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Abstract—Many applications are distributed in cloud as they
consist of different modules and tiers. Cloud tenant must be
able to monitor the deployed applications to ensure that it is
operating correctly, meeting its SLAs, and fulfilling business
requirements. Activating all type of monitoring functions for
all tenant’s applications at the same time is costly. The more
required monitoring functions the more allocated cloud resources.
Moreover, it incurs monetary cost for tenants. In this paper,
the problem of virtual monitoring function (vMF) placement
for service chains is modeled by maximizing both the network
and computing resource utilization. Beside that, we propose
a set of tenant policies, which are either monetary-driven or
performance-driven, translated as constrains in optimal place-
ment algorithm. Simulation results show that the proposed model
can reduce the total incurred cost by up to 10% compared to
the best non-optimal heuristic. Moreover, the proposed model can
decrease the execution time about 84% compared to the basic
solution.

Index Terms—Network Function Virtualization, Virtual Mon-
itoring Function, Optimal Placement, Network Cost, Computing
Cost

I. INTRODUCTION

Given the sheer size and complexity of virtual network and
applications in cloud, there is an increasing demand for dy-
namic and efficient performance monitoring [5], [10]. Because
of resource limitation, it is not possible to activate monitoring
functions every where. Current solutions rely on either placing
limited monitoring functions on some fixed locations and re-
routing the traffic over these monitoring functions, or setting
some routing paths, where the monitoring functions should
be deployed [6]. However, both solutions suffer limitations.
The fixed place of monitoring functions limit to the traffic
characteristics (e.g., load, speed). On the other hand, placing
monitoring functions for each flow or link is CPU and memory
intensive, and thus not practical.

Therefore, we need to find the optimal places where the
monitoring functions should be deployed and re-route some
flows to be monitored by those functions, in such a way
to minimize the total cost of resource consumption of the
monitoring functions as well as the cost of links re-routing
[2], [9]. This is very challenging, as some nodes may not
have sufficient resources (CPU and memory) to run any
monitoring function or process all re-routed flows [7], [14].
Furthermore, the impact of deployed solution (monitoring
function placement and flows re-routing) on the performance

(e.g., response time) of the network and applications should
be minimized by all means.

In this paper, we propose to place vMF in cloud with
respect to the network and computing utilization maximization
objectives. Network objective refers to minimize traffic delay
for flows needed to be monitored and computing objective
expresses balancing nodes computing resources. Those objec-
tives are executed due to the tenant policies which are either
monetary-driven or performance-driven. The policies are co-
location, merge, distribution, and zoning.

Co-location and merge can save monetary cost for tenants
when there are many applications in the cloud. Co-location
policy forces different type of monitoring functions to be
placed on the same node. Thus, it reduces the pre-processing
cost (e.g., serialization) as it has to be done only once per node.
Merge policy eliminates the same type, as much as possible,
to save the cost of VM creation of the same monitoring job
functionality.

Distribution policy forces the placement algorithm to place
vMFs in different nodes. It improves the performance of
monitoring when (a) the load of the majority of the nodes
are high and they cannot accept to host several new vMFs
or (b) the application may expect receiving high traffic and
co-locating many vMFs on a node may affect performance.
Zoning policy helps to reduce the execution time of optimal
placement algorithm, since the search space is restricted. It
helps to speed-up the execution of the solver, initiate VMs
and vMFs creations, capture the source of the problem, and
deactivate the monitoring functions. Thus, zoning helps both
saving monetary cost and improving monitoring performance.
Note that the performance may be negatively affected when
the majority of the nodes in a zone are busy.

In short, the contributions of this paper are three-fold:
1) We identify two categories of monitoring policy place-

ment in cloud: monetary-driven and performance-driven.
The tenants may choose one or both (switching between
them over time) of them, with respect to the type of
deployed applications in cloud or budget limitation.

2) We formulate the virtual monitoring function placement
problem using integer linear programming (ILP), where
the objective is to maximize both networking and com-
puting resources utilization while satisfying the tenant
monitoring policy or limitation.
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3) Note that to monitor a three-tier application, there are
two requests, since two communications exist between
tiers. The majority of works split the requests into
different sets (same source and destination) and then
run them sequentially. Off course they lose optimality
but they reduce the execution time. In this paper, we
propose a set of constraints which help us to reduce the
execution time when all requests are run simultaneously.

The rest of the paper is organized as follows. Section II
presents the related works. Section III describes in the problem
that we intend to solve. Section IV presents the mathematical
formulation of our optimization framework. Section VII is
dedicated to the presentation and discussion of the results
obtained via different use cases. Section VIII concludes the
paper.

II. RELATED WORK

Network monitoring using OpenFlow has been explored
in recent years. Adrichem et al. [13] proposed an open-
source software implementation to monitor per-flow metrics,
especially throughput, delay, and packet loss, in OpenFlow
networks. Chowdhury et al. [3] proposed a flexible and
extendable monitoring framework for SDN, called PayLess.
They focused on trade-off between monitoring accuracy, time-
liness and network overhead. The presented model supports
different types of monitoring: performance, security, fault-
tolerance, etc. For each selected monitoring type, a set of
metrics is proposed. Performance metrics may include delay,
latency, jitter, throughput, etc. As seen, the aforementioned
work explored different virtual monitoring functions (delay,
latency, jitter, throughput, packet loss) relying on OpenFlow
or other programmable routing platform which are needed in
the cloud. Virtual monitoring functions are part of Network
Function Visualization (NFV) and the optimal placement of
VNF became a hot topic in cloud recently.

The optimal placement of VNFs is known to be an NP-hard
problem. Particularly, optimizing both network and computing
resources at the same time may make the problem difficult to
solve in a reasonable period of time. Thus, several research
initiatives either propose to optimize these resources separately
or to tackle the more general problem by proposing heuristics
to address the pure optimization problem. In [4], an ILP
formulation is proposed to optimally steer flows through static
middleboxes in the network. Sekar et al. [12] propose an
optimization approach that assumes predefined paths between
sources and destinations and then tries to find the optimal
placement of the virtual appliances on these paths. Zhang et
al. [15] and Addis et al. [1] propose to prioritize the objective
functions and then run them sequentially. The first step is
to dynamically find the optimal computing node to initiate a
service function, and then traffic is routed through the initiated
service. In contrast, Addis et al. [1] minimize first the maximal
link utilization; and then, after setting the routes, as a second
objective, they minimize the network core utilization.

By considering both objectives dynamically, link and node
core utilizations, optimal placement of a chain becomes more

challenging. That is, when the number of nodes in the network
increases, the running time enhances exponentially. To tackle
this issue, Mohammadkhan et al. [11] propose to partition
the problem into smaller pieces such that the final result
remains close to the optimal solution. In contrast, Jarraya et
al. [8] present some heuristics to make the result scalable. For
example, they restrict the resource availability in the network
with respect to the type of VNF, or they partition the graph
vertically, from source to destination, into some several sub-
graphs. Compared to the existing work, we propose a set of
monitoring policies considered as constraints in finding the
optimal solution. These policies enable tenant to optimize the
monetary costs or performance based on their needs.

III. PROBLEM STATEMENT

Let us have a virtual network comprised of a set of nodes
N = {ni}, and a set of links L = {lni,nj

}. To each link
lni,nj

, we associate a cost of sending a packet on that link,
denoted as Cl(lni,nj

), ni and nj being source and destination.
Let F = {fi} be a set of network flows, to each fi of which is
associated a bandwidth capacity needed by that flow, denoted
as Bf (fi).

We want to deploy a set of k vMFs, denoted by M =
{mi}ki=1, on the network. Deploying each vMF incurs a cost
(vCPUs and memory), which depends on the network node
on which it will be deployed. Let Cn(mi, nj) be the cost of
deploying the vMF mi on the network node nj .

Our objective is find the optimal placements where the
vMFs can be deployed. These optimal placements should
minimize, simultaneously, the cost of deploying the set of
vMFs, the cost of re-routing the other flows to be monitored
by the deployed vMFs, while satisfying the tenant policies.

Let M∗ = {m∗i }ki=1 be the optimal placements of M =
{mi}ki=1, which are given by:

M∗ = arg min
ni∈N,li∈L,fi∈F,mi∈M

Cost(ni,mi, lni,nj
, fi) (1)

where Cost(ni,mi, lni,nj
, fi) is the total cost of deploying

the k vMFs and re-routing the flows that are not monitored to
be monitored by these vMFs.

IV. PROPOSED OPTIMAL PLACEMENT FRAMEWORK

In this section, we present our solution to equation (1), in
order to identify the optimal placements of the set of k vMFs.
We first present an overview of our framework, then we detail
our methodology.

A. Overview

Our framework takes as input (i) the network topology, (ii)
the cost of link between nodes, (iii) the cost of nodes, (iv)
number of different vMF instances that can be instantiated
at each node, (v) maximum capacity in units of bandwidth
supported by each link, (vi) the number of flows, and (vii) the
number of vMFs that will be monitoring each flow. On the
other side, the framework identifies the set of nodes, where the
k vMFs can be deployed optimally. The core of our framework
consists in solving (1), which is detailed in the following



TABLE I: ILP parameters and variables

N = {ni} set of network nodes
L = {lni,nj } set of links of the network
F = {fi} set of (unidirectional) flows between pairs of nodes

M = {mi}ki=1 set of possible vMFs
Cl(lni,nj ) cost of sending a packet on the link lni,nj

Bf (fi) bandwidth capacity needed by the flow fi
Cn(mi, nj) cost of deploying the vMF mi on the network nj

M∗ = {m∗
i }ki=1 optimal placements of M = {mi}ki=1

x(lni,nj , fi) decision of re-routing flow fi on the link lni,nj

y(ni,mi, fi) decision of placing vMF mi on the node ni to
monitor flow fi

sf node source of the flow f , sf ∈ N
df node destination of the flow f , df ∈ N

Lmax
ni,nj

maximum capacity in units of bandwidth supported
by link lni,nj

dl,f number of instances vMF of type l required by the
flow f

qni,l number of instances vMF of type l that can be
instantiated at node ni

Kf ⊆M set of vMFs that must be traversed by the flow f
vni,nj ,f positive integer variable representing the visiting

order of the successor links along the path formed
by the solution from df to df

Hmin the minimum number of hops for the optimal
routing solutions

Hmax the maximum number of hops for the optimal
routing solutions

Lcolocation list of vMFs that need to be co-located
CFlowm list of flows that need to co-locate vMF m
Lmerge list of vMFs that need to be merged

MFlowm list of flows that need to merge vMF m
Ldistribution list of vMFs that need to be distributed

DFlowm list of flows that need to distribute the vMF m

subsection. Table I summarizes the mathematical symbols used
in this paper.

B. Methodology

To solve (1), we model the total cost Cost using integer
linear programing. Therefore, we propose minimizing the
following cost function:

Cost(ni,mi, lni,nj
, fi) =∑

f∈F

∑
ni∈N

∑
nj∈N

(
Cl(lni,nj ) ·Bf (fi) · x(lni,nj , fi)

)
+

∑
f∈F

∑
ni∈N

∑
mi∈M

(
Cn(mi, nj) ·Bf (fi) · y(ni,mi, fi)

) (2)

where, x(lni,nj
, fi) ∈ {0, 1} indicates whether the link

lni,nj is selected for re-routing the flow fi or not, while
y(ni,mi, fi) ∈ {0, 1} indicates whether the node ni is selected
to host the vMF mi and be traversed by the flow fi or not. The
two costs Cl(lni,nj

), and Cn(mi, nj) are bounded between 0
and 1.

At a high level, we want to decide, for each flow fi
generated by a source sf and consumed by a destination df
which nodes have to be visited and where the vMFs have to
be placed. These are captured, in our formulation, by the two
binary variables x(lni,nj , fi) and y(ni,mi, fi). The solution
to our optimization problem is the set of x(lni,nj , fi) and

y(ni,mi, fi), which together denote the optimal placements
of the k vMFs and the optimal path to traverse them.

Our proposed formulation is a load-balancing function that
tries to assign the same workload to all potential vMFs
locations, which leads to minimize the maximum workload
among them. On the other hand, it attempts to balance the
link utilization for all routing paths.

C. Basic Constraints
In the following, we define a set of constraints that represent

the baseline for our optimization framework, where both com-
puting and networking resources are optimized simultaneously.

Each flow produced by a source node is consumed only by
the destination node and no part is consumed by intermediary
nodes. In other words, for any node ni, the sum of its in-degree
edges is equal to the sum of its out-degree edges, which should
be one. That is:

∀ni ∈ N, ∀f ∈ F∑
nj∈N

x(lnj ,ni , f) + (if ni = sf then 1) =

∑
nr∈N

x(lni,nr , f) + (if ni = df then 1)

(3)

Note that, the exact quantity of vMFs requested should be
instantiated. Let k be the number of vMFs requested by flow
f , thus, we have:∑

ni∈N
y(ni,m, f) = k ∀m ∈M,∀f ∈ F (4)

vMFs can only be deployed on nodes where re-
quired resources (vCPUs and memory) are available. Let
card(MFlowm) be the number of flows that need to merge
the vMFs m. In some scenarios, for some reasons, we may
merge the same type of vMFs of two communications. The
advantage of merging vMFs is, first, less network resources
are consumed, second, the more merging the same type of
vMFs, the effective the execution time. Formally, we have:∑
f∈F

y(ni,m, f)−qni,m∗card(MFlowm) ≤ 0, ∀ni ∈ N,m ∈M

(5)
A node is added to the solution set, if a vMF is to be

deployed at that node. That is:

∀ni ∈ N \ {sf},m ∈M,f ∈ F∑
nj∈N

x(lni,nj
, f)− y(ni,m, f) ≥ 0 (6)

The bandwidth allocated to flows traversing a link does not
exceed the maximum capacity of that link. That is:∑
f∈F

Bf (f) · x(lni,nj
, f) ≤ Lmax

ni,nj
∀ni ∈ N,nj ∈ N (7)

No cycle is permited in the obtained solution paths. That
is: ∑

ni∈N
x(lni,nj

, f) ≤ 1 ∀nj ∈ N, f ∈ F∑
nj∈N

x(lni,nj
, f) ≤ 1 ∀ni ∈ N, f ∈ F

(8)



The obtained solution should have low impact on SLA.
To do so, the number of hops between a source node and a
destination node is bounded between Hmin and Hmax, which
represent, respectively, the minimum and maximum number
of hops in the optimal solution. These two boundaries can be
adjusted by: (i) the position of sf and df in the network, (ii)
the status of resource availability in nodes, and (iii) the number
of vMFs in the chain. Note that, the number of vMFs in the
chain solution may increase the routing path, when some of
them are co-located or merged on the same node. For example,
if sf and df are located in two different pods in fat-tree, at
least six hops are needed to traverse the tree between sf and
df . Since a path solution with less than six hops is not realistic,
they should be ignored by the framework. In this case, Hmin

is sets to 6.

∑
i∈N

∑
j∈N

x(lni,nj
, f) ≤ Hmax (9)

∑
i∈N

∑
j∈N

x(lni,nj , f) ≥ Hmin (10)

Finally, since this problem at hands is NP-hard, any con-
straint which helps to limit the search space should be con-
sidered. Such constraints help the framework eliminating the
nodes that are not in the solutions space. For instance, in
the fat-tree topology, never a solution meets the host in the
routing path, except source and destination nodes. Therefore,
we define a region of nodes in the graph which should not be
visited, called R̄. Nodes in R̄ satisfy the following property:∑

nj∈R̄

x(lni,nj
, f) ≤ 0 ∀ni ∈ N, f ∈ F (11)

D. Monetary or Performance Constraints

1) Merge: It is possible to place several vMFs, of the same
type, on the same node, as one vMF. For each two different
flows f1 and f2, such that f1 and f2 are in MFlowm, then
both flows should meet the same vMF at that node. That is:

∀ni ∈ N,m ∈ Lmerge, f1, f2 ∈ MFlowm, f1 6= f2,

y(ni,m, f1) = y(ni,m, f2)
(12)

where, Flowm is the set of flows that traverse the vMF m,
and Lmerge is the set of vMFs that should be merged on the
same node.

2) Co-location: In some cases, we may need to co-locate
different type of vMFs of a flow on the same node. This is
given by:

∀f1 ∈ CFlowm, f2 ∈ CFlowm′ , f1 = f2,

∀ni ∈ N,m,m′ ∈ Lcolocation,m 6= m′

y(ni,m, f1) = y(ni,m
′, f2)

(13)

where, m and m′ are two different type of vMFs.

3) Distribution: In some cases, we need to place some
vMFs at the different locations, i.e. distributed on different
nodes. First, we define a set of vMFs that should be distributed,
denoted by Ldistribution, and the set of flows that should
pass through each of these vMFs, denoted by Flowd. This
is formulated as follows:

∀ni ∈ N,m,m′ ∈ Ldistribution,

∀f1, f2 ∈ DFlowm, f1 6= f2

y(ni,m, f1) = 1− y(ni,m
′, f2)

(14)

4) Zoning: Some regions of nodes are defined in the
network, which represent the monitoring zones (denoted MZ).
A vMF that should be deployed in ZM should satisfy the
following equation:∑

ni∈MZ

y(ni,m, f) = 1 ∀m ∈ Kf , f ∈ F (15)

where Kf ⊆M is the subset of vMFs that should be traversed
by the flow f .

V. EXPERIMENTAL RESULTS

A. Simulation Setup

The experiments run for fat-tree k = 8, consists of 200
nodes and 386 links. In order to evaluate the presented
monitoring placement algorithm, we assume that a tenant has
50 three-tier applications are distributed randomly in different
racks. Moreover, we assume that the tiers of each application
are not placed in the same rack. The tenant does need these
50 three-tier applications to be monitored in the beginning.

Assume that the tenant target is monitoring these 50 appli-
cations in 25 different times, each time two applications with
respect to two polices both together: merge and distribution. To
monitor each flow, three monitoring functions are needed to be
deployed to measure delay, packet-loss, and jitter. Therefore,
in each placement, 12 vMFs are needed in total for 6 tiers of
two three-tier applications (see Figure 1). The merge policy,
which saves the cost of initiating VMs to place vMFs and the
same job functionality, reduces the total number from 12 to 3.
The distribution policy enforces the solver algorithm to place
these three vMFs on three different nodes.

To initialize bf , the number of units of bandwidth needed by
a flow f , a random number is generated. To have this flexibility
that all flows can pass all links, bf of each flow should be less
than the available capacity in units of bandwidth in link in the
network, divided by the number of flows in each execution,
which is four in our paper. For the first placement, we set the
network such that the load of links and nodes vary. For the
sake of generality, to get closer to real world data centers,
where the CPU load on different hosts and the bandwidth
load on the links vary dramatically according to time, random
values are used for ci,j and bi,l. When the vMFs are placed
on the optimized nodes and the flows are set to be steered
through vMFs from sources to destinations, the load of related
nodes and links are increased. Then, the network with proper
costs is fed to the inputs of the next placement execution.
For performance testing and finding the optimal solution, the



Fig. 1: Two distributed applications and three monitoring
functions needed to monitor different measurements between
tiers.

GLPK (GNU Linear Programming Kit) is used on a machine
with 6 cores Intel Westmere (XEON L5638) clocked at 2.30
GHz with 24 GB RAM.

B. Result

In this section, we compare our heuristic, called Min-
NCU (Minimizing the maximum Network and Computing
Utilization), in terms of resource utilization, cost, scalabil-
ity, with four different heuristics: Min-NU, Min-CU, Min-
NU->CU, and Min-CU->NU. In Min-NCU, both objectives,
network and computing resources utilization are considered
simultaneously to tackle the optimal placement. Min-NU only
optimizes the network resource utilization, routing cost, from
a source (a tier) to a destination (another tier). In contrast,
Min-CU only optimizes the computing resource utilization. It
finds the best nodes (less costly) to place vMFs without taking
into account the routing cost. In Min-NU->CU and Min-CU-
>NU, the placement objectives are prioritized and then run
sequentially. In Min-NU->CU, first the best routing from a
source to a destination is identified and then the best nodes
within the best routing path are discovered. In contrast, Min-
CU->NU first finds the best nodes and then attempts to find
the best path to traverse from a source to a destination by
visiting all selected best nodes.

1) Utilization: Figure 2 illustrates computing, network, and
total resources utilization behavior for five different heuristics
for 25 requests of optimal placements over time. Figures 2a
and 2b show the result of two opposite heuristics, one is
seeking to minimize only the maximum network utilization
while the other one is seeking to minimize the maximum
computing utilization. In Min-NU, the harmony is observed in
the network utilization. In contrast this harmony for the Min-
CU heuristic is seen in the computing utilization. Due to the
high number of hops in routing path, compared to the number
of nodes to place monitoring functions, Min-CU shows a non-
harmony behavior for the second objective.

As seen in Figure 2b, selecting the less costly nodes to
place vMFs does not guarantee traversing the cheap routing
path from a source to a destination. The prioritized heuristics,
Min-NU->CU and Min-CU->NU, attempt to address this
limitation as shown in Figures 2c and 2d. We compare the
result of these prioritized heuristics in Figure 3. The objective
function in Min-NCU is to minimize the maximum network
and computing utilization simultaneously. Thus, as seen in Fig-
ure 2e the harmony is seen in sum of network and computing
utilization. For example, compare the request four and five. In
request five, the heuristic finds the less costly nodes to place
vMFs compared to request four, but the routing cost of the
solution for request five is greater than request four.

Figure 3a compares five different heuristics in terms of
network utilization. Min-NU and Min-NU->CU has the best
load-balancing between links compared to other heuristics
since they target only network cost objective. As seen, the
result of Min-NCU (our heuristic) is very close to the best
result. Since Min-CU does not take into account the network
cost, it has the highest network utilization. As mentioned, Min-
CU->NU attempts to have better network utilization compared
to the Min-CU, since it finds the best routing among the
source, all best nodes to place vMFs, and the destination. As
seen, Min-CU->NU has better result compared to the Min-
CU.

Figure 3b compares five different heuristics in terms of
computing utilization. As expected Min-NU and Min-NU-
>CU have the highest value compared to others. The result of
Min-NCU is very close to the best result which are Min-CU
and Min-CU->NU. As seen, for requests 12, 19, and 22 the
result of Min-NCU is better than Min-CU and Min-CU->NU.
The reason is that Min-NCU does not chose the best nodes
and there is always this opportunity to select the best nodes
for the coming requests.

Figure 3c illustrates the total utilization, network and com-
puting together, for five heuristics. Ignoring the cost of the
network makes Min-CU the worst among the heuristics. Since
the contribution of network cost is more than the computing
cost for each request, Min-NU has better result compared
to the Min-CU. As mentioned, Min-NU->CU and Min-CU-
>NU attempt to improve the result of Min-NU and Min-CU,
respectively. Although Min-NU performs better than Min-CU,
but the result of Min-CU->NU is better than Min-NU->CU.
Regarding the network utilization, in Figure 3a we observe
that the result of Min-CU->NU is very close to the Min-NU-
>CU, but the big difference for computing utilization, as seen
in Figure 3b, makes the Min-CU->NU to have better result
compared to the Min-NU->CU. It refers to this fact that when
the best nodes are selected first, we have better flexibility to
chose the best routing among the source, selected nodes, and
destination, compared to selecting the best routing first. This is
because of less flexibility among nodes in the selected routing,
compared to the first approach. In contrast, Min-NCU has the
best total utilization since it seeks to minimize the maximum
utilization of network and computing simultaneously.

Figure 4 shows the improvement percentage of Min-NCU
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Fig. 2: Computing and network utilization behavior for five different heuristics for 25 placements over time. The placement
scenario for each request consists of two three-tier applications and two policies, merge and distribution. It was performed for
a fat-tree of size k=8.

compared to other heuristics in terms of total utilization. The
improvements of Min-NCU compared to the Min-NU and
Min-CU, which seek to optimize only one objective, are 54%
to 79% and 41% to 80%, respectively. The improvement
compared to the Min-NU->CU is between 3% and 32%.
As mentioned in the Figure 3c, the best heuristic close to
the Min-NCU is Min-CU->NU. The improvement compared
to the Min-CU->NU is between −0.8% and 49%. For two
requests, 5 and 24, Min-CU->NU has better result (which
is difficult to be seen in Figure 3c). The nodes which are
selected now by Min-CU->NU are partially available for
Min-NCU, since Min-NCU used them to minimize another
objective function, network cost. As a conclusion, for the
explained scenario which involves 25 requests, we see 10.4%
improvement in the total utilization of network and computing
resources, compared to Min-CU->NU (the best heuristic close
to our solution).

2) Cost: Figure 5 compares five different heuristics in terms
of cost for a fat-tree of size k=8. The cost value is the total
of all costs for 25 requests. As can be seen in Figure 5,
when only one objective is optimized, computing or network
resource utilization, the cost of the non-considered objective
in the respective heuristic remains high. For example, Min-
NU, has the lowest cost for network, but has the worst one
for the computing. Similarly, Min-CU has the lowest cost
for computing, but has the worst one for network. As seen,
the total costs of Min-NU->CU and Min-CU->NU heuristics
are close (near-optimal) to Min-NCU. For example, Min-NU-
>CU has better network cost, compared to Mac-NCU since
in the first iteration it finds the best routing, while the best

nodes may not exist in the best routing. In contrast, Min-CU-
>NU suffers the same problem for the non-best routing path
through the best nodes of placing monitoring functions. As
can be seen, by considering both objectives, Min-NCU is able
to attune both costs simultaneously. Thus, our approach has
the minimum total cost for each placement request since the
network and computing costs are increased together.

Figure 6 compares the result of Min-NCU with other heuris-
tics for each objective separately. We compare the computing
cost to the best heuristic, Min-CU and the network cost to
Min-NU. We observe that for network resource cost, Min-
NCU is at most 11.5% more costly compared to the best case
while Min-NCU is at most 172.8% more costly for computing
cost. As seen, four times the computing cost passes 100% and
three times Min-NCU has better cost. The reason for the worst
computing cost is that the best nodes does not guarantee to
minimize the routing cost. The reason for the best computing
cost is that Min-NCU does not chose the best nodes and there
is always this opportunity to select the best nodes for the
coming requests.

3) Scalability: As explained, the optimal placement of
vMFs is known to be an NP-hard problem. Thus, we need
some heuristics to obtain the result in the acceptable time.
Figure 7 shows the benefit of some important constraints
to improve the execution time for the case of a fat-tree
of size k=8 (it consists of 200 nodes and 384 links). For
this result, we consider a three tier application. These three
tiers, A1, A2, and A3, are placed on racks 0, 40, and 127,
respectively (Note that there are 128 racks in fat-tree k=8). Our
placement goal is placing three vMFs in the network such that
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Fig. 3: Comparing utilization behavior for five different heuristics for 25 placements over time. The placement scenario consists
of two three-tier applications and two policies, merge and distribution. It was performed for a fat-tree of size k=8.
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the communication between A1 and A2 and communication
between A2 and A3 meet the same monitoring functions (the
six vMFs are merged as three).

Figure 7 illustrates nine executions of optimal placement al-
gorithm by considering different constraints. 1) No-Limitation:
In the first execution, there is no limitation and we can visit
any link and also the monitoring functions can be placed at
any node. In this case, the placement algorithm is executed
by the basic constraints (see Section IV-C Eq. (1)-(8)). As

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 5  10  15  20  25

P
en

al
ty

Request

Computing (compared to Min-CU)
Network (compared to Min-NU)

Fig. 6: Min-NCU penalty cost compared to Min-NU and Min-
CU.

can be observed, the algorithm takes 90.4s to find the optimal
solution. 2) Routing (R): We added two new constraints to the
first execution, Eq. (9)-(10), to limit the routing paths from
source to destination. It improves 20% the execution time,
72s. 3) No-Visit (NV): In the fat-tree topology, never a solution
visits any node in the host level from a source to a destination.
Of course never the solver ends up with such a solution but
as seen in Figure 7, it speeds up the solution from 90.4s
to 57.2s by considering Eq. (11). 4) NV+R: We considered
the constraints Eq. (9)-(10) and Eq. (11) together, limiting
routing and no-visiting host nodes. As seen, it improves the
execution time significantly compared to the first execution,
65% (from 90.4s to 31.4s). Moreover, it improves the time
56% and 45%, compared to the second and third execution,
respectively, where those are executed independently. 5) No-
Place (NP): In this execution we added three constraints to the
first execution to prevent placing vMF in three regions, core
(Rc), edge (Re), and host (Rh) as follows:
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Fig. 7: Comparing the benefit of different constraints in
the execution time for placing three vMFs for a three-tier
application for the case of a fat-tree of size k=8.

∑
j∈Rc={0..127}

yj,l,f = 0 ∀l ∈ Kf , f ∈ F (16)

∑
j∈Re={128..159}

yj,l,f = 0 ∀l ∈ Kf , f ∈ F

∑
j∈Rh={192..199}

yj,l,f = 0 ∀l ∈ Kf , f ∈ F

6) Monitoring Zone (MZ): In the sixth execution, the
monitoring zone constraint Eq. (15) was added to the first
execution. This constraint enforces that the vMFs are placed in
a region of nodes in the graph which represents the monitoring
zone. Constraints added to the executions five and six are
opposite to each other. As seen, the result of execution six
is better than five (compare 18.6 to 19.3s). 7) MZ+NP: In
the next execution, seven, we wanted to see the benefit of
having the opposite constraints together, monitoring-zone and
no-place. The improvement was about 0.2s (18.6s to 18.4s).
8) NV+MZ+NP: For the execution eight, no-visit constraints
(those added to execution three) were added to this execution
and the improvement, compared to the previous one, was 1s.
9) In the final execution, we considered all constraints together
(NV, R, MZ, and NP), and as seen it had the best result
among all executions. The final execution improves 84% the
first execution time (from 90.4s to 14.7s).

VI. CONCLUSION

The emerging paradigm of Network Function Virtualization
(NFV) aims to tackle the high operational costs of hardware-
based dedicated boxes by replacing network functions with
software counterparts that are referred to as Virtual Network
Function (VNF). One of the benefit of using NFV is the
simplicity in the implementation of network services (e.g.,
monitoring or security) by exploiting the important concept of
service chaining. As cloud applications and networking grow
more sophisticated, there is an increasing demand for practical
and reliable monitoring systems. Current monitoring function

deployments either place the monitoring functions on fixed
locations and re-route some flows to be monitored by those
monitoring functions, or place the monitoring functions for
fix routing. However, both strategies are inefficient, as either
computing resources cost is optimized or networking cost. In
this paper, we propose an optimal deployment solution for
monitoring functions in cloud, which takes into account a
trade-off between the cost of deploying monitoring function
on network nodes (vCPUs, memory) and the cost of re-
routing some flows with respect to the tenant monitoring
policies which is either monetary or performance driven. The
policies are translated to constraints in ILP, which save the
monitoring cost, operational cost, networking cost, or improve
the monitoring performance.
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