

Newcastle University ePrints - eprint.ncl.ac.uk

Michalák P, Watson P.

PATH2iot: A Holistic, Distributed Stream Processing System.

In: 9th IEEE International Conference on Cloud Computing Technology and

Science (CloudCom 2017). 2017, Hong Kong: IEEE.

Copyright:

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works

DOI link to article:

https://doi.org/10.1109/CloudCom.2017.35

Date deposited:

02/11/2017

http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=242660
https://doi.org/10.1109/CloudCom.2017.35

PATH2iot: A Holistic,
Distributed Stream Processing System

Peter Michalák, Paul Watson
School of Computing
Newcastle University

Newcastle upon Tyne, UK
Email: {P.Michalak1, Paul.Watson}@newcastle.ac.uk

Abstract—The PATH2iot open-source platform presents a new
approach to stream processing for Internet of Things applications
by automatically partitioning and deploying the computation
over the available infrastructure (e.g. cloud, field gateways and
sensors) in order to meet non-functional requirements including
energy, performance and security. The user gives a high-level
declarative description of computation in the form of Event
Processing Language queries. These are compiled, optimised,
and partitioned to meet the non-functional requirements using
database system techniques and cost models extended to meet the
needs of IoT analytics. The paper describes the PATH2iot system,
illustrated by a real-world digital healthcare analytics example,
with sensor battery life as the main non-functional requirement to
be optimised. It shows that the tool can automatically partition
and distribute the computation across a healthcare wearable,
a mobile phone and the cloud - increasing the battery life of
the smart watch by 453% when compared to other possible
allocations. The PATH2iot system can therefore automatically
bring the benefits of fog/edge computing to IoT applications.

I. INTRODUCTION

In this paper we present a new approach that simplifies the
design and implementation of efficient systems for processing
streaming data. IoT applications are becoming increasingly
important in a wide variety of fields, including environmental
monitoring, manufacturing and healthcare [1]. Extracting value
from the data can be challenging, especially when it exhibits
the high velocity and/or high volume commonly referred to as
Big Data. In order to meet this challenge, stream processing
engines have been created, especially for the cloud (e.g.
Apache Spark1 and Apache Storm2).

While these systems are highly efficient, this cloud-centric
approach can present major problems for some important
stream processing scenarios as they require data collected by
sensors to be sent to the cloud for analysis. In particular, sensor
battery life can be a major problem due to the energy cost
of sending messages to the cloud. In this paper we describe
how PATH2iot can address this problem, using a real medical
application as the running example.

We are working with medical researchers on a healthcare ap-
plication that uses wearable sensors to monitor the activity and
glucose levels of type II diabetes patients and alert them before
their health is endangered (Fig. 1). A Continuous Glucose

1https://spark.apache.org/
2https://storm.apache.org/

System State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural PromptSystem State: Send Behavioural Prompt

2

4

6

8

10

09:00 10:00 11:00 12:00 13:00 14:00
Time

G
lu

co
se

 m
m

ol
/l

T2DM − latest datapoint: 13/12/2014 13:01

Feedback

Behavioural
Prompt

Ac
tiv
ity

Fig. 1: Glucose and Activity stream processing and be-
havioural prompts with feedback.

Monitor periodically collects accurate glucose measurements
from the patient. These must be analysed in order to give
short-term forecasts: if patients’ glucose levels are predicted
to exceed the upper threshold for a healthy individual, a
behavioural prompt (text message/notification) is issued to the
user, asking them to heighten their physical activity in order to
attenuate the upward trajectory of their glucose levels. Figure 1
presents an example of glucose and activity monitoring from
this project, with an illustration of a behavioural prompt being
issued based on the forecast glucose levels. When the type II
diabetes patient recovers from the hyperglycaemic episode, the
impact of their activity levels are estimated and feedback sent
to the patient - a comparison between modelled (solid line) and
actual glucose readings (dotted line). The impact of increased
activity on glucose metabolic response is an active research
area [2], [3].

To enable the incorporation of activity analysis into the
model, the patient uses a healthcare wearable: a watch-like
device that incorporates an accelerometer whose output can
be processed to give a measure of their activity level.

The run-time analysis needed to achieve this cannot all
be hosted on the wearable as it has limited computational
capability, and battery life. Therefore, the wearable commu-
nicates data over the Bluetooth Low Energy local networking

https://spark.apache.org/
https://storm.apache.org/

protocol to a phone, which then sends the data over a mobile
network to the Cloud for processing. If data is not partially
processed in situ then every reading taken by the glucose
and activity sensors must be transmitted to the cloud (via the
phone) for analysis. As sending a message has an energy cost,
this approach severely affects the battery life of the wearable,
and the phone. If most of the messages are not required by the
detailed analysis - for example, if only certain activity levels
are of interest - then filtering out these messages close to the
sensor could:

• dramatically increase battery life,
• reduce the number of messages transmitted over the

mobile network (so reducing the required bandwidth),
• reduce the load on the cloud-based processing, which

could be a serious issue if the application becomes pop-
ular, resulting in tens of millions of wearables streaming
data to the cloud.

Further gains may be made by discarding unwanted data
before it is sent to the cloud (e.g. the sub-fields of sensor
readings that are not used in any computation), and by
performing some basic analysis and data aggregation (e.g.
averaging) on the wearable or phone.

In this paper, we describe and evaluate a system designed
to enable this approach to stream processing in a way that
reduces the complexity on the programmer. The PATH2iot
- holistic, distributed stream processing framework automat-
ically partitions and distributes processing across the available
components (in this case wearable, phone and cloud) depend-
ing on the computational capabilities of the platforms, and the
non-functional requirements (e.g. battery life).

The system also has the advantage that it automatically
generates the software components that are deployed on each
platform. This removes a major source of complexity from the
programmer as each platform (e.g. cloud, phone and wearable)
typically presents different software interfaces and challenges.
To make this possible, the programmer specifies the stream
processing computation in a high-level, platform-independent
language (a set of Event Processing Language statements).
An optimiser then determines how best to partition the com-
putation defined by those statements across the available set of
platforms in order to meet non-functional requirements such as
energy in this case [4]. This takes into account the functional
capabilities of the platforms (e.g. not all computations that
can be performed on a cloud can be performed on a wearable
or phone). PATH2iot can therefore be viewed as a way to
automatically bring the advantages of fog/edge computing to
IoT stream processing.

The rest of this paper is structured as follows. In Section II
we present the overall system architecture and demonstrate its
functionality with a healthcare, activity measurement example;
Section III describes an example of optimising for a non-
functional requirement: in this case using an energy-based
cost model and how it is used during physical plan selection;
Section IV is dedicated to an evaluation of the proposed
approach, while the Discussion in Section V describes related
work, and the future focus of the research.

Non-functional	
Requirements

Description	of	
the	ComputationIn

pu
t

Logical	Plan

Physical	Plan

Execution	Plan
PATHfinder

PATHdeployer

PATHmonitor

Resource	
Catalogue

Cost	ModelsPlatform	Specific	
Compilation

PATH2iot

Re-optimisation	on
Infrastructure	change

Fig. 2: The PATH2iot - System Architecture Overview.

II. SYSTEM OVERVIEW

The overall system architecture is shown in Figure 2. It con-
sists of three input components: the Resource Catalogue that
describes the capabilities and characteristics of the available
platforms (e.g. the wearable, phone and cloud), the Description
of the Computation, and the Non-Functional requirements
(e.g. energy). The optimiser (PATHfinder) takes these inputs
and determines how to partition the computation over the
platforms in order to meet the Non-Functional Requirements
in the most optimal way. This output is passed to the deployer
(PATHdeployer), which deploys it across IoT and Clouds.
The monitoring module (PATHmonitor) will capture run-time
information on the behaviour of the system, which can be
used to re-optimise the computation if it detects that the non-
functional requirements are not being met. We now describe
each of these components in more detail, using the running
example of Figure 1.

A. Description of the Computation

The ability to automatically partition a computation over a
set of platforms requires that the computation be described
in a high-level, declarative way that is amenable to analysis,
distribution and optimisation. To meet these requirements,
we adopted a relational model in which Event Processing
Language (EPL) queries define the computation. This has
three main advantages over alternatives. Firstly, SQL based
languages, such as EPL, have been used to describe stream
processing in a number of systems: Apache Spark [5], Apache
Flink [6], and Esper [7]; this confirms that they are expressive
enough for a wide range of applications. Secondly, EPLs are
based on SQL, which is very familiar to a large portion of
developers who will have used it to query databases. Thirdly,
we can build on decades of work on optimising SQL queries
in centralised systems [8], [9], [10], and in distributed query
processing systems [11], [12] when designing the optimiser.

To illustrate the system we will use as a running example
a part of a real digital healthcare application: a step count

0

500

1000

1500

1500395670 1500395680 1500395690
Time

A
m

pl
itu

de
Raw Triaxial Stream

x
750

1000

1250

1500

1500395670 1500395680 1500395690
Time

Eu
cl

id
ia

n
D

is
ta

nc
e

ED calculated

|||||||||||||||||

|

|||||||||||||||||||||||||

|

|||||||||||

|

|||||||||||||

|

|||||||||||||||||||||||||

|

|||||||||||||||||||||||||

|

||||||||||||||||||||||||||

|

||||||||||||||||||||||||

|

||||||||||||

|

||||||||||||

|

|||||||||||

|

||||||||||||||

|

|||||||||||

|

|||||||||||||

|

|||||||||||||

|

||||||||||||

|

||||||||||||

|

|||||||||||||

|

|||||||||||

|

|||||||||||||

|

|||||||||||

|

|||||||||||||

|

||||||||||||

|

|||||||||||

|

||||||||||||

|

||||||||||||

|

||||||||||||

|

||||||||||||

|

|||||||||||

|

|||||||||||||

|

|||||||||||

|

|||||||||||||

|

|||||||||||

|

||||||||||||

|

||||||||||||

|

|||||||||||||

|

|||||||||||

|

|||||||||||||

|

|||||||||||

|

|||||||||||||

|

||||||||||||

|

||||||||||||

|

|||||||||||||

|

||||||||||||

|

|||||||||||||||

|

|||||||||||

|

||||||||||||||||||||

|

|||||||0

1

1500395670 1500395680 1500395690
Time

St
ep

 (T
ru

e/
Fa

ls
e)

Step Events

y z 0

1

2

3

4

1500395660 1500395670 1500395680 1500395690
Time

A
ct

iv
ity

Step Sum

Time	(s)

Fig. 3: The triaxial data stream from the watch transformed
into an activity stream for the running example.

algorithm [13] that measures a users activity from informa-
tion captured by the accelerometer in a healthcare wearable.
Figure 3 shows the stages of processing: the raw triaxial data
stream is transformed into the Euclidean Distance measure
and a fixed threshold (THR) is applied. In the third stage,
steps are detected, and then aggregated. This measure is used
in the running example to evaluate patient activity levels.

The step count algorithm can be expressed through a set of
EPL queries. These queries process a raw accelerometer data
stream collected from a Pebble Steel Watch. The algorithm is
defined using the following five EPL statements:

1) INSERT INTO AccelEvent
SELECT getAccelData(25, 60)
FROM AccelEventSource

2) INSERT INTO EdEvent
SELECT Math.pow(x ∗ x+ y ∗ y+ z ∗ z, 0.5) AS ed, ts
FROM AccelEvent WHERE vibe = 0

3) INSERT INTO StepEvent
SELECT ed1(’ts’) as ts FROM EdEvent
MATCH RECOGNIZE (MEASURES A AS ed1, B
AS ed2 PATTERN (A B) DEFINE A AS (A.ed > THR),
B AS (B.ed ≤ THR))

4) INSERT INTO StepCount
SELECT count(*) AS steps
FROM StepEvent.win:time batch(120 sec)

5) SELECT persistResult(steps, ‘step sum’, ‘time series’)
FROM StepCount

Query 1 includes a user-defined function (UDF) to read
the data from the accelerometer. It has two parameters: the
sampling frequency and the mode of operation. The mode of
operation is 6 bits that determine which of the full set of
possible data fields should be generated on the device, e.g.
mode 0 does not generate any data, while mode 63 generates
all data fields: x, y, z accelerometer axes data, vibe (state of
the vibration module on the watch: 0 or 1, for active and
inactive respectively), timestamp and battery level (expressed
as a percentage, in a multiple of 10%). Mode 60, used in the
running example, projects first four event fields (x,y,z, and
vibe). Query 2 calculates the Euclidean distance from the raw
accelerometer data stream for all of the data samples where
the vibe parameter is set to 0. Query 3 processes the output of
Query 2 and detects any spike crossing the specified threshold

ΩgetAccelData(25,	60)

σvibe=0

Πy*y

ΩMath.pow(ed,	0.5)

𝜔(120)

Ωmatch_recognize(A.ed >	THR)	AND	(B.ed <=	THR)

ΩCOUNT(∗)

Ω persistResult(“steps”,	“step_sum”,	“time_series”)

Πx*x Πz*z

Π+

Π+

Q5

Q4

Q3

Q2

Q1

Fig. 4: The EPL statements from the running example decom-
posed to a Computational Graph.

and forwards this information for further processing. Query 4
aggregates the input information and - based on a tumbling
window regularly sends to Query 5 an event containing the
number of steps taken. Query 5 then stores this in a database
from where it can be accessed by healthcare applications for
example to prompt the user with a text if action is needed to
prevent a medical problem.

B. Non-functional Requirements

The system allows the application administrator to specify
non-functional requirements such as performance, security,
dependability and energy. The optimiser can then use this
information to select the deployment plan that best meets these
requirements. Our initial focus is on energy constrains; for the
running examples, the aim is to maximise the number of hours
the targeted battery-powered devices last between charges.

C. Resource Catalogue

The Resource Catalogue holds descriptions of the relevant
features of the platforms over which the computation can be
distributed. This includes the computational capabilities of all
the platforms: for example, details of relational operators they
can support - the optimiser accesses this information from the
catalogue in the form of a JSON file that identifies all the

platforms that can support a specific relational operator. In
the running example, another key piece of information is the
energy characteristics of all battery-powered platforms.

D. The PATHfinder: the optimiser module

The PATHfinder - a self-contained module within PATH2iot
- takes a set of EPL queries as input, and determines how
best to partition the computation over the set of platforms,
taking into account the non-functional requirements and the
capabilities of the platforms. It does this in the following
main stages: EPL query decomposition followed by logical
optimisation, and physical optimisation followed by device-
specific compilation.

1) EPL query decomposition: utilises the native Esper
SODA API [7] for EPL decomposition. The queries are loaded,
decomposed and linked together - INSERT INTO clauses
contain stream names that are used for this inter-query linking
e.g. INSERT INTO AccelEvent from Query 1, links with
FROM AccelEvent clause in Query 2.

2) Logical Optimisation: the set of EPL queries is decom-
posed into a computational graph of operators. Figure 4 shows
this graph for the EPL queries in the running example. The
description of operators is as follows:
• SELECT (σ): placing a constrain on events (such as vibe=0

in Query 2) filters out events from the stream propagated to
downstream operators;

• PROJECT (Π): removing columns that are not needed from
the events; and/or creating new columns through transform-
ing existing ones (e.g. x ∗ x + y ∗ y + z ∗ z → ed in the
running example);

• Windows (ω): a variety of different window constructs
can be expressed by [7]: tumbling, sliding, out-of-order
correcting windows, etc.;

• User Defined Functions (Ω): the typical use is for generating
new events (e.g. at a source node); persisting the events in a
database (at a sink node). They are also used for all other use
case specific computations that cannot be expressed using
EPL statements. This allows arbitrary analysis computa-
tions, but should only be used where necessary as they limit
the optimisation capabilities of PATHfinder, and narrow the
placement options to those specific devices that can perform
the given task.
The optimiser parses the query into a Logical Plan and

uses stream optimisation techniques [14] including operator
reordering to push windows closer to the data source, which
can have a dramatic impact on the battery life of IoT devices
(see Section IV).

3) Physical Optimisation: The operator graph generated
by the logical optimiser serves as an input to the physical
optimisation phase. The set of possible deployment plans is
generated, and a cost model used to find the plan that best
satisfies the non-functional criteria - in Section III we show
in detail how one type of cost model, focussed on energy, is
used to select a plan to deploy.

Device capabilities must also be considered at this stage:
for example resource constrained devices do not have large

amounts of RAM to store window data. The VersatilePebble
smart watch application can hold up to 6000 Bytes of data
within the program.

Another example of device capabilities that must be taken
into consideration is when two platforms cannot directly
communicate (e.g. the data from a Pebble Watch cannot be
sent directly to the cloud as it transmits data over BLE. Instead
an intermediate “relay” operator on the mobile phone has to
propagate the data). To address this we adopted an approach
similar to the data exchange service in [15]: a special sxfer
operator is injected into the logical plan to enable for the data
propagation.

4) Device-specific compilation: once the execution plan is
derived, the tool translates the platform-agnostic operators into
device specific code or configuration files. This information is
send to PATHdeployer for IoT and Cloud deployment.

E. PATHdeployer: the deployment module

The holistic deployment strategy implemented within
PATHdeployer consists of two stages: deployment in the cloud
and IoT deployment. The deployment architecture overview
was included in Figure 5.

1) Clouds: The PATHdeployer utilises several industry
proven open-source technologies to deploy in clouds, such
as Apache ZooKeeper - distributed coordination management
system, and Apache ActiveMQ - scalable message broker; and
D2Esper - developed in house as a dynamic real-time data
stream processor based on Esper Complex Event Processing
(CEP) library.

The D2Esper registers itself with a ZooKeeper node upon
activation. Once a proper configuration set is delivered to the
processor from PATHdeployer, it dynamically loads the event
definition, parses the provided EPL statements and connects to
a specified broker to start processing the real-time data stream.
The output is forwarded to a specified destination (usually
a different queue on the same broker) or a database. The
tool utilises ZooKeeper’s watcher capability to detect changes
in a current configuration set and adapts stream processing
accordingly. Automating deployment process, supporting het-
erogeneous platforms and enhancing computational dynamism
with specific focus on IoT real-time stream processing is
continuously improving with tools, such as [16].

2) IoT: To enable on-the-fly configuration of IoT devices
the system has to rely on previously programmed capabilities,
in this case on the phone and the wearable. This auto-
configuration technique involves deploying an agent on each
device. The agent periodically pulls and installs a configuration
file from a REST API endpoint as shown on Figure 5. There
are several advantages of this approach: being able to enact
computation at a resource constrained device without the need
for dynamic firmware update over the air - a capability not
widely supported at edge devices, and an ability to change
the computation during the runtime as well. The main dis-
advantage is that an agent offering a standardised approach
for computational description and implementation must be
designed and implemented for each IoT device.

PATHdeployer

D2ESPer D2ESPer

ZooKeeper

PATHfinder

VersatilePebble
(C)

VersatilePebble
(JavaScript)

REST	API
(Flask)

/path2iot/
pebble/
set_config

/path2iot/pebble/
get_config

Infra Req EPL

1

2

3

45

ActiveMQ

Maria
DB

Influx
DB

data	stream

Input

IoT Deployment

Cloud	Deployment

Neo4j

...

Fig. 5: IoT and Cloud Deployment Overview.

F. PATHmonitor: Real-Time Monitor

The real-time monitoring of IoT system is critical for any
streaming system intending to adapt the computation based
on the changes in the state of the infrastructure. Dynamic
adaptation based on proactive re-optimisation triggered by the
changes in the infrastructure is future work for PATH2iot [17].

III. AN ENERGY BASED COST MODEL FOR PHYSICAL
PLAN SELECTION

The PATH2iot system allows the application administrator
to set a minimum amount of time before the need to recharge
the battery. For example: a doctor may want to guarantee 24
hours of battery life to ensure patients only need to recharge
the wearable overnight.

Energy-aware management of IoT environments is of key
importance within many other application areas, especially
where replacement of a battery pack is infeasible or pro-
hibitively costly [18]. To support the energy model [19], an
experimental testbed was set up and calibration measurements
made on real hardware.

The Energy Cost Model used by PATHfinder consists of
three parts:
• Operating System (OSidle) - a power consumption by the

IoT device caused by the operating system. This is indepen-
dent of any energy use by the application;3

• Computation (comp cost) - every computation in an appli-
cation adds to the overall power consumption of the device.
Each operation deployed on a node has an assigned device-
specific energy coefficient derived from benchmarking tests,
these are summed to obtain the overall impact of all oper-
ators on that node in a greater detail.

3It is important to note that the energy impact coefficients vary depending
on the device and a version of operating system running on it.

0

20

40

60

100 150 200
Time (s)

Av
er

ag
e

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

Exec Plan 040 with 120 s cycle

1 2 3 54

Fig. 6: BLE states as measured by Monsoon Power Monitor
- single cycle (120s) view.

• Networking (net cost) - networking has a higher impact on
battery life than computation (see Table I). Therefore, mes-
sages transmitted between different nodes are considered in
this formulae.
A complex aspect of networking in the running example
(and many others) is Bluetooth Low Energy Active State
(BLEactive), that is activated every time a message is sent
from the wearable device. It was observed that the OS keeps
the BLE module active for a period of time in case there is
another message to be sent. This is illustrated in Figure 6
- 1st phase: connection establishment; 2nd BLE messaging;
3rd BLEactiveState; 4th OSidle with data generation and
preprocessing, after which a cycle repeats (5th phase). The
smart watch OS automatically activates a power saving
mode after a certain period of time has passed, and it is
important to express this in the energy model (this period
was observed to be 10 seconds on the Pebble Steel device).
An Energy-based cost model was developed to calculate the

overall energy impact of an IoT node:

EI = OSidle +

n∑
i

comp costi+

msg count ∗ net cost+BLEactive ∗BLEduration

cycle length
(1)

The Energy Impact (EI) of all the deployment options was
evaluated for each plan using this formulae. The OSidle energy
coefficient represents the impact of the operating system and
the app running without any processing, network connectivity
or data generation. The sum of all energy impact coefficients
for each computations that is placed on the device is added
up in the second component of the EI formula.

The last part of the EI formula estimates the impact of
networking on the battery life of the targeted device. It is cal-
culated based on the number of messages with a corresponding
energy cost and a BLEactive component, which expresses the

TABLE I: Power Consumption Coefficients.

Operation Energy Impact (mJ) Conf Int
OSidle 1.78 ± 0.0370

25 Hz sampling 0.06 ± 0.0153
SELECT 0.09 ± 0.0416

ED 0.34 ± 0.0665
POW 0.03 ± 0.1039
WIN 0.06 ± 0.0605

net cost 5.06 ± 0.2747
BLEactive 12.12

power consumption of the Bluetooth module in standby mode.
Figure 6 presents the power consumption for the execution
plan with test ID 40. The first phase shows energy expenditure
during a connection establishment; during second phase an
active data transfer between the watch and a mobile phone is
in process - sending preprocessed windowed activity events,
the third phase has elevated power consumption due to the
mentioned BLE standby mode - this impact on the overall
battery life is not insignificant, which is why it must be
included within the Energy Impact model. The fourth phase
shows power consumption for the data generation, filtering,
preprocessing, and windowing in an app memory. The 120
second cycle repeats at the phase 5 marker.

Table I presents power coefficients (rounded for brevity)
calculated from the power measurement experiments for a set
of computation and networking operations conducted using
the Pebble Steel smart watch. We derived these coefficients by
running a set of experiments, taking a mean measure of Energy
used and subtracting other previously calculated impact factors
with a calculated Confidence Intervals (see [20]).

Currently, we assume an infinite (or easily replenished)
battery capacity on a mobile phone device (as experience
shows that the wearable is the critical issue) and we only
allow the application administrator to define non-functional
requirements on the Pebble Steel watch.

IV. EVALUATION

Key to the success of PATHfinder is the ability to correctly
evaluate the cost model so as to select the best physical plan.
This section describes how we derived the coefficients used
by the energy-based cost model.

We benchmarked a Pebble Steel SmartWatch using a Mon-
soon Power Monitor4. This tool is a combination of a benchtop
power supply and a measurement device with very high
sampling frequency - up to 5,000 Hz.

The detailed results of the benchmark tests are summarised
in a technical report containing all relevant data and code [20].

Table II presents results from the experimental tests moni-
toring the power consumption of the Pebble Steel Watch under
different processing loads. A series of tests were designed and
run to determine the Energy Impact of operations described
in the graph of computation of a running example. The
checkmark symbol under individual columns indicates that the

4https://www.msoon.com/LabEquipment/PowerMonitor/

given operator was active for that plan. An explanation for the
columns within this table is:

• ID - an unique identifier for the test;
• Data - an operation to generate the triaxial data stream

on a Pebble Watch with sampling frequency of 25 Hz;
• Select - filtering out any events that were collected while

a vibration module on the watch was active, as in WHERE
vibe=0;

• ED - transformation of raw triaxial data with the Eu-
clidean distance calculation, reducing the amount of in-
formation propagating to the downstream operator ED =
x× x+ y × y + z × z;

• POW - a Newtonian approximation of a square root
(limited to 10 iterations), as the Pebble Watch doesn’t
have a Floating Point Unit on the chip;

• WIN - storing of the intermediary results inside a ring
buffer: tumbling window of listed number of seconds;

• # msgs - number of messages send from the wearable
watch to the phone within each cycle;

• Power (mW) - the average power consumed by the
wearable under the current execution plan, as measured
by the Power Monitor;

• EI (mJ) - the theoretical amount of energy to be consumed
under the current execution plan based on the Energy
Impact model;

• Conf Int - 95% confidence intervals calculated for the
average cycle power measurements. We have selected this
simplistic approach with assumptions of mutual indepen-
dence of variables (operations) and approximately normal
distributions for purpose of calculating these intervals.
This is likely the reason for them being as narrow.
However, they provide an indication of uncertainty of EI
estimates.

• Bat (h) - an estimated battery lifetime based on EI result;
• Error (%) - a difference in estimated battery life based on

measurements from Power Monitor and from EI model
in percentile points.

To estimate battery life of a smart watch, an information
of battery capacity is needed which was calculated using the
following formulae: maxBatteryLife = batteryCapacity×
batteryV oltage× 3.6 = 130mAh× 3.7V × 3.6 = 1731.6J .

The Figure 6 displays a power measurement capture from
the Monsoon Power Monitor. The watch was programmed, as
in test ID 040, to sample 25 Hz accelerometer data, select
only events where ‘vibe=0’, calculated a square root of the
Euclidean Distance, and window the output data stream within
a 120 second tumbling window, then send the result to the
mobile phone over BLE. It was observed, that the dominant
energy impact on the battery comes from the networking.

If we compare a default scenario where the Pebble watch
is programmed to stream all of the raw accelerometer data
to the mobile phone (test ID 037 in Table II), so it can be
relayed to the cloud for analysis, the expected battery life is
18.1 hours. In contrast, the optimised execution plan (test ID
060) has a power consumption of 5.88 mW, with estimated

https://www.msoon.com/LabEquipment/PowerMonitor/

TABLE II: Execution Plans: Measurements and EI evaluation.

ID Data Ω1 SELECT σ1 ED Ω2 POW Ω3 WIN ω1 # msgs Power (mW) EI (mJ) Conf Int Bat (h) Error (%)

037 - - - - 2.5 26.69 26.62 (26.48, 26.76) 18.1 0.24
060 - 120 60 5.88 5.87 (5.70, 6.05) 81.9 0.06
040 120 60 5.97 5.91 (5.70, 6.11) 81.5 1.15
041 120 0 2.37 2.36 (2.22, 2.51) 203.5 0.11
042 - 0 2.31 2.30 (2.17, 2.44) 209.0 0.31
043 - - 0 2.27 2.27 (2.18, 2.36) 212.0 0.07
044 - - - 0 1.96 1.93 (1.88, 1.99) 248.8 1.25
045 - - - - 0 1.84 1.84 (1.80, 1.88) 261.2 0.04
046 - - - - - 0 1.78 1.78 (1.74, 1.82) 270.1 0.00
050 60 30 7.15 6.92 (6.71, 7.12) 69.6 3.34
051 30 15 9.63 8.93 (8.73, 9.14) 53.8 7.25
052 15 7.5 13.41 12.97 (12.77, 13.18) 37.1 3.27

battery life of 81.9 hours - an improvement of 453% with 95 %
confidence intervals of 79.5 - 84.4 hours of estimated battery
life, compared to 81.8 hours estimated by Monsoon Power
Monitor (comfortably lying inside of the calculated intervals).
Table III summarises other advantages of the optimised plan
against the baseline including a data reduction factor of 3X
- the amount of data in Bytes that is transmitted under the
optimised plan is three times lower compared to the other.

As can be observed from comparison results in Table III,
varying the length of window has significant impact on the
battery life of the device. The longer the window, the less
power the wearable device consumes. This is given by the
fact that establishing the BLE connection, transmitting the data
and keeping the BLE module active has a high energy impact
on the battery. Sending the messages in rapid succession, and
transmitting all the available data in short bursts reduces the
overall power consumption. However, in the current software
implementation, the maximum amount of the data that can
be stored is 6000 Bytes, which places an upper limit of 120
seconds (120s ∗ 25 ∗ 2B) on the running example.

V. DISCUSSION

A. Related Work

The recent interest in fog and edge computing - extending
data processing into IoT environments - can be seen in research
projects such as Linthicum [21] where the main aim is to
reduce latency; in [22] which focusses on minimising the
volume of data exchanged between fog and cloud nodes with a
‘spillway’ data structures; or [23] aimed at provisioning large-
scale deployments within IoT environments. Also a trade-
off between latency and cost has been investigated, such
as in [24], where unit-slot optimisation techniques are used.
Active interest in edge data analytics, such as in [25], [26]
shows the need for in situ processing, especially for high
velocity and volume data streams originating from IoT.

Recent work in [27], presents a bespoke solution for a
dynamic computation offloading scheme, where an improve-
ment of 21.1% in battery life was achieved by adjusting
the partitioning of data processing between the wearable
device and mobile application. The input from the application
administrator was a classification accuracy for an audio-based

nutrition monitoring use case. The proposed cost model,
similarly to our Energy model, is based on the aggregate
cost of extracting features, applying classification methods
and transmitting necessary information between a phone and
wearable device. However, in this work the cost models are
derived and validated through simulation software without
expressing uncertainty via confidence intervals, nor are there
estimates for the duration of battery life of a wearable device.

In contrast, the PATH2iot takes a novel path of using a high-
level declarative description of computation to automatically
optimise and deploy across sensors, field gateways and clouds.
As the tool is open-sourced other modules could be integrated
to extend it capabilities for a specific scenario or additional
non-functional requirements.

B. Future Work

Energy requirement is not the only possible basis for physi-
cal model selection process. We are also actively investigating
possibilities to add other dimensions including Performance,
Accuracy, Security, Monetary Cost and Dependability.

Future work on the healthcare application will explore
adding and integrating more data streams and also expressing
uncertainty for physical plans in more robust way. This in-
cludes adding the processing of continuous glucose readings
as well as merging this with the activity information so as to
provide a behavioural prompts for Type 2 Diabetes patients in
near-real time.

A logical next step for PATHfinder is to consider the
energy and performance trade-off: preserving battery life while
keeping the latency at appropriate, user-defined levels. For
example, in the running example, increasing the window size
extends battery life, but increases the delay before information
is sent to the downstream node. A more challenging future goal
is the dynamic update to an execution plan when the monitor
detects that the non-functional requirements are in danger of
not being met.

VI. CONCLUSION

In this paper we have introduced a new system for holisti-
cally optimising and deploying IoT data analytics applications

TABLE III: Comparison between Baseline (ID 037) vs Optimised (ID 060) Execution plan.

Test ID Computation Power (mW) Data TRF (kB) BLE msg count (10 min) EI (mJ) Est Bat Life (h)
037 Ω1 26.69 180 1500 26.62 18.0 - 18.2
060 Ω1, σ1,Ω2, ω1 5.88 60 300 5.87 79.5 - 84.4

across heterogeneous platforms: e.g. sensors, field gateways
and clouds.

The paper defined the overall system architecture compris-
ing three main components: optimiser, deployer and mon-
itor. An Energy based cost model with coefficients for a
Pebble Steel smart watch was described and validated with
the use of a Power Monitoring tool. Results showed that a
dramatic improvement in battery life can occur when using the
optimised execution plan rather than the baseline approach:
this was 453% for the running healthcare example. This
shows the potential for IoT management systems that can
automatically exploit fog/edge computing to optimise non-
functional requirements, including battery life for sensors. It
has the additional advantage of being able to distribute stream
processing computations across multiple platforms without
the need for the application programmer to know how to
program each type of platform: this is done automatically, by
platform specific compilers and deployers, from a high level,
declarative description of the computation. Future work will
extend the range of cost models to include other criteria such
as performance, and enable dynamic adaptation when non-
functional requirements are threatened.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Matthew Forshaw for
his expert advice on energy modelling, Dr. Sarah Heaps for
statistics and Prof. Mike Trenell for the healthcare application.

This work is supported by the Engineering and Physical
Sciences Research Council, Centre for Doctoral Training in
Cloud Computing for Big Data (grant number EP/L015358/1)
and Digital Catapult Teaching Grant Award (KH161118).

REFERENCES

[1] S. Riazul Islam, D. Kwak, M. Humaun Kabir, M. Hossain, and K.-S.
Kwak, “The internet of things for health care: a comprehensive survey,”
Access, IEEE, vol. 3, pp. 678–708, 2015.

[2] J. Henson, M. J. Davies, D. H. Bodicoat, C. L. Edwardson, J. M. Gill,
D. J. Stensel, K. Tolfrey, D. W. Dunstan, K. Khunti, and T. Yates,
“Breaking up prolonged sitting with standing or walking attenuates the
postprandial metabolic response in postmenopausal women: a random-
ized acute study,” Diabetes care, vol. 39, no. 1, pp. 130–138, 2016.

[3] S. R. Colberg, R. J. Sigal, J. E. Yardley, M. C. Riddell, D. W. Dunstan,
P. C. Dempsey, E. S. Horton, K. Castorino, and D. F. Tate, “Physical
activity/exercise and diabetes: a position statement of the american
diabetes association,” Diabetes Care, vol. 39, no. 11, 2016.

[4] P. Michalák, S. Heaps, M. Trenell, and P. Watson, “Automating com-
putational placement in iot environments: doctoral symposium,” in
Proceedings of the 10th ACM International Conference on Distributed
and Event-based Systems. ACM, 2016, pp. 434–437.

[5] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql:
Relational data processing in spark,” in ACM SIGMOD International
Conference on Management of Data. ACM, 2015, pp. 1383–1394.

[6] Apache Flink, “Stream Processing for Everyone with SQL and Apache
Flink,” https://flink.apache.org/news/2016/05/24/stream-sql.html, [On-
line; accessed 19-July-2017].

[7] EsperTech, “Esper Reference - SODA API,” http://esper.espertech.com/
release-6.0.1/esper-reference/html/api.html#api-soda, [Online; accessed
19-July-2017].

[8] H. Garcia-Molina, Database systems: the complete book. Pearson
Education India, 2008.

[9] J. Zhou, P.-A. Larson, and R. Chaiken, “Incorporating partitioning and
parallel plans into the scope optimizer,” in Data Engineering (ICDE),
2010 IEEE 26th International Conference on. IEEE, 2010.

[10] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica,
“Shark: Sql and rich analytics at scale,” in ACM SIGMOD International
Conference on Management of data. ACM, 2013.

[11] D. Kossmann, “The state of the art in distributed query processing,”
ACM Computing Surveys (CSUR), vol. 32, no. 4, pp. 422–469, 2000.

[12] J. Smith, P. Watson, A. Gounaris, N. W. Paton, A. A. Fernandes,
and R. Sakellariou, “Distributed query processing on the grid,” The
International Journal of High Performance Computing Applications,
vol. 17, no. 4, 2003.

[13] N. Zhao, “Full-featured pedometer design realized with 3-axis digital
accelerometer,” Analog Dialogue, vol. 44, no. 06, 2010.

[14] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm, “A catalog
of stream processing optimizations,” ACM Computing Surveys (CSUR),
vol. 46, no. 4, p. 46, 2014.

[15] P. Watson, “A multi-level security model for partitioning workflows over
federated clouds,” Journal of Cloud Computing: Advances, Systems and
Applications, vol. 1, no. 1, p. 15, 2012.

[16] S. Mohamed, M. Forshaw, and N. Thomas, “Automatic generation of
distributed run-time infrastructure for internet of things,” in Software
Architecture Workshops (ICSAW), 2017 IEEE International Conference
on. IEEE, 2017, pp. 100–107.

[17] T. Cooper, “Proactive scaling of distributed stream processing work
flows using workload modelling: doctoral symposium,” in Proceedings
of the 10th ACM International Conference on Distributed and Event-
based Systems. ACM, 2016, pp. 410–413.

[18] M. Forshaw, N. Thomas, and A. S. McGough, “The case for energy-
aware simulation and modelling of internet of things (iot),” ACM
ENERGY-SIM, 2016.

[19] J. Allen, M. Forshaw, and N. Thomas, “Towards an extensible and scal-
able energy harvesting wireless sensor network simulation framework,”
in Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering Companion. ACM, 2017, pp. 39–42.

[20] Peter Michalak, Matthew Forshaw, Paul Watson, “IoT Energy Monitor-
ing Technical Report,” https://github.com/PetoMichalak/iotPower, [On-
line; accessed 7-August-2017].

[21] D. S. Linthicum, “Connecting fog and cloud computing,” IEEE Cloud
Computing, vol. 4, no. 2, pp. 18–20, 2017.

[22] M. Malensek, S. L. Pallickara, and S. Pallickara, “Hermes: Federating
fog and cloud domains to support query evaluations in continuous
sensing environments,” IEEE Cloud Computing, vol. 4, no. 2, 2017.

[23] M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar, “A scalable
framework for provisioning large-scale iot deployments,” ACM Trans-
actions on Internet Technology (TOIT), vol. 16, no. 2, p. 11, 2016.

[24] Y. Nan, W. Li, W. Bao, F. C. Delicato, P. F. Pires, and A. Y. Zomaya,
“Cost-effective processing for delay-sensitive applications in cloud of
things systems,” in Network Computing and Applications (NCA), 2016
IEEE 15th International Symposium on. IEEE, 2016, pp. 162–169.

[25] R. Fang, S. Pouyanfar, Y. Yang, S.-C. Chen, and S. S. Iyengar,
“Computational Health Informatics in the Big Data Age: A Survey,”
ACM Computing Surveys, vol. 49, no. 1, Jun. 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2911992.2932707

[26] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos, “Edge analytics in the internet of things,” IEEE
Pervasive Computing, vol. 14, no. 2, 2015.

[27] H. Kalantarian, C. Sideris, B. Mortazavi, N. Alshurafa, and M. Sar-
rafzadeh, “Dynamic computation offloading for low-power wearable
health monitoring systems,” IEEE Transactions on Biomedical Engi-
neering, vol. 64, no. 3, 2017.

https://flink.apache.org/news/2016/05/24/stream-sql.html
http://esper.espertech.com/release-6.0.1/esper-reference/html/api.html#api-soda
http://esper.espertech.com/release-6.0.1/esper-reference/html/api.html#api-soda
https://github.com/PetoMichalak/iotPower
http://dl.acm.org/citation.cfm?doid=2911992.2932707

