the slaves. A

thread monitors these metrics as long as there are queries that

has to be executed. Finally, once the slave is chosen, the query

is executed and the result is sent back to the function that was

called. In order to simplify the tests, we chose to only send

back IDs (number identifier), so we don’t need to serialize

any data. If the result sent from the slave node is null, the

query is executed on the master node in order to be sure that

the replication did not failed. At last, if the result is null, the

response sent to the client has the http no content status. If not,

the result is sent back to the client using the http ok response
status.

Local Sharding-based Router Pattern : To test this pattern

we used multiple shards hosted separately. Each shard has the

same database structure in order to fit with the requirements of

sharding algorithms [14]. The first work of the local sharding-

based router is to correctly identify which part of the database

should be sharded. According to Maxym Kharchenko’s Art of

Database Sharding [15], we chose two tables of a modified

version of the Sakila database [12]. To facilitate the tests, we

removed all of the relationships in both the rental and film

tables since the sharding is adapted only for independent data.

We chose three commonly used sharding algorithms : Mod-

ulo algorithm, Look-up algorithm and the Consistent Hashing

algorithm. The modulo algorithm divides the request primary

key by the number of running shards, the remainder is the

server number who will handle the request.

The second sharding algorithm used is the Look-up strategy.

This algorithm consists in an array with a larger amount of

elements than the number of server nodes available. Refer-

ences to the server node are randomly placed in this array such

that every node receives the same share of slots. To determine

which node should be used, the key is divided by the number

of slots and the remainder is used as index in the array.
The third sharding algorithm used is the Consistent Hashing.

For each request, a value is computed for each node. This value

is composed of the hash of the key and the node. Then, the

server with the longest hash value processes the request. The

hash algorithms recommended for this sharding algorithm are

MD5 and SHA-1.
Priority Message Queue Pattern : Requests are annotated

with different priority numbers and sent in the priority mes-

sage queue of our test application. All requests are ordered

according to their priority and are then processed by database

services in this order.

D. Independent Variables
Local Database proxy, Local Sharding-Based Router, and

Priority Message Queue Patterns, as well as the algorithms

presented in Table I are the independent variables of our study.

E. Dependent Variables
The dependant variables measure the performance of the

patterns in term of response time and amount of queries

executed per second. The result is a tri-dimensional com-

parison between response time, average number of queries

and maximum number of queries executed per second. These

measures were taken by the test application itself during every

experimentation.
The response time measured in these experiments is the

overall response time of the application when executing all the

queries. This metric is measured in milliseconds. We choose

these metrics because it reflects the capacity of the application

to scale with the number of requests. We are only considering

results where all the request are processed successfully.
The other metrics are the average and maximum number of

queries executed by the application during one second. As we

are studying database-related patterns, these metrics are useful

to compare the effectiveness of these patterns for database load

balancing.

F. Hypotheses
To answer our two research questions we formulate the

following null hypotheses, where E0, Ex (x ∈ {1 . . . 6}), and

E7 are the different versions of the application described in

Table I:

• HR1
x : There is no difference between the response time

of design Ex and design E0.

• HR2
x : There is no difference between the average

number of queries processed per second by design Ex
and design E0.

• HR3
x : There is no difference between the maximum

number of queries processed per second by design Ex
and design E0.

280

Fig. 1. Select a film with Local Database Proxy Fig. 2. Random select between film and customer inventory

• HR1
x7 : The response time of the combination of designs

Ex and E7 is not different from the response time of each

design taken separately.

• HR2
x7 : The average number of queries processed per

second by the combination of designs Ex and E7 is not

different from the average number of queries processed

per second by each design taken separately.

• HR3
x7 : The maximum number of queries processed per

second by the combination of designs Ex and E7 is not

different from the maximum number of queries processed

per second by each design taken separately.

G. Analysis Method

We performed the Mann-Whitney U test [16] to test HR1
x,

HR2
x, HR3

x, HR1
x7, HR2

x7, HR3
x7. We also computed the

Cliff’s δ effect size [17] to quantify the importance of the

difference between metrics values. All the tests are performed

using a 95% confidence level (i.e., p-value < 0.05).

Mann-Whitney U test is a non-parametric statistical test that

assesses whether two independent distributions are the same

or if one distribution tends to have higher values. Cliff’s δ
is a non-parametric effect size measure which represents the

degree of overlap between two sample distributions [17]. It

ranges from -1 (if all selected values in the first group are

larger than the second group) to +1 (if all selected values in

the first group are smaller than the second group). It is zero

when two sample distributions are identical [18].

IV. CASE STUDY RESULTS

This section presents and discusses the results of our re-

search questions.

A. Does the implementation of Local Database proxy, Local
Sharding-Based Router or Priority Message Queue Patterns
affect the QoS of cloud applications?

Table II summarises the results of Mann–Whitney U test

and Cliff’s δ effect sizes for each metrics. Significant results

are marked in bold.

Response time : Results of Table II show that there is no

statistically significant difference between the overall response

time of applications implementing the studied patterns and the

TABLE II
p-VALUE OF MANN–WHITNEY U TEST AND CLIFF’S δ EFFECT SIZE (ES)

Overall Response
Time

Average Query/s Maximum Query/s

p-value ES p-value ES p-value ES

Random select between film and customer inventory
E0, E1 0.17 -0.52 <0.05 0.80 <0.05 0.80
E0, E2 0.17 -0.68 <0.05 0.80 <0.05 0.80
E0, E3 0.17 -0.68 <0.05 0.80 <0.05 0.80
E0, E4 0.21 0.48 <0.05 -1 <0.05 -1
E0, E5 0.21 0.48 <0.05 -1 <0.05 -1
E0, E6 0.21 0.48 <0.05 -1 <0.05 -1
E0, E7 0.26 -0.44 <0.05 0.72 0.07 0.48

E1, E1+E7 0.32 -0.28 0.07 0.60 <0.05 0.80
E2, E2+E7 0.37 -0.20 0.07 0.72 <0.05 0.84
E3, E3+E7 0.37 -0.20 0.11 0.64 <0.05 0.84
E4, E4+E7 0.50 -0.00 0.34 -0.20 0.46 0.08

E5, E5+E7 0.44 -0.12 0.42 -0.04 0.23 0.32

E6, E6+E7 0.50 -0.08 0.50 0.12 0.07 0.72

Insert a film
E0, E1 0.44 0.16 0.23 -0.40 0.20 -0.44

E0, E2 0.44 0.16 0.28 -0.32 0.19 -0.44

E0, E3 0.44 0.16 0.23 -0.40 0.28 -0.32

E0, E4 0.17 -0.52 <0.05 0.80 <0.05 0.80
E0, E5 0.17 -0.52 <0.05 0.80 <0.05 0.80
E0, E6 0.17 -0.52 <0.05 0.80 <0.05 0.80
E0, E7 0.32 -0.08 0.31 0.28 0.16 0.52

E1, E1+E7 0.44 -0.12 0.13 0.60 <0.05 -1
E2, E2+E7 0.44 -0.12 0.13 0.60 0.37 0.32

E3, E3+E7 0.44 -0.12 0.13 0.60 0.31 -0.12

E4, E1+E4 0.13 -0.6 0.12 0.76 0.13 0.76

E5, E1+E5 0.21 -0.44 0.10 0.84 0.13 0.76

E6, E1+E6 0.21 -0.44 0.08 0.88 <0.05 0.84

application not implementing any of the three patterns, hence

we cannot reject HR1
x for all Ex (x ∈ {1 . . . 6}). However,

Figures 1 to 4, as well as effect size values show that all

three patterns have a slightly positive impact on the response

time of the applications (i.e., the response time is lower),

in all the scenarios with the exception of Local Sharding-

Based Router on read requests (see E4 on Figure 2). Also,

Figures 1 to 4 show that the impact of these patterns increases

with the number of requests, suggesting that:

�

�

�

�

When the number of requests is very large, Local
Database proxy and Priority Message Queue Pat-
terns can have a positive impact on the response
time of an application.

281

Fig. 3. Insert film with Local Sharding-Based Router and Priority Queue Fig. 4. Insert film

Average number of query processed per second : Re-

sults of Table II show that for random selects between film
and customer inventories, there is a statistically significant

difference between the average number of query processed per

second by applications implementing the studied patterns and

the application not implementing any of the three patterns,

and the effect size is large. Hence we reject HR2
x for all

Ex (x ∈ {1 . . . 6}). We also obtained statistically significant

results with read requests, for all implementations of Local

Database proxy and Priority Message Queue. By contrast, we

obtained lower numbers of requests processed per second with

the Local Sharding-Based Router. We explain this result by

the overhead induced by the sharding algorithms. For write
requests, we obtained statistically significant results only for

designs E4, E5 and E6 (the effect size is large); hence we

reject HR2
4, HR2

5, and HR2
6.

�

�

�

�

Overall, results show that Local Database proxy and
Priority Message Queue can increase the average
number of query processed per second by an ap-
plication. This increase is statistically significant in
most cases.

Maximum number of query processed per second :
Results for the maximum number of query processed per

second are similar to the results obtained for the average

number of query processed per second, except for the Priority

Message Queue (see II).

In general, we can conclude that Local Database proxy,

Local Sharding-Based Router and Priority Message Queue

Patterns have a positive impact on the ability of applications

to handle heavy loads of read and write queries, as suggested

by the literature [8], [9]. More specifically, the Local-Database

Proxy is a good design solution for applications experiencing

heavy loads of read requests, while the Local Sharding-Based

Router is more adequate for applications handling huge write
requests loads. The Priority Message Queue pattern has only

a moderate effect on both types of requests.

The results of our study also show that the load balancing

and sharding algorithms implementing the patterns also affect

the QoS of the applications. Round Robin and Consistent

Hashing algorithms produced the best results in all our ex-

perimentations. However, given the small differences in effect

sizes observed among the different variants of the patterns (i.e.,
with different algorithms), it appears that:
�

�

�

�

The choice of pattern is more important than the
choice of a particular algorithm (for the implemen-
tation of the pattern) since it has a bigger impact
on the QoS.

B. Do interactions among Local Database proxy, Local
Sharding-Based Router and Priority Message Queue Patterns
affect the QoS of cloud applications?

Regarding response time, results from Figures 2 and 3

and Table II shows that the addition of the Message Queue

pattern to an application implementing Local Database proxy

or Local Sharding-Based Router patterns does improve the

overall response time of the application, but this improvement

is not statistically significant. Therefore, we cannot reject

HR1
x7 for all Ex (x ∈ {1 . . . 6}). Figures 2 and 3 show a

positive impact when Priority Message Queue is combined

with others designs.

Regarding the number of queries processed per second,

we obtained significant differences between the maximum

number of queries processed per second by designs E1 + E7,

E2 + E7, and E3 + E7, when performing random selects
between film and customer inventories. We reject HR3

17,

HR3
27, and HR3

37 in this case.
�

�

�

	

A combination of the Priority Message Queue pat-
tern with Local Database proxy or Local Sharding-
Based Router patterns can improve the QoS of an
application experiencing heavy loads of read and
write requests. More analysis are desirable to better
understand the interplay between these patterns.

C. Threats to Validity

In this section, we discuss the threats to validity of our study

based on the guidelines provided by Wohlin et al. [19].

282

Construct validity threats concern the relation between

theory and observations. In this study, they could be due to

measurement errors. We instrumented the different versions

of the application described in Section III-A, to generate

execution logs from which we computed response time, aver-

age, and maximum numbers of queries processed per second.

We repeated each experimentation five times and computed

average values, in order to mitigate the potential biases that

could be induced by perturbations on the network or the

hardware, and our tracing.
Internal validity concern our selection of subject systems

and analysis methods. Despite the usage of a well known

benchmark (the Sakila sample database [12]) and well-know

patterns and algorithms, some of our findings may still be

specific to our studied application which was designed specif-

ically for the experiments. Future studies should consider using

different applications.
External validity threats concern the possibility to generalise

our findings. Further validation should be done on different

cloud applications and with different cloud patterns to broaden

our understanding of the impact of cloud patterns on the QoS

of applications. One major challenge however is the difficulty

to find open-source applications running on the cloud, and in

which the studied patterns are implemented. It is because of

this limitation that we implemented a complete cloud based

application for the purpose of our study.
Reliability validity threats concern the possibility of repli-

cating this study. We attempt to provide all the necessary

details to replicate our study. All the data used in this study

are available online (http://goo.gl/B9upx8).
Finally, the conclusion validity threats refer to the relation

between the treatment and the outcome. We paid attention not

to violate the assumptions of the performed statistical tests. We

mainly used non-parametric tests that do not require making

assumptions about the distribution of the metrics.

V. CONCLUSION AND FUTURE WORK

Cloud patterns are always described in the literature as

good practices, without considering applications contexts and

interactions with other patterns. In this paper, we performed a

series of experiments with different versions of a cloud based

RESTful application implementing the Local Database Proxy,

the Local Sharding-Based Router and the Priority Queue

patterns. We assessed the impact of these patterns on the

QoS of the application through measurements of the overall

response time, the average and maximum number of requests

processed by the application per second. Results show that

these patterns and their combinations can increase the QoS

of applications. The Local Database proxy is more adapted

for applications experiencing heavy loads of read requests,

while the Local Sharding-Based Router is more appropriate

for applications handling huge write requests loads. The

Priority Message Queue pattern has only a moderate effect

on both types of requests. The impact of Priority Message

Queue is larger under heavy loads, especially on the average

number of requests processed per second. We also found that
Round Robin and Consistent Hashing algorithms are good

implementation choices for Local Database proxy and Local

Sharding-Based Router patterns, respectively. However, the

choice of a pattern seems to have a bigger effect on the QoS

than the choice of a particular algorithm. These results provide

important guidelines for software organisations developing and

deploying cloud based applications with MSQL databases. In

the future, we plan to expand our study to investigate a broader

variety of cloud applications and more cloud patterns. We also

plan to investigate other aspects of the sustainability of cloud

applications, such as the energy consumption.

REFERENCES

[1] K. Beck and W. Cunningham, “Using Pattern Languages for Object-
Oriented Programs,” Tech. Rep., Sep. 1987.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994.

[3] D. Petcu, “Identifying cloud computing usage patterns,” in Cluster
Computing Workshops and Posters (CLUSTER WORKSHOPS), 2010
IEEE International Conference on. IEEE, 2010, pp. 1–8.

[4] J. Varia, “Architecting for the cloud: Best practices,” Amazon Web
Services, 2010.

[5] R. Cattell, “Scalable sql and nosql data stores,” ACM SIGMOD Record,
vol. 39, no. 4, pp. 12–27, 2011.

[6] R. Burtica, E. M. Mocanu, M. I. Andreica, and N. Tapus, “Practical
application and evaluation of no-sql databases in cloud computing,” in
Systems Conference (SysCon), 2012 IEEE International. IEEE, 2012,
pp. 1–6.

[7] S. S. Alwakeel and H. Almansour, “Modeling and performance evalua-
tion of message-oriented middleware with priority queuing,” Information
Technology Journal, vol. 10, no. 1, pp. 61–70, 2011.

[8] S. Strauch, V. Andrikopoulos, U. Breitenbuecher, O. Kopp, and F. Leyr-
nann, “Non-functional data layer patterns for cloud applications,” in
Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th
International Conference on. IEEE, 2012, pp. 601–605.

[9] A. Homer, J. Sharp, L. Brader, M. N. Narumoto, and T. Swanson, Cloud
Design Patterns Prescriptive Architecture Guidance for Cloud Appli-
cations (Microsoft patterns practices). Microsoft patterns practices,
February 2014.

[10] C. A. Ardagna, E. Damiani, F. Frati, D. Rebeccani, and M. Ughetti,
“Scalability patterns for platform-as-a-service,” in Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on. IEEE, 2012,
pp. 718–725.

[11] “MySQL in the Cloud,” http://www.mysql.com/why-mysql/cloud/,
2014, [Online; accessed July-2014].

[12] “Mysql sakila sample database,” http://dev.mysql.com/doc/sakila/en/,
2014.

[13] D. Haney and K. S. Madsen, “Load-balancing for mysql,” Kobenhavns
Universitet, 2003.

[14] “Sharding algorithms,” http://kennethxu.blogspot.fr/2012/11/
sharding-algorithm.html, November 2012.

[15] M. Kharchenko, “The art of database sharding,” 2012.
[16] D. J. Sheskin, Handbook of parametric and nonparametric statistical

procedures. crc Press, 2003.
[17] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate

statistics for ordinal level data: Should we really be using t-test and
cohen’sd for evaluating group differences on the nsse and other surveys,”
in annual meeting of the Florida Association of Institutional Research,
2006, pp. 1–33.

[18] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological Bulletin, vol. 114, no. 3, p. 494, 1993.

[19] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer, 2012.

283

