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Abstract—The deployment of the components of distributed
systems is now often very dynamic – server-side components are
virtualised so they can be dynamically deployed on a range of
platforms including public and private clouds, while users expect
to be able to install clients on devices from phones to tablets.
This can introduce security problems that place data at risk.
This paper describes a new method for modeling the security
of a distributed application and generating the set of possible
deployment options that meet the overall security requirements.
The model encompasses the entities that influence the security of
a distributed system: data, services networks and platforms (e.g.
clouds, devices and “things”). The paper describes the method
and how it can be used to answer a range of security questions,
using a set of case studies including federated clouds, network
roaming and “Bring Your Own Devices” (BYOD).

I. INTRODUCTION

The components of distributed systems are now far more
dynamically deployed than in the past. Server-side components
are now often virtualised and dynamically deployed on a
range of platforms, including public and private clouds, in
order to meet changing performance and cost requirements.
Similarly, users want to be able to deploy clients on a diverse
set of devices (desktops, laptops, tablets, smartphones). This
is increasingly true even for corporate applications.

It has not always been like this. Ten years ago, a typical
organisation would deploy its server-side software on fixed
machines within its own machine room, while users would be
limited to using a very restricted set of clients that were owned
and carefully managed by the organisation.

The situation has changed mainly due to user expectations
and the need to reduce IT costs. Users now expect access
to corporate software applications at anytime, from anywhere
and from any device. Recently, users have come to expect
that they should be able to access these applications from their
own devices: many users now prefer to buy their own devices,
such as tablets, and use them for work in preference to a less-
attractive standard corporate laptop or desktop. This mobile,
“Bring Your Own Device” (BYOD) culture raises a range of
challenging security issues, including:

• is it safe to deploy a client on an unknown, user-managed
BYOD?

• is it safe for corporate data to be transferred to and from
mobile clients over home broadband, coffee-shop Wi-Fi

and phone networks?
In parallel with this, there is a move to the more dynamic

deployment of virtualised, server-side software components on
a range of platforms – including clouds – in order to meet
changing demand and reduce costs. This also raises security
issues, including:

• which components can be safely deployed on a public
cloud?

• which data items can be safely transferred over the
Internet to and from a public cloud?

More recently, the introduction of the “Internet of Things”
into the distributed systems ecosystem has added another layer
of security concerns, with software storing and transmitting
sensor data that may be sensitive. For example, data from sen-
sors in the home being transmitted to an application running
in the cloud might reveal when the occupants are away.

The typical current approach to addressing this problem
is manual and ad-hoc – a human expert will consider a
possible deployment plan and decide if it meets the security
requirements. This raises numerous concerns:

• the possibility of human error compromising security
• the inability to make very dynamic decisions, for example

to understand whether moving a service from a private
cloud to a public cloud to handle a performance spike
(“cloud-bursting”) would break the security requirements

• the lack of an audit trail explaining the decision so that
it can be reviewed

This paper addresses these problems by introducing an
alternative: a systematic method to model and reason about
the deployment of distributed systems in order to meet security
requirements. At its heart is a way to formally model the set
of entities that determine the security of a distributed system:
the services from which it is composed, the data that these
services produce and consume, the networks over which the
data is transferred, and the platforms on which the services
are deployed.

Once the application has been modelled, the paper intro-
duces a method that allows the use of the model for the
exploration and validation of the security of an application
in terms of these entities. This can be used in two main ways:

• if an administrator specifies the required security levels



for the services and data in an application, the platform
on which each service is to be deployed, and the networks
it utilises, then the method can determine whether or not
the application’s security requirements will be met.

• if an administrator specifies the required security levels
for services and data, and the range of platforms on which
each service could potentially be deployed, the method
can generate all deployment options that meet the security
requirements (if any exist).

Due to mobility, not all these deployment questions can be
answered exclusively at the application’s initial deployment
time: for example clients may roam across mobile networks.
Therefore, there is the need for a new application support
framework that enforces the use of the method described
in this paper for dynamic decision-making when there are
changes in the underlying system, such as network roaming.

The new methods presented in this paper build on our
previous work [1] but extend it in significant ways:

• the ability to model networks has been added
• the previous method was restricted to workflows; the new

method can be applied to any distributed system, includ-
ing clouds, clients running on devices from which users
access cloud-based applications (e.g. mobile phones, lap-
tops and tablets), and “things” such as sensors in the In-
ternet of Things which transmit data to cloud applications
for analysis, or are controlled by those applications

• a new way to model and reason about the security of the
system: this combines greater simplicity with increased
generality

A tool has been built to implement the method so that users
can explore security and deployment options. The tool also
automatically generates reports (exploiting LATEX), and so all
the equations, security lattices, results and tables in this paper
have been generated automatically in this way.

The paper is structured as follows: it firstly introduces the
new model used to represent security requirements; next it
shows how that model can be used to represent common
distributed system structures; it then shows how the model
can be used to answer security questions in a set of case
studies involving federated clouds and network roaming. All
the case studies are drawn from real-world examples of the
challenges faced by industry and researchers wanting to exploit
the benefits of cloud computing. Finally, it explains how the
method can support an application framework that ensures
security requirements are enforced, even in the presence of
dynamic changes (e.g. network roaming, or moving services
from private to public clouds).

II. A MODEL FOR REPRESENTING MULTI-LEVEL
SECURITY REQUIREMENTS

The security model takes into account service, data, device
and network security. It is based on the multi-level security
models that have dominated security modeling for the past
decades, in particular Bell-LaPadula [2].

The entities modeled are:

Notation Meaning
si Service i (each service has a unique identifier i)
pi Platform i (each platform has a unique identifier i)
ni−j The network connecting platform i to platform j
di.x−j.y The data sent from service i port x to service j port y
l(z) The security location of z
c(z) The clearance of z (the max l at which z may operate)

TABLE I
LEXICAL CONVENTIONS

Platform
the underlying hardware and software platforms on
which the application is deployed. Examples are
the Microsoft and Amazon Clouds, an organisation’s
data centre, an employee’s BYOD cellphone, and a
corporate tablet.

Network
the fixed or mobile networks connecting the plat-
forms on which the application’s services are de-
ployed.

Service
a software component within the application. We
model applications as a set of communicating ser-
vices

Data
the services communicate by passing data between
them

We model applications as a directed graph in which the
nodes represent the services, while the edges represent the
communications between them. The security requirements
of an application are then represented as a conjunction of
inequalities that are generated by a set of rules. We now define
these rules using the lexical conventions in Table 1.

For each service si in the application graph, we add the
following inequality:

l(pi) ≥ l(si) (1)

(the security level of the platform on which the service is
deployed must be greater than or equal to that of the service.)

For each edge (data connection) di.x−j.y in the application
graph we add the following inequalities:

l(pi) ≥ l(di.x−j.y) (2)

(the security level of the platform on which the service
transmitting the data is deployed must be greater than or equal
to that of the data.)

l(pj) ≥ l(di.x−j.y) (3)

(the security level of the platform on which the service
receiving the data is deployed must be greater than or equal
to that of the data.)

l(ni−j) ≥ l(di.x−j.y) (4)

(the security level of the network across which the data is
transmitted must be greater than or equal to that of the data.)



Fig. 1. The Security Level Lattice

Fig. 2. A producer service sending data to a consumer

We can also represent these inequalities as shown in the
lattice diagram of Figure 1, in which the arrows represent a
“≥” relationship.

This method can be used to model any arbitrary application
consisting of components that communicate. We now show
how these inequalities can be used to model three basic
application structures: Producer-Consumer, Client-Server and
Pipeline.

1) Application Structure 1: Producer-Consumer: We begin
with a simple application involving two services, one of which
produces data that is consumed by the other (Figure 2).
An example would be that the producer is a sensor, which
intermittently sends a reading to a cloud based application –
the consumer – that stores and analyses the readings

Applying the above rules to the two services and one data
connection allows this application to be modeled as the set of
inequalities shown in Equation 5:

l(p1) ≥ l(s1) ∧
l(p2) ≥ l(s2) ∧
l(p1) ≥ l(d1.0−2.0) ∧
l(p2) ≥ l(d1.0−2.0) ∧
l(n1−2) ≥ l(d1.0−2.0)

(5)

We can also represent these inequalities as shown in the
lattice diagram of Figure 3.

2) Application Structure 2: Client Server: We now extend
application structure 1 to client-server (Figure 4). An example
would be where the client is a thermostat that regularly sends
temperature readings to a “server” service running in the cloud
that stores and analyses these readings in order to decide when

Fig. 3. The Security Level Lattice for a Producer-Consumer application

Fig. 4. A Client-Server Architecture

to turn the heating on and off. Applying the above rules to the
two services and two data connections allows this application
to be modeled as the set of inequalities:

l(p1) ≥ l(s1) ∧
l(p2) ≥ l(s2) ∧
l(p2) ≥ l(d2.0−1.0) ∧
l(p1) ≥ l(d2.0−1.0) ∧
l(n1−2) ≥ l(d2.0−1.0) ∧
l(p1) ≥ l(d1.1−2.1) ∧
l(p2) ≥ l(d1.1−2.1) ∧
l(n1−2) ≥ l(d1.1−2.1)

(6)

III. DATA SECURITY CONSTRAINTS

So far, we have not considered any constraints on the
security relationship between data and services. The method
we have presented is extensible and allows for the addition
of other security constraints relating to data. This could range
from the very basic, in which we impose a simple constraint
that the security level of a service must be greater than or
equal to that of any data that it reads. Or it could be more
sophisticated, for example incorporating the modified Bell-
LaPadula method [2] that was introduced for workflows in [1].
We now show how this can be generalised to any distributed
system, and represented in the new method presented in this
paper.

To model this form of Bell-LaPadula, the following inequal-
ities are added to the security lattice:

For each service si in the application graph, we add the



Fig. 5. A Healthcare Workflow for Analysing Sensor Data

following inequality:

c(si) ≥ l(si) (7)

where c(si) represents the clearance of the service: its maxi-
mum security location

For each edge (data connection) di.x−j.y in the application
graph we add the following inequalities:

c(sj) ≥ l(di.x−j.y) (8)

(the Bell-LaPadula “no read up” rule)

l(di.x−j.y) ≥ l(si) (9)

(the Bell-LaPadula “no write down” rule)

IV. USING THE SETS OF INEQUALITIES TO ANSWER
QUESTIONS ABOUT DEPLOYMENT

Once the security constraints of the distributed system have
been modeled as a set of inequalities, it is possible to answer
questions about valid deployment options. We first describe in
general terms how this can be achieved; the remainder of the
paper then shows how questions from the set of case studies
can be answered.

In every case, answering questions takes place in two stages:
1) where there are variables in the inequalities that repre-

sent real-world entities whose security levels are known
and fixed, bind those variables to those known security
levels

2) Simplify the resulting set of inequalities
This can generate one of three results:
• the security constraints can not be met
• the security constraints can be met
• there are specific values (or ranges of values) that the

unbound variables can take that would allow the security
constraints to be met

Examples of each of these types of results will be given for
the case studies presented later. However, we first explain the
simplification process.

All the inequalities that are generated are of the form
a ≥ b where a and b are variables. We represent specific
security levels, to which variables can be bound, as integers,
with higher values representing higher levels of security. The
following rules are then used to simplify the set of inequalities
(we use i and j to represent integers, and v to represent

variables). Considering first each inequality consisting of a
comparison between two integers:

i ≥ j (10)

If this is true then it can be removed from the set of inequalities
(as the conjunction of any logical expression E AND TRUE
is E); if it is false then the security requirements of the
application cannot be met (as the conjunction of any logical
expression E AND FALSE is FALSE).

Next, consider pairs of inequalities, involving a specific
variable v, that are of the form:

v ≥ i ∧ v ≥ j (11)

These can be replaced by the single inequality

v ≥ maximum(i, j) (12)

Also, inequalities of the form:

i ≥ v ∧ j ≥ v (13)

can be replaced by the single inequality

minimum(i, j) ≥ v (14)

This process of simplification results in one of: a conjunc-
tion of a set of inequalities containing the unbound variables,
the discovery that there are no variable values that can be
satisfied, or the discovery that the given variable bindings
mean that the security requirements have been met. We now
show how this process of binding and simplification is used
to answer security questions in a set of case studies drawn
from examples of attempts to exploit clouds by industry or
researchers.

V. CASE STUDIES

This section presents a variety of case studies to illustrate
the application and generality of the methodology.

A. Case Study: Federated Clouds

In [1], a method was presented for determining valid de-
ployment options for a healthcare workflow. The aim was to
determine the possible ways to partition a workflow across
a set of federated clouds so as to meet security constraints.
A cost model could then be used to select from the valid
options. We will now show that the method of inequalities
introduced in this paper can be used to solve this problem
more simply than in [1], while also including network security.
The workflow is shown in Figure 5 – it is a four service
pipeline for analysing accelerometer data. Applying the above
rules to the four services and three connections allows this
application to be modelled as the set of inequalities. The
original paper’s model included Bell-LaPadula, but could not
encompass network security, which we can now include due
to the extended method presented in this paper. The set
of inequalities is shown in equation 15, which can also be
represented by the security lattice shown in Figure 6.



Fig. 6. The security lattice for the Healthcare example, with Bell LaPadula

l(p0) ≥ l(s0) ∧
c(s0) ≥ l(s0) ∧
l(p1) ≥ l(s1) ∧
c(s1) ≥ l(s1) ∧
l(p2) ≥ l(s2) ∧
c(s2) ≥ l(s2) ∧
l(p3) ≥ l(s3) ∧
c(s3) ≥ l(s3) ∧
l(p0) ≥ l(d0.0−1.0) ∧
l(p1) ≥ l(d0.0−1.0) ∧
l(d0.0−1.0) ≥ l(s0) ∧
c(s1) ≥ l(d0.0−1.0) ∧
l(n0−1) ≥ l(d0.0−1.0) ∧
l(p1) ≥ l(d1.0−2.0) ∧
l(p2) ≥ l(d1.0−2.0) ∧
l(d1.0−2.0) ≥ l(s1) ∧
c(s2) ≥ l(d1.0−2.0) ∧
l(n1−2) ≥ l(d1.0−2.0) ∧
l(p2) ≥ l(d2.0−3.0) ∧
l(p3) ≥ l(d2.0−3.0) ∧
l(d2.0−3.0) ≥ l(s2) ∧
c(s3) ≥ l(d2.0−3.0) ∧
l(n2−3) ≥ l(d2.0−3.0)

(15)

Next, we bind all the variables to the values from the
original paper, leaving only those representing the security
locations of the four platforms. These bindings are shown in
Table II. The example used only two levels: 0 (representing
low security) and 1 (representing high security). The key
point about the example is that the workflow first reads
a file that contains confidential medical information about
a patient, along with the output of a medical sensor. The
“Anonymise” service then removes the confidential parts of
the file, leaving only the sensor data collected from the patient.
This is then analysed to produce a summary of the patient’s
health. Therefore, while the initial data is confidential (security
level 1) and needs to be stored securely, the anonymised data

TABLE II
VARIABLE BINDINGS FOR THE HEALTHCARE EXAMPLE

Variable Location
l(s0) 1
c(s0) 1
l(s1) 0
c(s1) 1
l(s2) 0
c(s2) 0
l(s3) 0
c(s3) 1
l(d0.0−1.0) 1
l(d1.0−2.0) 0
l(d2.0−3.0) 0

TABLE III
VALID OPTIONS FOR RUNNING EXAMPLE

p0 p1 p2 p3
Private Private Public Public
Private Private Public Private
Private Private Private Public
Private Private Private Private

is low security (level 0).
Simplifying the resulting set of inequalities using the rules

given above produces the result in equation 16.

l(p0) ≥ 1 ∧
l(p1) ≥ 1 ∧
l(p2) ≥ 0 ∧
l(p3) ≥ 0 ∧
l(n0−1) ≥ 1 ∧
l(n1−2) ≥ 0 ∧
l(n2−3) ≥ 0

(16)

Given the availability of a set of real clouds, with known
security levels, equation 16 can be used as the basis for
generating all possible valid deployment options as will now
be explained.

It is common for organisations to utilise two clouds: one
internal “Public” (with security level 0) and “Private” (with
level 1). This gives four possible solutions to the inequalities
of 16. These are shown in Table III (these solutions were
generated by the tool described later in the paper).



Fig. 7. Options for Partitioning the Healthcare Workflow

Another way to represent this is through the diagram in
Figure 7 (the red border surrounds services on the private
cloud, the green the public cloud). In order to chose between
the options, a cost model such as that in [1] could be used.

Determining all valid options can also be used to assess
risks to application availability. Inspection of Table III or
Figure 7 shows that the application is entirely dependent on
the private cloud: if it fails then there are no options available
to run the application sufficiently securely. In response to this
knowledge, the organisation may choose to acquire access to
a second private cloud to use if the main one fails. If that
is the case then the method shows that the options shown in
Table IV become available and so the organisation is no longer
dependent on a single cloud.

B. Case Study: Can a Bring You Own Device (BYOD) be used
as a Client to a Cloud-based Application?

Until recently, organisations concerned with security could
exert control over the devices employees used at work by pro-
viding managed, controlled and often locked-down hardware
and software. This is now changing as employees want to
use their personal devices, such as mobile phones and tablets,
for work – this is often known as “Bring Your Own Device”
(BYOD). Many organisations are concerned by the security
implications this creates; in particular, there is the issue of
whether trusted data should be accessible from a BYOD. The
method described in this paper allows organisations to model
and understand such security problems as follows.

The application is modeled as a set of inequalities as in
the previous examples, with variables representing the known
security levels of the organisation’s data, services, platforms
and networks bound to the appropriate security levels. The
platform variable representing the BYOD would be bound to
an appropriately low security value.

The simplification method described above would then be
used to determine whether the system, including the BYOD,
meets the overall security requirements.

As an example, we take the Client Server application of
Section II-2. This was modeled as equation 6. Let us assume
that the client in this Client-Server application is running on
the BYOD and the server is running in a Cloud. Therefore, p2
represents the BYOD.

TABLE IV
VALID OPTIONS WITH TWO PRIVATE CLOUDS

p0 p1 p2 p3
Private Private Public Public
Private Private Public Private
Private Private Public Private2
Private Private Private Public
Private Private Private Private
Private Private Private Private2
Private Private Private2 Public
Private Private Private2 Private
Private Private Private2 Private2
Private Private2 Public Public
Private Private2 Public Private
Private Private2 Public Private2
Private Private2 Private Public
Private Private2 Private Private
Private Private2 Private Private2
Private Private2 Private2 Public
Private Private2 Private2 Private
Private Private2 Private2 Private2
Private2 Private Public Public
Private2 Private Public Private
Private2 Private Public Private2
Private2 Private Private Public
Private2 Private Private Private
Private2 Private Private Private2
Private2 Private Private2 Public
Private2 Private Private2 Private
Private2 Private Private2 Private2
Private2 Private2 Public Public
Private2 Private2 Public Private
Private2 Private2 Public Private2
Private2 Private2 Private Public
Private2 Private2 Private Private
Private2 Private2 Private Private2
Private2 Private2 Private2 Public
Private2 Private2 Private2 Private
Private2 Private2 Private2 Private2

TABLE V
EXAMPLE CLIENT SERVER VARIABLE BINDINGS

Variable Location
l(p1) 1
l(s1) 1
l(s2) 0
l(d2.0−1.0) 1
l(d1.1−2.1) 1
l(n1−2) 1

In this case let us assume that the variables are bound as in
Table V. Simplifying equation 6 with these bindings applied
produces the inequality:

l(p2) ≥ 1 (17)

This indicates that the security level of the platform “p2”
must be 1 or greater. Therefore a BYOD assigned a security
level of 0 cannot be used as a client in this case.

However, consider another client-server example, identical
to V except that the security location of the data flowing in
both directions between the BYOD-based client and the cloud-
based server is 0. Simplifying the equation representing the
system gives:



TABLE VI
BINDINGS FOR THE NETWORK SECURITY EXAMPLE

Variable Location
l(p1) 1
l(s1) 1
l(p2) 1
l(s2) 1
l(d1.0−2.0) 1

l(p2) ≥ 0 (18)

Therefore a BYOD, at security level 0, would be permissible
as a client in this case. These examples show that by using
the method presented in this paper, an organisation can make
considered decisions on whether or not to allow a client to run
on a BYOD.

C. Case Study: Network Security

The new method also allows us to explore the security
implications of the networks used to transfer data between
the services of an application – for example from a service
running in a cloud, to a mobile device acting as a client. There
are two ways in which this can be done:

1) if the security location of a network is known then the
variable representing it can be bound to that value

2) if the security location of a network is unknown then
the variable representing it can be left free so that any
constraints on its value can be determined

For example, consider the producer consumer system of
Figure 2 which was modeled by Equation 5 combined with
the variable bindings shown in Table VI. The network security
location is not bound, and so simplifying the resulting equation
gives the range of possible valid values for the network
location. This is shown in equation 19.

l(n1−2) ≥ 1 (19)

Alternatively, if the network location is known then the
variable can be bound to this value. For example, if the
network location is 0, then simplifying the equation gives the
value “False”, showing that it is impossible to build a system
meeting the security requirements of the data and services
using a network with this low level of security.

D. Case Study: Network Roaming

Before the advent of mobile networks, the networks used
by an application did not change dynamically and so fixed
security location values could be assigned to the variables
representing the networks, as in the previous example. With
mobile networks comes network roaming, which introduces
other issues: the network(s) used by an application might
change dynamically while the application is running, for
example when a tablet roams away from an organisation’s
private Wi-Fi to a public cellphone network as the employee
moves away from a building.

Fig. 8. A Client-Server application that Switches between 2 configurations
depending on the Network Secturity Level

We can use the model introduced in this paper to address
network roaming. As shown above, it is possible to determine
the range of acceptable security location values for the net-
works used by an application. Then, every time the application
wished to roam to use a different network, a check could be
made to see if the security location of the new network was
known to be in the acceptable range (we assume the existence
of a table mapping known networks to security levels: any
network not in the table could be assumed to be of the lowest
security level). If the network was in the acceptable security
range then the application could be allowed to continue to
operate. If not then the application could react in one of two
ways:

1) the application could pause operation until another net-
work, with a sufficiently high level of security, became
available

2) if it was possible, the application could adapt to a
(temporary) mode of operation which did not require
the use of the insecure network.

An example of the second case is shown in Figure 8. An
application contains a mobile client that regularly reads from
a sensor and sends it to a server for storage and analysis. This
is shown on the left side of the diagram. However, the data
is sensitive, and so requires a network connecting the services
that operates at a high level of security. If roaming takes place
to a network that is not at this level then the application could
switch into the configuration shown on the right side of the
figure, in which the client reads and caches locally the data
from the sensor. When the mobile client roams to a sufficiently
secure network then the cached data is sent to the server, and
the application switches back to the configuration on the left
side of the diagram in which data read from the sensor is sent
straight to the server. This is equivalent to many mobile phone
apps which are designed to work both on and off line, however
the method described in this paper has the advantage that it
can inform the designer that the application is sensitive to the
network security level, and the tool implementing the method
can be used in the code executed during roaming to determine
whether a switch to another configuration of the application



is required.

VI. IMPLICATIONS FOR SYSTEM DESIGN

Deploying this method for real-world distributed systems
requires:

1) a tool to generate the structure of an application, either
automatically or with manual assistance

2) a tool to allow the person responsible for the security of
an application to specify the security requirements for
both data and services

3) a tool to allow a security expert to specify the security
levels of platforms and networks

4) a tool to use the method described in this paper to check
prior to the deployment of an application whether or not
the proposed initial deployment plan (including specific
platforms and networks) meets the security criteria

5) prevention of automatic roaming where the security of
an application may be compromised. A check should
be introduced to ensure that the new network meets the
security requirements before roaming is allowed to take
place. If it does not, then the application must either be
halted (until a sufficiently secure network is available)
or adapted so that it can continue without using the low
security network (as described above). The application
may adapt back once a sufficiently high security network
becomes available.

We have written a tool (in Haskell) to support the implemen-
tation of items 1-4 above. This includes automatically creating
the set of inequalities representing a system, binding variables,
simplifying the set of inequalities representing the system, and
generating all possible deployments onto real-world entities
such as clouds. All the examples from this paper have been
implemented in the tool. The tool can also generate its outputs
in the form of LATEX reports, tables and equations for scrutiny
by an expert: all the tables, lattice diagrams, equations and
results in this paper have been produced in this way. The
GraphViz library is used for generating diagrams [3] in the
reports.

Fully supporting item 4 requires action at deployment time.
When a platform requests the deployment of a service within
an application (e.g. to deploy a client on a BYOD or a server-
side component on a public cloud), the application deployment
system must determine if this is allowed according to the
security criteria of the application. This requires a method
by which platforms can identify themselves (e.g. through
a mac address or a protected identifier). The deployment
system would then use a table of known devices to map the
device identifier to a platform security level. If the device was
unknown then the lowest security level would be assigned.
When the platform security level had been discovered, the
security model of the application could determine if the service
was allowed to be deployed on that device. This is analogous
to the way in which some app stores for mobile devices prevent
apps from being deployed on “rooted” devices.

To support item 5 above (network roaming) requires that
communication between services is mediated by a system that

detects when roaming is about to occur, looks up the security
level of the proposed new network in a table (defaulting to the
lowest security level for unknown networks), and then uses
a tool implementing the method introduced in this paper to
determine whether the proposed new network has a sufficiently
high security level. If so, then roaming is allowed, if not then
the application either pauses, or adapts to an off-line mode of
working as described above in sub-section V-D.

VII. RELATED WORK

This paper is a major development of the ideas found in an
earlier paper [1], which took a similar, but more restricted
approach and applied it to cloud security. Unlike the new
method, it was unable to handle general distributed systems,
nor networks. The method in [1] was further formalised in [4].

Our motivation for working on cloud security is the result
of trying to find a systematic method to deal with the security
issues we encountered in our experiences of exploiting clouds
for industrial and research applications. However, ever since
clouds first appeared, security has been a general concern
that has prevented many organisations from exploiting the
benefits of the cloud for at least some applications [5]. An
overview of cloud security concerns and possible solutions
is given in [6]. It also describes the use of trusted security
entities and a security broker that can match risk assessments
to requirements.

The method presented in this paper requires the assignment
of security levels to platforms, services, data and networks.
Ways of achieving this are discussed in [7] and [8].

Bell-LaPadula was also applied to workflow security in [9].
The underlying formalism used was Petri Nets, unlike the
approach taken in this paper. It also had the restriction that
it modelled a form of Bell-Lapadula that included clearance
but not location. Further, the paper did not consider the de-
ployment of services across a set of computational resources,
as that was not in its focus.

Recently, there have been other papers discussing the allo-
cation of services to cloud resources in order to meet security
requirements. [10] describes a method of partitioning work-
flow over clouds. It incorporates the security constraints of [1],
and adds others (e.g. for keeping entities together or apart);
it also introduces a method for optimising the placement of
partitions on clouds to meet QoS requirements. It limits its
focus to workflow (rather than general distributed systems)
and does not consider network security or mobility.

VIII. CONCLUSIONS

We believe that it is important to have a formalised, au-
ditable method for reasoning about security decisions relating
to deploying distributed systems across a range of platforms.
This is increasingly important given the wide range of plat-
forms now available, ranging from highly scalable clouds (both
public and private), through mobile devices, to the sensors
(“things”) that are now proliferating. Before we devised the
method in this paper, and its more limited predecessor [1]
we often found ourselves having to make manual judgements



about how to partition complex, sensitive applications across
a set of platforms (often public and private clouds). The con-
sequences of making an error could have been great in terms
of regulation and trust. For example, some of our projects
involve healthcare applications in which placing patient data
at risk could have severe consequences. This could be due
to sending sensitive data over insecure networks, storing it
on insecure platforms, or allowing untrusted, low-security
services to operate on it. We therefore set out to design a
method to avoid this.

In this paper we have described this new method for
modelling the security requirements of distributed systems that
run on multiple platforms, along with a way to determine
valid options for deploying the components of the distributed
system. We believe the approach to be completely general, and
have shown its utility through a set of case studies drawn from
real applications in industry and research involving clouds,
devices and “things”. One major advance over the earlier work
in [1] is in the addition of the ability to model networks.
The motivation for adding this capability was a use-case
from industry involving the security of systems with clients
running on mobile devices – focussing solely on the back-
end of systems running on clouds was no longer sufficient
to ensure system security. Once we had proved the ability to
encompass networks, we were then faced with a real-world
scenario involving a roaming client.

This led to the idea described in Section VI in which
roaming from one network to another could trigger a transfor-
mation from one system configuration to another. Achieving
this requires the ability to run the model when the network
changes to determine if a change in system configuration is
needed – this requires the model to be implemented in the
form of a tool, which we have built, that can be executed at
run-time to check the overall system security levels.

All the equations and tables in this paper, as well as the
security lattice of Figure 6 are generated by the tool, which
reduces the risk of mistakes being made due to transcription
errors. When combined with a cost model (as in [1]) the tool
can also be used to automatically generate, deploy and execute
the partitions of the distributed applications on a set of plat-
forms. We have implemented and evaluated this for e-Science
Central – an open-source cloud workflow platform [11]. Our
current research is in integrating this work with exception-
handling and fault recovery in order to deal efficiently with
cases where clouds fail [12], or become available, during the
execution of an application.
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