
Cooperative Scheduling of Bag-of-Tasks
Workflows on Hybrid Clouds

Rubing Duan†, Radu Prodan∗
†Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore

∗Institute of Computer Science, University of Innsbruck, Austria
Email: radu@dps.uibk.ac.at, duanr@ihpc.a-star.edu.sg

c©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. DOI: https://doi.org/10.1109/CloudCom.2014.58

Abstract—We address the problem of scheduling a class of
large-scale applications inspired from real-world on hybrid
Clouds, characterized by a large number of homogeneous and
concurrent tasks that are the main sources of bottlenecks
but open great potential for optimization. We formulate the
scheduling problem as a new sequential cooperative game and
propose a communication- and storage-aware multi-objective
algorithm that optimizes two user objectives (execution time
and economic cost) while fulfilling two constraints (network
bandwidth and storage requirements). We present comprehen-
sive experiments using both simulation and real-world applica-
tions that demonstrate the efficiency and effectiveness of our
approach in terms of algorithm complexity, makespan, cost,
system-level efficiency, fairness, and other aspects compared
with other related algorithms.

I. INTRODUCTION

Distributed computing systems such as clouds and grids
have evolved towards a worldwide infrastructure providing
dependable, consistent, pervasive, and inexpensive access to
high-end computational capabilities. To program such a large
and scalable infrastructure, loosely coupled-based coordina-
tion models of legacy software components such as bags-
of-tasks (BoT) and workflows have emerged as successful
programming paradigms in the scientific community.

One of the most challenging NP-complete problems that
researchers try to address is how to schedule large-scale
scientific applications to distributed and heterogeneous re-
sources such that certain objective functions such as total
execution time (called from hereafter makespan) in aca-
demic Grids or economic cost (in short cost from hereon)
in business or market-oriented clouds are optimized, and
certain execution constraints such as communication cost and
storage requirements are considered and fulfilled. From the
end-users’ perspective, both minimizing cost or execution
time are preferred functionalities, whereas from the sys-
tem’s perspective system-level efficiency and fairness can be
considered as a good motivation such that the applications
with more amount of computation should be allocated with
more resources. Currently, only a few schemes can deal
with both perspectives, such as optimizing user objectives
(e.g. makespan, cost) while fulfilling other constraints, and
providing a good efficiency and fairness to all users. On the
other hand, many applications can generate huge data sets
in a relatively short time, such as the Large Hadron Collider
expected to produce 5− 6 petabytes of data per year, which
must be accommodated and efficiently handled through ap-
propriate scheduling bandwidth and storage constraints.

In this paper, we address these issues by proposing a
communication and storage-aware multi-objective scheduling
scheme for an important class of applications characterized
by large sets of independent and homogeneous tasks, inter-
connected through control flow and data flow dependencies,
as follows: (1) multi-objective scheduling minimizes the
expected execution time and economic cost of applications
based on a sequential cooperative game theoretic algorithm,
and (2) communication and storage-aware scheduling min-
imizes the makespan and cost of applications while taking
into account their bandwidth and storage constraints for
transferring the produced data. The main advantages of our
game theoretic algorithm are its faster convergence by using
competitors and environment information to determine the
most promising search direction by creating logical move-
ments, its minimum requirements regarding the problem
formulation, and its easy customisation to for new objectives.
We compare the performance of our approach with six related
heuristics and show that, for the applications with large BoTs,
our algorithm is superior in complexity (orders-of-magnitude
improvement), quality of result (optimal in certain known
cases), system-level efficiency and fairness.

The paper is structured as follows. Section II reviews
the most relevant related work. Motivated by real-world
applications and real heterogeneous computing testbeds, we
introduce in Section III the application and the hybrid cloud
computing models, followed by the paper’s problem defini-
tion. Section IV describes the communication and storage-
aware multi-objective algorithm in detail. In Section V, we
validate and compare our algorithm against related methods
through simulated and real-world experiments in a hybrid
cloud environment. Section VI concludes the paper and
discusses some future work.

II. RELATED WORK

Several researchers in performance-oriented distributed
computing have focused on system-level load balancing [5],
[17] or resource allocation [6], [14], aiming to introduce
economic and game theoretic aspects into computational
questions. Penmatsa et al. [17] formulated the scheduling
problem as a cooperative game where Grid sites try to
minimize the expected response time of tasks, while Kwok et
al. [14] investigated the impact of selfish behaviors of individ-
ual machine by taking into account the non-cooperativeness
of machines. Ghosh et al. [8] proposed a strategy that formu-
lates an incomplete information, alternating-offers bargaining

game on two variables: price per unit resource and percentage
of bandwidth allocated. Compared with Ghosh’s work, we
used a more practical pricing model similar to the one used by
Cloud resource providers such as Amazon Elastic Compute
Cloud. ICENI [19] addressed the scheduling problem using
a game theoretic algorithm that eliminates strictly dominated
strategies where the least optimal solutions are continuously
discarded. The feasibility of this algorithm is questionable
due to its high time complexity.

The work in [15] proposes static and dynamic scheduling
and resource provisioning strategies for workflow ensembles,
defined as a group of inter-related workflows with different
priorities. The paper discusses strategies for admission or
rejection of a workflow execution based on its structure
and task runtime estimates, and analyses their impact on
fulfilling deadline and cost constraints. In [9], the authors
present an experimental study of various deterministic non-
preemptive scheduling strategies for multiple workflows in
Grids that take into account both dynamic site state in-
formation and workflow properties. Their results showed
that the proposed strategies outperform well-known single
directed acyclic graph (DAG) scheduling algorithms. The
authors in [2] proposed four heuristics for scheduling multi-
ple workflows using a clustering technique. They concluded
that that interleaving the workflows leads to good average
makespan and provides fairness when multiple workflows
share the same set of resources. An approach for schedul-
ing multiple DAGs on heterogeneous systems to achieve
fairness defined as a basis of the slowdown experienced
because of competition for resources is presented in [20].
The work considers two fairness policies based on finishing
and concurrent times that arrange the DAGs in ascending
order of their slowdown value, selects independent tasks
from the DAG with minimum slowdown, and schedules them
using the Heterogeneous Earliest Finishing Time (HEFT)
algorithm. The work in [21] addressed online scheduling of
multiple DAGs in an optical Grid environment based on two
aggregation strategies scheduled using HEFT: first come first
serve and service on time. In contrast to all these works
targeting a static set of input workflows, our work targets
workflow-interconnected BoT.

The research domain of hybrid cloud computing is rel-
atively young. Bittencourt et al. [1] provide a brief survey
of scheduling algorithms for hybrid clouds and the impact
of communication networks on scheduling decisions. The
concept of sky computing has been introduced in [13] for
building a virtual site distributed on several Clouds. In [3],
important challenges and architectural elements for utility-
oriented federation of multiple Cloud computing environ-
ments are investigated. The role of Cloud brokers responsible
for splitting user requests to multiple providers with the goal
of decreasing the cost for users is discussed in [16], [10].

III. SYSTEM AND APPLICATION MODEL

We describe in this section the abstract application and
hybrid cloud models used in this paper, motivated by real-
world applications and real cloud testbeds.

Stage in

nbody

poten

galaxyformation

Stage Out

pgroups

hydro
ParallelForEach

kgen

lapw0

lapw1 lapw1 lapw1

lapw2 fermi

lapw2 lapw2 lapw2

sumpara

lcore

mixer

Stage in

Stage Out

converged

Stage in

GeodataInit

Yes?

CaseInit

RamsMakevfile

RamsInit

Raver

RamsHist

RevuDump

Y

Stage Out

N Yes?

CaseInit

RamsMakevfile

RamsInit

Raver

RamsHist

RevuDump

Y

NASTRO

WIEN2k RAMSBa

 Bag-of-Tasks
(performance bottleneck)

Bag-of-Tasks
of cardinality 1

Fig. 1: Real-world application examples.

A. Application Model

We focus on large-scale workflows characterized by a
high number (thousands to millions) of homogeneous par-
allel (independent) tasks that dominate their performance,
interconnected through control and data flow dependencies.

Definition 3.1: Let W = (BS,DD) denote a workflow
application modeled as a DAG, where BS =

⋃K
k=1 Tk

is the set of K heterogeneous bags-of-tasks (BoTs) and
DD =

(
Ts <d Td | {Ts , Td,} ⊂ BS

)
is the set of data flow

dependencies. We call Ts the predecessor of Td and write:
Ts = pred (Td). We define a bag-of-tasks (BoT) Tk as a
homogeneous set of parallel atomic sequential tasks Tk =⋃Kk
j=1 tkj , k ∈ [1..K] that have the same task type and can

be concurrently executed, where Kk is the cardinality of BoT.
A task type refers to an abstract functional description of

tasks. For example, Figure 1 depicts two real-world applica-
tions that we use as case study in our work and which had
an impact on our proposed application model: WIEN2k from
theoretical chemistry and ASTRO from astronomy domains.
Examples of task types are matrix multiplication, Fast Fourier
Transform, or poten, pgroups, lapw1, and lapw2 for
our pilot applications. While the tasks within a BoT are
homogeneous and have the same type (e.g. lapw1), the
BoT themselves are heterogeneous in terms of the contained
number of tasks and their type (e.g. lapw1 versus lapw2).

WIEN2k [18] is a program package for performing elec-
tronic structure calculations of solids using density functional
theory based on the full-potential (linearized) augmented
plane-wave ((L)APW) and local orbital method. The lapw1
and lapw2 BoTs can be solved in parallel by a fixed number
of homogeneous tasks called k-points (see Figure 1). A final
task named converged applied on several output files tests
whether the problem convergence criterion is fulfilled.

ASTRO [12] is an astronomical application that solves
numerical simulations of the movements and interactions of
galaxy clusters using an N-Body system. The computation
starts with the state of the universe at some time in the
past and is done until the current time. Galaxy potentials
are computed for each time step. Finally, the hydrodynamic
behavior and processes are calculated.

The sources of performance bottlenecks in these applica-
tions are homogeneous BoTs such as lapw1 and lapw2 in

2

WIEN2k, or poten and pgroups in ASTRO. The number
of grid cells (i.e. pgroups and poten tasks) of a real
simulation in ASTRO is 1283, while the number of lapw1
and lapw2 parallel tasks in WIEN2k may be of tens of
thousand for a good density of states. Currently, most related
work only considers applications with tens or hundreds of
tasks, which are an order of magnitude lower than the size
of our applications. Sequential tasks are relatively trivial in
large-scale applications and can be served and scheduled on-
demand on the fastest or cheapest available processor.

B. Hybrid cloud model

A hybrid cloud computer consists of minimum of one
private and one public cloud. Tasks or jobs arriving at
each cloud site may belong to multiple applications. The
execution of each application is controlled by one application
manager which competes with the other application man-
agers for resources. Most other scheduling approaches in the
related work assume direct mapping of user jobs or tasks
to individual processors which we consider inappropriate
for cloud computing where sites are usually managed by
locally administered queuing systems. To support this more
realistic model, the application manager maintains locally
one queue for each cloud site in order to schedule and
limit the number of job submissions based on the site’s task
processing rate. From the local queue, the jobs are submitted
by the application managers to the gatekeepers of the remote
public cloud sites. We assume without loss of generality
that resources within a cloud site are homogeneous, while
different sites are heterogeneous.

IV. MULTI-OBJECTIVE SCHEDULING

The goal of this paper is to design a new algorithm
for scheduling a set of applications defined according to
Definition 3.1 and consisting of a huge number of tasks (for
which existing algorithms do not scale) in an environment
modeled in Section III-B. Our algorithm aims to optimize
two objective functions: aggregated makespan and aggre-
gated cost, while optionally fulfilling bandwidth and storage
constraints. In this section, we first formally formulate the
multi-objective scheduling problem for an important class
of large-scale applications introduced in Section III-A (see
Definition 3.1) and then propose and experimentally validate
a game theory-based algorithm to efficiently address it.

A. Problem formulation

Definition 4.1: Suppose we have a set of n applications
(modelled as in Definition 3.1 and ignoring their arrival
times) consisting of tasks that can be categorized into K
different BoTs, and a cloud environment consisting of M
sites. The makespan of an application Ai, i ∈ [1..n] is the
maximum completion time of its BoTs. The objective of the
multi-objective scheduling problem is to find a solution that
assigns all tasks to the sites such that the makespan and
economic cost of all applications F (x) are minimized, and
the bandwidth and storage requirements are fulfilled:
Minimize

x∈S
F (x) = (f(x), c(x)), hi(x) ≤ λx,i, gi(x) ≤ sli, i ∈ [1;M], (1)

where x is a solution, S is the set of feasible solutions, F (x)
is the image of x in the multi-objective space, f(x) is the
performance objective, c(x) is the economic cost objective,
g(x) is the storage use function, h(x) is the bandwidth use
function, λx,i is the input data bandwidth to site si, and sli
is the storage limit on site si.

We assume the availability of an expected time to compute
(ETC) [7] matrix which delivers the expected execution time
pki of tasks in each BoT k ∈ [1..K] on each site si, i ∈
[1..M]. We define the expected execution time pki based on
the computation time (pcki) and communication time (poki):

pki =

{
pcki, pcki ≥ poki;
pcki + (poki − pcki) = poki, pcki < poki.

(2)

where poki can be expressed as:

poki =
dki

bki
, (3)

where dki is the data size of tasks, and bki is the bandwidth
allocated to the BoT k on site si. The input data bandwidth
to site si (λx,i) is the sum of bki on site si:

λx,i ≤
K∑
k=1

θki · bki =

K∑
k=1

θki · dki
poki

, (4)

where θki is the number of processors allocated to BoT Tk on
site si. θki is a real number, because the bidding on a small
amount of resources makes the fine adjustment of resource
allocation feasible. Our algorithm will round θki to an integer
in the end of scheduling. Based on the above analysis, we
can find that for data-intensive applications, the expected
execution time pki is determined by either computation time
or communication time. Communication time is determined
by the bandwidth allocated to each BoT.

B. Game theoretic solution

The multi-objective scheduling problem can be formulated
as a cooperative game among the application managers which
can theoretically generate the optimal solution, although this
is hard to achieve due to the problem’s high complexity. We
therefore observe that the problem can be further formulated
and addressed as a sequential cooperative game that requires
the proper definition of three important parameters: the
players, the strategies, and the specification of payoff.

We consider a K-player cooperative game in which each
of the K application managers (as players) attempts at certain
time instances to minimize the execution time tk of one BoT
Tk based on its total number of tasks δk and its processing
rate βki on each site si. For clarity, we assume that each
application manager handles the execution of one BoT. The
objectives of each manager are to minimize the execution
time and economic cost of its BoT while fulfilling storage
and bandwidth constraints, expressed as:

fk(∆) =
δk

βk
=

δk∑M
i=1

θki
pki

; (5)

ck(∆) =

M∑
i=1

pki · δki · ϕi; (6)

hi(∆,B) =
K∑
k=1

θki · dki
pki

≤ λx,i; (7)

3

gi(∆) =
K∑
k=1

srk · θki ≤ sli, (8)

where ∆ is a task distribution matrix (δki)K×M , srk the
storage requirements of BoT Tk, sli the storage limit on site
si, ϕi is the price of site si, B is a bandwidth allocation
matrix (bki)K×M . We assume in Equation 6 that the users
only pay for useful computation and, therefore, the price is
independent on the number of processors used. Both ∆ and
B represent strategies as the embodiment of payoff in the
cooperative game.

Cooperative game theory is concerned with situations
when groups of players coordinate their actions, which is
the most important algorithmic mechanism that makes games
have “transferable utility”. In other words, a player with
increased utility has the ability to compensate some other
players with decreased utility. When designing games with
transferable utility, the main concern is to develop solutions
for formalizing fair ways of sharing resources. For instance,
the term θki defined in the following represents the resource
allocation of BoT k on site si (which embodies the fairness
of sharing resources), defined as the product between the
number of processors mi on si and the ratio between the
weighted aggregated execution times of BoT Tk on si and
the aggregated execution time of all BoTs on si:

θki = mi ·
δki · pki · wki∑K
k=1 δki · pki · wki

, (9)

where wki is the weight of site si for BoT Tk with different
definitions for performance (pwki), cost (cwki), bandwidth
bwki, and storage (swk) optimizations, as follows:

pwki =

min
i∈[1..M]

{pki}
pki∑M

i=1

min
i∈[1..M]

{pki}
pki

=

1
pki∑M
i=1

1
pki

; (10)

cwki =


1

ϕi·pki∑M
i=1

1
ϕi·pki

, ϕi 6= 0;

1
pki∑M

i=1
1

ϕi·pki
, ϕi = 0;

(11)

bwi =

pki
dki∑K
k=1

pki
dk

; (12)

swi =

1
srk∑K
k=1

1

srk

. (13)

The problem of how to write weight function must be
carefully considered so that better performance and cost are
attainable and actually improve scheduling for the given
problem. If the weight function is chosen poorly or defined
imprecisely, the algorithm may be unable to find a solution
to the problem. For instance, we use the performance weight
pwki to enhance the fairness of allocation in terms of
performance, because one site may have different suitability
for different tasks for various reasons such as the locality
of data, the size of memory, the CPU frequency, or the I/O
speed. Intuitively, if the execution time tki on site si for BoT
Tk is much shorter than on other sites, we set a higher priority
for this BoT on this site and allocate more resources to it.
Our algorithm dynamically chooses different weights when

some objectives deviate from users’ expectation or violate
some constraints. We will explain the utilization of different
weights when we introduce the notion of sequential game.

Based on the allocation of resources and the ratio of
processing rate on site si to the total processing rate of
the BoT, we define the task distribution as the product
between the number of tasks in Tk and the ratio between
the processing rate of Tk on site si with respect to the total
processing rate of Tk:

δki = δk ·
θki
pki∑M
i=1

θki
pki

. (14)

Definition 4.2: Accordingly, we can define a multi-
objective optimization cooperative game as consisting of:
• Managers of K BoTs as players;
• A set of strategies ∆ and B defined by the following

set of constraints: (1) δki ≥ 0; (2) bki ≥ 0; (3) θki ≤
δki; (4) bki ≤ λx,i; (5) srki ≤ slx,i; (6) δki = 0, if
θki < 1; (7)

∑K
k=1 θki = mi; (8)

∑K
k=1 bki = λx,i; (9)∑K

k=1 srki =i; and (10)
∑M
i=1 δki = δk;

• For each player k ∈ [1..K], the objective functions
fk(∆) and ck(∆). The goal is to minimize simultane-
ously all fk and ck while satisfying gk and hk;

• For each player k ∈ [1..K], the initial value of the
objective function fk

(
∆0,B0

)
, where ∆0 = (δki)

0
K×M

is a K×M matrix filled with initial distribution of tasks,
B0 = (bki)

0
K×M is a K ×M matrix filled with initial

allocation of bandwidth. The term B0 is calculated based
on B0 and (∆∗,B∗) denotes the optimal solution of the
game. An initial allocation is generated based on ∆0

and B0, and does not need to be a feasible solution that
fulfills all constraints.

For large-scale applications with BoTs, the overall makespan
is almost equal to the aggregated execution time divided by
the number of processors. Therefore, the performance goal
of our cooperative optimization game can be approximated
to minimizing the aggregated makespan:

argmin
∆

(
K∑
k=1

fk(∆)

)
, (15)

subject to the constraints (1) – (10).
To circumvent the high complexity of this problem, we

approximate the solution by further formulating this problem
as a sequential game in which players select a strategy
following a certain predefined order and observe the moves
of the players who preceded them. Although the optimal
solution is not directly achievable, we derive intermediate
solutions in a set of game stages, based on the following
inequality sequence:

K∑
k=1

F
S(1)
k

(
∆

0
,B0

)
≥

K∑
k=1

F
S(2)
k

(
∆

S(1)
,BS(1)

)
≥ . . .

≥
K∑
k=1

F
S(l)
k

(
∆

S(l−1)
,BS(l−1)

)
≥

K∑
k=1

Fk
(
∆
∗
,B∗

)
, (16)

where S denotes the stage of the sequential game, and S (l)
the lth game stage. At each stage, the players (managers of
BoTs) provide a set of strategies (task distributions) based

4

on the allocation of resources in the last stage, and generate
the new allocations by using Equation 9.

The first step in the game is to initialize the distribution of
tasks ∆S(0) and the allocation of bandwidth BS(0). Every
BoT is allocated an amount of processors based on the
processing rate on each site. At the initial stage S (0), every
BoT assumes that all processors and bandwidth are available:

δki = δk ·
mi
pki∑M
i=1

mi
pki

; (17)

bki = λx,i ·
dki∑K
i=1 dki

. (18)

From Equations 17 and 18, we have the initial task distri-
bution ∆0 and the bandwidth allocation B0.

The resource allocation of the lth stage ΘS(l), where
Θ = (θki)K×M is the resource allocation matrix, is calcu-
lated based on the task distribution of the last stage ∆S(l−1).
Accordingly, we calculate the task distribution of the lth stage
∆S(l) based on the resource allocation of lth stage ΘS(l)

using Equation 9 and Equation 14:

Θ
S(l)

= Θ
(
∆

S(l−1)
)

; (19)

∆
S(l)

= ∆
(

Θ
S(l)
)
. (20)

C. Game-multi-objective algorithm

In this section, we present an algorithm called Game-
multi-objective (GMO) which implements the game theoret-
ical scheduling method formalized in the previous section.
Our previous work [4] proposed two algorithms for single
objective optimization on performance or economic cost. In
extending the idea of single objective game theory-based
scheduling algorithms to multi-objective cases, one major
problem has to be addressed: how to select one or multiple
objectives to guide the search towards a whole set of potential
solutions? We use a hybrid approach of alternating and
combining the objectives. GMO first optimizes the perfor-
mance and communication criterion at the same time while
imposing constraints on economic cost. After identifying
the range of performance, GMO starts to optimize cost and
communication criterion. The difficulty here is on how to
establish the order in which the criteria should be optimized,
because this can have an effect on the success of the search.

Algorithm 1 depicts the GMO algorithm in pseudocode
consisting of three phases.

Phase 1: After acquiring information about tasks and
resources (ETC matrix), we generate an initial distribution
of tasks ∆0 and a weight matrix (see lines 3–11). In this
phase, users are also allowed to set performance constraints
or to filter undesired sites by simply setting the weights of the
applications for these sites to zero which prevents mapping
of any tasks to those sites. To assure that all constraints are
satisfied, they can be verified again in the third phase.

Phase 2: Every iteration of the repeat loop (lines 12–
15) is one game stage, where every stage consists of M sub-
games (i.e. one per site). In each sub-game, all BoTs compete
for resource allocation and those with relatively large weights
win the sub-game on one site and obtain more resources in

Algorithm 1 Game-multiobjective scheduling algorithm.
Require: AS: set of applications; K: number of BoTs; M = number of sites; mi:

number of processors on site si(i ∈ [1..m]); (pki)K×M : ETC matrix; δk:
number of tasks of BoT k(k ∈ [1..K]); ε: optimization threshold;

Require: bli: bandwidth limit of site si(i ∈ [1..M]); brk: bandwidth requirements
of BoT Tk(k ∈ [1..K]);

Ensure: ∆S(l): task distribution matrix; ΘS(l): resource allocation matrix
1: GP ← ∅ // Initialize the set of game players
2: repeat
3: for all W ∈ AS do // Phase 1: Initialize ∆0 and the weight of BoTs;

optionally apply constraints
4: for all Tk ∈ W ∧ Tk not yet scheduled ∧ (pred (Tk) = ∅ ∨ (Tj

is completed, ∀ Tj ∈ pred (Tk))) do// Take the next not scheduled BoT
5: GP ← GP ∪ Tk// Add Tk to the set of game players
6: for all i ∈ [1..M] do // For every site si
7: Calculate pwki, cwki, swki by applying Equations. 10,11,13
8: Calculate δki by applying Equation 14 to build ∆0

9: end for
10: end for
11: end for
12: repeat // Phase 2: search final distribution of tasks and resource allocation
13: ΘS(l) ← MULTIOBJECTIVE-SCHEDULE(Θ, ∆,m, b, λ, p)
14: Calculate ∆S(l) = (δki)|GP|×M by applying Equation 20

15: until
∑|GP|
k=1

(
fk

(
∆S(l−1)

)
− fk

(
∆S(l)

))
≤ ε AND∑K

k=1

(
ck

(
∆S(l−1)

)
− ck

(
∆S(l)

))
≤ ε

16: wait for a BoT to complete
17: GP ← GP−T , ∀T ∈ GP∧T completed // Phase 3: remove completed

BoTs, release resources, and start new game by repeating Phases 1 and 2
18: until ∀ W ∈ AS completed
19:
20: function MULTIOBJECTIVE-SCHEDULE(Θ, ∆,m, b, λ, p)
21: for all Tk ∈ W do
22: Calculate all bwk by applying Equation 12
23: end for
24: for all Tk ∈ W do
25: for all si ∈ Grid do
26: if

∑K
k=1 bki · θki > λx,i OR

∑K
k=1 srki · θki > sli then

// Bandwidth or storage requirements are not fulfilled
27: Recalculate θ′ki by applying Equation 9 with different weights 12

or 13
28: end if
29: Recalculate θ′′ki by applying Equation 9 with different weights Equa-

tions. 10 and 11
30: end for
31: end for
32: Evaluate different Θ gains with different weights and return Θ with best gain
33: end function

the next stage. These BoTs, however, cannot win everywhere
due to the weight definition (i.e. the weight sum of one
BoT is 1), therefore, winners of the sub-game on one site
must be losers on other sites and vice-versa. This process
repeats until no more performance can be gained. The further
processing of the algorithm depends on the evaluation result
on performance and cost at line 15, where ε can be used to
control the number of stages and the degree of optimization.
More specifically, we apply different weight definitions at
line 13 to generate the new resource allocation matrix ΘS(1).
Lines 20 – 33 describe the adjustment of the weights, which
is the change of players’ strategies in next game stage.
Basically, players’ strategies need to be changed when some
constraints are not fulfilled, or when makespan or economic
cost objectives are deviated from the users’ expectation. For
instance, when storage constraints cannot be fulfilled on one
site, the balanced condition on storage resources would first
be violated for the user with the largest storage requirements
sr and the player with the largest sr is the first to be
motivated to change strategy. It follows that, with global
knowledge of all players, a weight change can be trivially
computed by ordering the users in decreasing order of sr
and then using storage weights to replace the old weights.

5

TABLE I: The hybrid cloud testbed.

Site Name Architecture Processor #cores Clock ResourceHourly Location
(#Total) [GHz]Manager price

S1 GCE Cluster EC2 Compute Unit 4(−) 1.6 Fork 1 U.S.
S2 EC2 Cluster GCE Unit 4(−) 1.6 Fork 1 Singapore
S3 Aurora SMP Xeon X7542 4(2624) 2.67 LSF 0 ACRC
S4 fuji Cluster Xeon 5570 4(3888) 2.93 LSF 0 ACRC

0 50 100 150 200 250 300

 p4
 p3
 p2

 S4: p1
 p4
 p3
 p2

 S3: p1
 p4
 p3
 p2

 S2: p1
 p4
 p3
 p2

 S1: p1

Time (seconds)
Legend Task of WIEN2k Task of ASTRO

(a) G-Min-min.

0 50 100 150 200 250

 p4
 p3
 p2
S4: p1
 p4
 p3
 p2
S3: p1
 p4
 p3
 p2
S2: p1
 p4
 p3
 p2
S1: p1

Time (seconds)
Legend Activity of WIEN2k Activity of ASTRO

(b) GMO.

Fig. 2: Multi-objective scheduling for two real applications.

Based on ΘS(1), we use Equation 20 at line 14 to generate
the first task distribution ∆S(1). Thereafter, we repeat the
iteration until we reach the upper limit of optimization. In
addition, we can use ε to control the number of stages.

Phase 3: Finally, the earliest completed BoTs are elim-
inated. To utilize the released resources, we repeat the first
two phases to recompute the distribution of the remaining
BoTs until all applications complete.

V. EXPERIMENTAL RESULTS

In this section, we first show experimental results of two
real applications on hybrid clouds to explain the effectiveness
of our algorithm. To ensure the completeness of our experi-
ments, we also evaluated and compared different algorithms
over a complex simulated system and large amount of tasks
based on different machine and task heterogeneity. We per-
formed all measurements on a machine with Intel i7-2640M
2.8 GHz processors and 4 GB of RAM.

A. Real-world experiments

In the following we report on the evaluation of the GMO
algorithm for the WIEN2k and AstroGrid scientific applica-
tions introduced in Section III-A and executed in the EC2,
GCE, and four parallel machines (see Table I). To quantify
whether users or applications are receiving a fair share of
system resources, we use the Jain’s fairness index [11]:(∑K

k=1 Tk

)2

K ·
∑K
k=1 T

2
k

, (21)

where K is the number of applications and Ti is the execu-
tion time of application Wi. The fairness ranges from zero
indicating the worst fairness, to one indicating the best.

To quantify the utilization of the cloud sites, we need to
measure if resources are allocated to the BoTs that need them
the most through a system-level efficiency equation:

E =
K∑
k=1

Ek · EWk, (22)

where Ek is the scheduling efficiency of application Wk:

Ek =
max
i

(Tki) + min
i

(Tki)− 2 · avg (Tki)

max
i

(Tki)−min
i

(Tki)
, (23)

where max
i

(Tki) is the makespan of Wk on the slowest
site, min

i
(Tki) is its makespan on the fastest site, and EWk

is the weight of scheduling efficiency of Wk, which is
the optimization degree of a BoT compared with overall
optimization degree:

EWk =
(max
i

(Tki)−min
i

(Tki)) · θk∑K
k=1(max

i
(Tki)−min

i
(Tki)) · θk

. (24)

The system-level efficiency ranges from −1 indicating the
worst efficiency, to 1 indicating the best.

We first evaluated the performance of GMO by comparing
the makespan and the fairness against G-Min-min, which
outperforms the other heuristics for scheduling these two
applications. As shown in Figure 2a, G-Min-min gives a fixed
makespan of 258, a system-level efficiency of 0.249 and a
fairness of 0.9466, while GMO improves is to 230 seconds
and an almost perfect fairness above 0.99 (see Figure 2b).

Finally, we can intuitively observe that the tasks are highly
interleaved in the Gantt chart produced by G-Min-min, which
makes their completion time hard to predict. On the contrary,
GMO yields an execution plan in which tasks belonging to
the same BoT are grouped in contiguous slots on the same
sites which makes their execution more predictable. This
implies that GMO is more robust to keep the makespan of
each BoT under control and deliver the desired makespan
with small statistical variation.

B. Simulation experiments

For the completeness of experiments, we evaluated through
simulation the performance of GMO against related algo-
rithms for different ETC matrices generated according to dif-
ferent degrees of resource and task heterogeneity parameters
selected from a uniform distribution in the specified ranges.
Table II presents the details of the simulated environment.
High resource heterogeneity in the range of [1; 100] causes a
significant difference in task execution times and cost across
sites, while high task heterogeneity in the range of [1; 1000]
indicates that the expected execution times of different tasks
vary largely. We assume that the number of tasks in each BoT
is randomly generated based on a uniform distribution in the
range of [10000; 20000], and that the number of processors
on each site varies in the range of [64; 128]. The BoTs are
organized in workflows by having 10% dependence proba-
bility between each pair of BoTs and excluding cycles. We
chose not to simulate larger number of applications and sites
for two reasons: (1) the complexity of the algorithms from
the G-Min-min family that need several hours to complete
making our entire simulation difficult; and (2) enlarging the
simulation size will only increase the advantage of our game
theoretic algorithm over the related heuristics. We evaluated
the algorithms in four consistent scenarios displayed in
Table II: high task and high resource heterogeneity (HiHi),
high task and low resource heterogeneity (HiLo), low task
and high resource heterogeneity (LoHi), and low task and
low resource heterogeneity (LoLo).

Figure 3a shows the execution times of the algorithms
ranked from the fastest to the slowest as follows: GMO,

6

 10

 100

 1000

 10000

 100000

G-MET
G-OLB

G-MCT
G-Min-min

G-Max-min
G-Sufferage

GMO

A
lg

o
ri
th

m
 E

x
e
c
u

ti
o
n
 T

im
e
 [

m
s
.]

HiHi HiLo LoHi LoLo

(a) Algorithm execution time for 105

tasks and 103 processors.

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

G-MET
G-OLB

G-MCT
G-Min-min

G-Max-min
G-Sufferage

GMO

M
a
k
e
s
p

a
n
 [

s
e
c
o
n
d
s
]

HiHi
HiLo
LoHi
LoLo

(b) Makespan.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

G-MET
G-OLB

G-MCT
G-Min-min

G-Max-min
G-Sufferage

GMO

F
a
ir
n
e

s
s

HiHi HiLo LoHi LoLo

(c) Fairness.

 30000

 32000

 34000

 36000

 38000

 40000

 42000

 44000

 500 600 700 800 900 1000 1100 1200 1300

M
o
n
e

y
 [
Q

u
a
n
ta

]

Time [Quanta]

GMO
G-Minmin

G-Maxmin
G-Sufferage

G-MCT
G-OLB
G-MET

(d) Consistent multiobjective schedul-
ing.

 800000

 900000

 1e+06

 1.1e+06

 1.2e+06

 1.3e+06

 1.4e+06

 1.5e+06

 1.6e+06

 1.7e+06

 1.8e+06

 5200 5400 5600 5800 6000 6200 6400 6600

M
o
n
e

y
 [
Q

u
a
n
ta

]

Time [Quanta]

GMO
G-Minmin

G-Maxmin
G-Sufferage

G-MCT
G-OLB
G-MET

(e) Multi-objective scheduling.

 0

 0.2

 0.4

 0.6

 0.8

 1

G-OLB
G-MCT

G-Min-min
G-Max-min

G-Sufferage

GMO

S
y
s
te

m
-l
e

v
e
l
E

ff
ic

ie
n
c
y

HiHi HiLo LoHi LoLo

(f) System-level efficiency.

 80

 100

 120

 140

 160

 180

 200

G-OLB
G-MCT

G-Min-min
G-Max-min

G-Sufferage

GMO

M
a
k
e
s
p
a

n
 r

a
ti
o

 t
o
 G

M
 [
%

]

With constraints
Without constraints

(g) Makespan ratio to GMO.

 100

 150

 200

 250

 300

 350

 400

G-OLB
G-MCT

G-Min-min
G-Max-min

G-Sufferage

GMO

C
o

s
t
ra

ti
o
 t
o
 G

M
 [

%
]

(h) Cost ratio to GMO.

Fig. 3: GMO scheduling results for consistent scenarios.

TABLE II: Simulation environment.

Configuration No. of No. of No. of No. of Task Resource
processorsclusters tasks BoTs heterogeneityheterogeneity

HiHi 900 10 157118 10 [1; 1000] [1; 100]
HiLo 989 10 147871 10 [1; 1000] [1; 10]
LoHi 900 10 149731 10 [1; 10] [1; 100]
LoLo 1048 10 168208 10 [1; 10] [1; 10]

G-MET, G-OLB, G-MCT, G-Min-min, G-Max-min, and G-
Sufferage. Figures 3b and 3c display the simulation results
considering the makespan and the fairness objectives. G-MET
always gives the worst results because it maps all tasks to
the fastest machine. G-OLB usually performs the second
worst because it selects resources without considering the
task execution time. G-Max-min gives poor results because it
only fits the situation when a small number of tasks are much
larger than the others, which is never encountered in our
simulated environment generated using uniform distributions.
In addition, G-Max-min offers no fairness to smaller tasks,
hence, it performs worse than most algorithms. G-MCT
performs quite well for high machine heterogeneity because
it has a higher likelihood for selecting the fastest machine,
especially for large tasks, and poorly for low machine het-
erogeneity because it only considers the completion time
and ignores the task execution time. G-Sufferage performs
quite similar to G-MCT for high machine heterogeneity and
5% − 10% better for low machine heterogeneity scenarios
because it makes more intelligent decisions by considering
the task execution time. G-Min-min gives the second best
results in each case due to the uniform distribution of task
execution times, but looses fairness because of handling the
smallest tasks first.

In Figure 3d and Figure 3e, we show the skyline produced
by various algorithms. G-OLB gives the worst results because
of no cooperation between different BoTs, the resources
being selected based on their availability without considering
task execution time and public clouds’ prices. G-Min-min

TABLE III: Communication- and storage-aware scheduling
simulation environment.

No. of No. of No. of BoTs Task Resource Bandwidth Storage
processorsClusters Tasks heterogeneityheterogeneityheterogeneityheterogeneity

1035 10 148690 10 [1; 1000] [1; 100] [1; 1000] [1; 100]

only handles the smallest tasks and ignores larger ones in the
beginning. However, the smallest tasks are not the ones with
the best performance/price ratio and, therefore, G-Min-min
cannot perform well. G-Sufferage performs quite similar to
Min-min due to similar reasons. In contrast to G-Min-min,
G-Max-min gives better results because it schedules larger
tasks in the beginning, which makes the large tasks gain more
on the site with best performance/price ratio. G-MCT gives
the second best results because it unconsciously selects tasks
with average sizes, with a statistically larger likelihood of
having the best performance/price ratio. GMO gives the best
schedules in most cases, however it may not deliver the best
results for workflows with complex dependencies between
BoTs for which the scheduling problem cannot be formulated
as a typical and solvable game.

GMO provides the best performance in all four scenarios
because it takes the best global decisions. It performs about
10% better than G-Min-min for the LoHi scenario, and 5%
better for the other three. We can see that when fairness
is ensured, the efficiency is also improved. We can further
observe in Figure 3c that GMO always achieved almost
perfect fairness of 0.99 in average.

C. Communication- and storage-aware Experiments

Table III presents the simulated computing environment,
where the real values are randomly generated from a uniform
distribution in the specified ranges. Since consistent matrix
and inconsistent matrix generate similar results, we only
present the results for inconsistent matrices that we consider
more authentic for modeling a hybrid cloud environment.

7

As expected GMO also gives the best results as shown
in Figure 3g. The relative order of the algorithms from
the best to worst is: GMO, G-Min-min, G-Sufferage, G-
MCT, G-Max-min, G-OLB, and G-MET. When there are no
bandwidth or storage constraints on the sites, GMO performs
about 5 − 10% better than G-Min-min, and achieves less
costs than other algorithms by at least 28% (see Figure 3g).
When there are constraints, GMO improves the performance
of multiple workflows by at least 33%, and decrease costs
by at least 74% (see Fig. 3h). GMO provides the best
performance because makes the best global decisions in terms
of simultaneous performance and bandwidth optimization,
while other heuristics can only find a compromise between
the two objectives when bandwidth requirements cannot be
fulfilled, resulting in a potential waste of computing power.
In terms of cost, Figure 3h illustrates that all algorithms need
approximately twice the cost of GMO.

VI. CONCLUSION

With increasing focus on large-scale applications on hybrid
clouds, it is important for a workflow management service
to efficiently and effectively schedule and dynamically steer
execution of applications. In this paper, we analyzed the
main bottlenecks of a class of applications with bags-of-tasks
characterized by a large number of homogeneous tasks, and
presented a communication- and storage-aware multiobjec-
tive scheduling solution based on a sequential cooperative
game algorithm for four important metrics: makespan, cost,
storage resource and network bandwidth. Experimental re-
sults based on simulation, as well as real applications in
the hybrid cloud computing environment demonstrate that
our approach delivers better solutions in terms of makespan,
cost, system-level efficiency and fairness with less algorithm
execution times than other greedy approaches such as G-Min-
min, G-Max-min, or G-Sufferage, which proves that we have
successfully overcome the drawbacks of slow convergence
and random constructions of other metaheuristics. Further-
more, we observed that the larger scale the experiments are,
the better results we achieve. For example, considering larger
hybrid infrastructures up to 2048 processors to schedule the
applications will only increase the gap between our game
theoretic algorithms and the other classical heuristics, greedy
algorithms needing in this case hours to complete.

Our game theory-based scheduling algorithm possesses
great potential for improvement for large-scale applications
in hybrid clouds. We plan to investigate how our algorithm
can adapt to other metrics such as memory, security, resource
availability, or multiple virtual organizations. We further
intend to extend our method with priorities in two ways: (1)
search for new appropriate weights for BoTs that guarantee
them a faster or slower completion; (2) assign deadlines to
BoTs, partition them into sub-BoTs according to assigned
deadlines, and applying our algorithm on each sub-BoT.
Finally, our approach of expressing task distribution using
job processing rates (see Equation 14) can be easily extended
for online scheduling that handles dynamic job arrivals.

REFERENCES

[1] Luiz F. Bittencourt, Edmundo R. M. Madeira, and Nelson L. S. Da
Fonseca. Scheduling in hybrid clouds. IEEE Communications Maga-
zine, 50(9):42–47, 2012.

[2] Luiz Fernando Bittencourt and Edmundo R. M. Madeira. Towards the
scheduling of multiple workflows on computational grids. Journal of
Grid Computing, 8(3):419–441, September 2010.

[3] R. Buyya, R. Ranjan, and R. N. Calheiros. Intercloud: Utility-
oriented federation of cloud computing environments for scaling of
application services. In 10th International Conference on Algorithms
and Architectures for Parallel Processing, Busan, Korea, 2010.

[4] Rubing Duan, Radu Prodan, and Thomas Fahringer. Performance and
cost optimization for multiple large-scale grid workflow applications.
In Proceedings of the 2007 ACM/IEEE conference on Supercomputing
(SC ’07), New York, NY, USA, 2007. ACM Press.

[5] C.Kim et al. An algorithm for optimal load balancing in distributed
computer systems. IEEE Transactions on Computers, 41(3):381–384,
1992.

[6] Jonathan Bredin et al. A game-theoretic formulation of multi-agent
resource allocation. In Proceedings of the Fourth International Con-
ference on Autonomous Agents, pages 349–356, Barcelona, Catalonia,
Spain, 2000. ACM Press.

[7] Tracy D. Braun et al. A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distributed
computing systems. Journal of Parallel and Distributed Computing,
61(6):810–837, 2001.

[8] Preetam Ghosh, Kalyan Basu, and Sajal K. Das. A game theory-based
pricing strategy to support single/multiclass job allocation schemes for
bandwidth-constrained distributed computing systems. IEEE Trans.
Parallel Distrib. Syst., 18(3):289–306, 2007.

[9] Adán Hirales-Carbajal, Andrei Tchernykh, Ramin Yahyapour,
José Luis González-Garcı́a, Thomas Röblitz, and Juan Manuel
Ramı́rez-Alcaraz. Multiple workflow scheduling strategies with user
run time estimates on a grid. Journal of Grid Computing, 10(2):325–
346, June 2012.

[10] I. Houidi, M. Mechtri, W. Louati, and D. Zeghlache. Cloud service
delivery across multiple cloud platforms. In 2011 IEEE International
Conference on Services Computing (SCC), 2011.

[11] R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems.
DEC Research Report TR-301, 1998.

[12] W. Kapferer, W. Domainko, S. Schindler, E. Van Kampen,
S. Kimeswenger, M. Mair, T. Kronberger, and D. Breitschwerdt.
Metal enrichment and energetics of galactic winds in galaxy clusters.
Advances in Space Research, 36:682, 2005.

[13] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes. Sky computing.
IEEE Internet Computing, pages 43–51, 2009.

[14] Y. Kwok, S. Song, and K. Hwang. Selfish grid computing: Game-
theoretic modeling and nas performance results. In Proceedings of the
5th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid 2005), 2005.

[15] Maciej Malawski, Gideon Juvey, Ewa Deelman, and Jarek Nabrzyski.
Cost- and deadline-constrained provisioning for scientific workflow
ensembles in iaas clouds. In International Conference on High Per-
formance Computing, Networking, Storage and Analysis, number 22.
IEEE Computer Sociery, 2012.

[16] S.K. Nair and S. Porwal et al. Towards secure cloud bursting, brokerage
and aggregation. In 8th IEEE European Conference on Web Services
(ECOWS 2010), 2010.

[17] S. Penmatsa and A. T. Chronopoulos. Cooperative load balancing for
a network of heterogeneous computers. In 21st IEEE Intl. Parallel and
Distributed Processing Symposium. IEEE Computer Sociery, 2006.

[18] K. Schwarz, P. Blaha, and G. K. H. Madsen. Electronic structure
calculations of solids using the wien2k package for material sciences.
Computer Physics Communications, 147(71), 2002.

[19] L. Young, S. McGough, S. Newhouse, and J. Darlington. Scheduling
architecture and algorithms within the iceni grid middleware. Technical
report, UK e-Science All Hands Meeting, EPSRC, 2003.

[20] Henan Zhao and Rizos Sakellariou. Scheduling multiple DAGs onto
heterogeneous systems. In International Parallel and Distributed
Processing Symposium. IEEE Computer Society, 2006.

[21] Liying Zhu, Zhenyu Sun, Wei Guo, Yaohui Jin, Weiqiang Sun, and
Weisheng Hu. Dynamic multi DAG scheduling algorithm for optical
grid environment. In Network Architectures, Management, and Appli-
cations V, volume 6784. International Society for Optical Engineering,
2007.

8

