
HAL Id: hal-01875777
https://inria.hal.science/hal-01875777v2

Submitted on 16 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure Distributed Computing on Untrusted Fog
Infrastructures Using Trusted Linux Containers

Mohammad-Mahdi Bazm, Marc Lacoste, Mario Südholt, Jean-Marc Menaud

To cite this version:
Mohammad-Mahdi Bazm, Marc Lacoste, Mario Südholt, Jean-Marc Menaud. Secure Distributed
Computing on Untrusted Fog Infrastructures Using Trusted Linux Containers. CloudCom 2018 -
10th IEEE International Conference on Cloud Computing Technology and Science, Dec 2018, Nicosia,
Cyprus. pp.239-242, �10.1109/CloudCom2018.2018.00053�. �hal-01875777v2�

https://inria.hal.science/hal-01875777v2
https://hal.archives-ouvertes.fr


DRAFT

1

Secure Distributed Computing on Untrusted

Fog Infrastructures Using Trusted Linux

Containers

Mohammad-Mahdi Bazm∗, Marc Lacoste∗, Mario Südholt†, Jean-Marc Menaud†

∗Orange Labs, 44 Avenue de la République, 92320 Châtillon, France
†IMT Atlantique, 4 Rue Alfred Kastler, 44307 Nantes, France

Abstract—Fog and Edge computing provide a large pool

of resources at the edge of the network that may be used

for distributed computing. Fog infrastructure heterogene-

ity also results in complex configuration of distributed

applications on computing nodes. Linux containers are a

mainstream technique allowing to run packaged applica-

tions and micro services. However, running applications on

remote hosts owned by third parties is challenging because

of untrusted operating systems and hardware maintained

by third parties. To meet such challenges, we may leverage

trusted execution mechanisms. In this work, we propose

a model for distributed computing on Fog infrastructures

using Linux containers secured by Intel’s Software Guard

Extensions (SGX) technology. We implement our model on

a Docker and OpenSGX platform. The result is a secure

and flexible approach for distributed computing on Fog

infrastructures.

Index Terms—Fog computing security, distributed com-

puting, Intel Software Guard Extensions (SGX), trusted

computing, secure computing, Linux containers.

I. INTRODUCTION

Fog computing extends computing resources and ser-

vices to the edge of the network to provide QoS by sup-

porting low latency and location awareness to meet end-

user requirements. This paradigm is also well positioned

for Big data and distributed computing applications due

to the large amount of computing resources accessible

through virtualization technology. Recently, Linux con-

tainers have received more attention in Fog and IoT

clouds due to their flexibility and performance benefits

compared to VMs. Distributed computing based on VMs

and Linux containers offers more security (e.g., iso-

lation) than traditional computing models e.g., user-

based. However, integrity and confidentiality remain key

concerns because of untrusted operating systems and

hosts maintained by third-parties in the cloud infras-

tructure. The primary challenge is how to execute a

distributed application securely inside VMs or in Linux

containers running on remote hosts (i.e., guaranteeing

isolated execution, data integrity and confidentiality).

Hardware-assisted trusted execution mechanisms such

as Intel’s Software Guard Extensions (SGX) and ARM

TrustZone, are highly promising to overcome such chal-

lenges. A secure component like the TPM (Trusted

Platform Module) in a computing platform plays the role

of Root of Trust (RoT) through specific embedded cryp-

tographic mechanisms. To make the platform trusted,

the RoT extends its trust to other components of the



DRAFT

2

platform (e.g., OS) by building a Chain of Trust (CoT)

in which each element extends its trust to the next

element in the chain until launching applications. This

mechanism allows identifying any modification in the

host before launching a container [1]. However, such

mechanism is not necessarily implemented by remote

hosts especially in heterogeneous infrastructures such

as Fog, thus requiring new solutions. Intel SGX allows

executing securely sensitive part/data of an application

inside isolated zones (called enclaves) through the pro-

cessor, by encryption mechanisms to protect data from

operating system and hardware memory attacks. Conse-

quently, it allows secure execution of the application on

untrusted remote hosts. This technology can be leveraged

in distributed computing where a distributed application

should be run on remote hosts of the cloud infrastructure.

It is also integrated into Linux containers to protect

packaged applications [2].

In this paper, we discuss the challenge of trusted com-

puting on remote hosts. We review different scenarios to

secure execution of Linux containers on remote hosts

in the cloud infrastructure through trusted execution

mechanisms, and finally we propose a model for secure

distributed computing through using Linux containers

hardened by Intel SGX, to perform trusted execution on

untrusted Fog computing infrastructures.

The paper is organized as follows: Section II gives an

overview of existing methods of distributed execution of

applications in Fog computing infrastructures. Section III

discusses security challenges of computing on remote

hosts, and Section IV reviews two corresponding trusted

execution scenarios. Section V gives an outlook on the

model and implementation of our prototype and Section

VI evaluates it. Section VII reviews related works.

Section VIII concludes.

II. DISTRIBUTED COMPUTING ON FOG

INFRASTRUCTURES

In traditional models, specific OS mechanisms allow

multiplexing processor and memory between different

processes and user accounts. A distributed application

runs as a process on a remote machine through an

operating system user. However, in highly heteroge-

neous infrastructures, legacy compatibility is an issue

for the execution of distributed applications. Integrity

and confidentiality of data and isolated execution can-

not be guaranteed because security mechanisms are

implemented in the operating system of remote hosts

and managed by untrusted host administrators. In VM-

based computing, a distributed application runs on a

set of consolidated VMs. All VMs are managed by the

administrator of the distributed computing platform, al-

though VMs run on remote physical machines owned by

third parties. This computing model offers more security

for the execution of the distributed application because

of the virtualization abstraction layer. It also provides

stronger isolation and enables to implement and enforce

security mechanisms inside VMs independently of the

host, to guarantee data processing. However, the VM-

based model suffers from flexibility limitations (e.g., VM

migration) intrinsic to virtualization techniques [3]. In

container-based computing, the distributed application

is packaged in a set of containers. It then runs on hosts

managed by third parties on the Fog infrastructure in

the form of a set of containers to perform computations.

This model provides more flexibility than the VM-

based model regarding cluster building, because of fast

provisioning and easy management of Linux containers.

III. PROBLEM STATEMENT

We address two main challenges related to secure and

flexible distributed execution of applications on remote



DRAFT

3

hosts. Remote Execution: In remote computing, if an

application executes directly on hosts, inside VMs, or in

Linux containers, there is always a security concern with

such computing models: how to secure (i.e., guaranteeing

isolated execution of application) remote computations?

Running an application inside VMs/Linux containers

may appear more secure than running it on hosts for iso-

lation and confidentiality. For instance, all containers/ap-

plications in a host share the same kernel instance. Thus,

any kernel compromise results in security vulnerabilities.

The same scenario applies for VMs although isolation is

stronger between VMs than containers due to enforced

isolation by the virtualization layer. An adversary may

employ Virtual Machine Introspection (VMI) [4] to

retrieve information of the VM. We may also run a

container inside a VM, to enforce isolation [5]. However,

the real challenge is the execution of the application

(either inside VMs or Linux containers) on remote hosts

maintained by untrusted third-parties (the hypervisor/OS

of hosts thus remain untrusted).

Hardware-assisted primitives provide an isolated ex-

ecution environment between running applications/con-

tainers in the host OS, or between running VMs. These

mechanisms provide integrity and confidentiality for the

execution of applications/ containers/ VMs: the memory

of applications/containers/VMs is hardware-encrypted,

and therefore protected from any unauthorized access

from untrusted OS/hypervisor. Memory encryption tech-

niques create strong isolation between applications,

application-OS, VMs, VM-hypervisor, containers, and

container-OS. However, we cannot always trust the ap-

plication running inside containers/VMs because the ap-

plication may be modified or compromised by an adver-

sary, thus resulting in information leakage or underlying

system compromise. To meet such challenge, Remote

Attestation allows remote parties to detect any change

in the application. It enables a trusted device (i.e., a

device with RoT) to present reliable evidence to remote

parties about the state of application executing on remote

hosts. This evidence may be for instance a cryptographic

signature of a hash of application.

Performance and Flexibility: For distributed comput-

ing, a large set of computing resources is needed to

run a distributed application on Fog infrastructures. How

to provision such a resource pool in an efficient way

with greater security and flexibility than the traditional

approachs? Even when using trusted computing mecha-

nisms [6] [7], challenges remain regarding fast provision-

ing and configuration on remote hosts. Linux containers

provide a reliable way of encapsulating an application

and its configuration with the flexibility of image-based

deployment methods. Therefore, distributed computing

using containers which are secured by trusted execution

mechanisms has been getting more attention for Fog

computing [3].

IV. TRUSTED EXECUTION OVER FOG

INFRASTRUCTURES

We distinguish two scenarios for trusted execution of

Linux containers on remote hosts in the Fog infrastruc-

ture (Fig. 1).

a) Trusted host: Software CoT process: Containers

are run on a cluster of trusted hosts in the infras-

tructure. Before launching a container image, a host

proves itself as trusted host by following the CoT

mechanism. The CoT starts from boot to launching the

container engine that starts with an implicitly trusted

component (i.e., RoT) and every other component trusted

before being executed (Fig. 1a). If the host is trusted,

it is added to the pool of trusted hosts which are

maintained by third parties. Consequently, the host can

launch container images. The container engine then



DRAFT

4

verifies run-time trustworthy of the container image. If

the proof is valid, the container is authorized to be

executed on the host and the master node starts sending

data to the container for processing. Trusted Docker

containers [1], and CoreOS [8] provide such security

solutions by extending the CoT to the Linux container

image.

b) Untrusted host: hardware trusted execution:

Containers are directly launched on a cluster of un-

trusted hosts. Trusted execution mechanisms are lever-

aged in the container image encapsulating the ap-

plication, through hardware mechanisms. The under-

lying layers (i.e., container engine, OS) are con-

sidered untrusted (Fig. 1b). The application exe-

cutes in the trusted execution environement provided by

hardware. If the application is proved trusted through re-

mote attestation, it means it has not been tam-

pered with. The master node then starts sending data to

the application. This scenario is an optimized solution

not based on a CoT which is a complex process to

implement on hosts especially in heterogeneous infras-

tructures like Fog ones. This solution is preferred when

third parties do not want to implement the CoT in their

systems. SCONE [2] provides such capability by secur-

ing Docker containers leveraging Intel SGX technology.

V. SECURE DISTRIBUTED COMPUTING MODEL

We consider H = {h1, h2, ..., hn} a set of physical

machines in the Fog infrastructure with a hardware-

backed trusted execution technology te ∈ T E– set

of trusted computing technologies. We also consider

C = {c1, c2, ..., ck} a set of containers to run on H.

We introduce a software component sc ∈ SC– set of

software components, to be integrated in the container

image c. c is composed of sc and u ∈ U– set of base

images used to provide some libraries to the software.

Any modification in sc and u results in new container

image c
′ ∈ C

′
– set of tampered images. Thus the Tam-

per operation on c denoted as follows:

Tamper : SC × U → C
′
, (sc, u) 7→ c

′
(1)

We also consider dataset D = {d1, d2, ..., dk} to be

processed by containers and R = {r1, r2, ..., rk} the

result of data processing. The Process operation of di

by container ci through te on hj is defined as follows:

Process : D × C ×H× T E → R, (di, ci, hj , te) 7→ r

(2)

Definition. ci is a trusted container if its whole image

has not been tampered with and proved as such through

a hardware-assisted remote attestation mechanism pro-

vided by the trusted execution technology te available

on hosts in H.

Trust Model: Our model leverages Intel SGX as

trusted execution technology, and employs scenario

b. Thus, critical parts of the application deployed in

the container are protected inside enclaves. Other parts

outside enclaves, are unprotected. Although all network

links are encrypted between hosts by network security

protocols such as IPSec, the network is not trusted.

(a) (b)

Figure 1: Different scenarios of trusted execution of

containers.



DRAFT

5

Figure 2: End-to-end encryption between two enclaves.

Thus security between the application in the container

and the master application is enforced through encryp-

tion mechanisms to guarantee end-to-end confidential-

ity. Intel SGX provides some mechanisms to encrypt

communications between two enclaves. Keys used by

enclaves are also stored inside the enclave protected

by hardware. Thus, only the application has access to

keys, and communications between enclaves of slave

and master applications are encrypted (Fig. 2).

Container Deployment: The first step to build the

distributed computing environment is the deployment

of containers on physical machines. Different orchestra-

Container (ci) Host (hj ) Master Verifier

RequestAttestation()

Attestation

SendAttestation()

VerifyAttestation()

Yes/No

IfValid()

Add ci to Ct

Figure 3: Join protocol: adding a container to a trusted

cluster.

tion frameworks enable to manage a set of containers

e.g., Kubernetes, on hosts.

Trusted Cluster Creation: To build a trusted cluster

composed of several trusted nodes, when a new container

cicici wishes to be integrated to the cluster CtCtCt, it initiates the

join protocol (Fig. 3). It consists of a remote attestation

mechanism to prove the container as a trusted node, by

communicating with the master node. If the container is

approved as a trusted node (i.e., the application deployed

in the container has not been tampered with), the node

is integrated to the cluster and the master starts to send

data to the approved container for processing. Otherwise,

the node is considered untrusted because the packaged

application has been tampered with.

VI. IMPLEMENTATION AND EVALUATION

To implement our prototype, we need a container im-

age (u) that provides Intel SGX mechanisms to the appli-

cation running within container. We used OpenSGX [9],

a research platform for developing SGX-based applica-

tions. It implements and emulates Intel SGX ecosystem

instructions, and hardware components leveraging the

QEMU emulator. OpenSGX provides certain mecha-

nisms available in SGX supported processors.

To evaluate the model, we implemented a MapRe-

duce distributed computing framework based on Linux

containers, to count number of words in a text file.

MapReduce being well-recognized for its scalability and

flexibility, decomposing an application into microser-

vices. In the prototype, we have three types of nodes:

Mapper, Reducer, and Master. The Master splits jobs/-

data and distributes them to Mapper nodes. Then, Map-

pers perform their computing jobs and return the results

back to Reducers for merging. Finally, Reducers send

results to the Master node. Our experimental prototype

is composed of one Master and 10 Slaves nodes. In our



DRAFT

6

Mapper Reducer

600

700

800

E
xe

cu
tio

n
T

im
e(

m
s)

Without SGX With SGX

(a) Node execution time

Mapper Reducer

1.6

1.8

2

2.2

2.4

2.6

2.8
·109

#C
PU

cy
cl

es

Without SGX With SGX

(b) Number of CPU cycles

Mapper Reducer

25

30

35

40

#C
on

te
xt

-s
w

itc
h

SGX active

(c) Number of context switches

Figure 4: Performance of Mapper and Reducer nodes with and w/o Intel SGX.

model, we consider that data to be processed by nodes

are sensitive. Thus, they must be protected inside Intel

SGX enclaves. Lesser critical sections of the application

such as network functions are thus placed outside of the

enclave and not protected by Intel SGX.

To evaluate the performance overhead of executing

SGX instructions on computing nodes (i.e., Linux con-

tainers) running Mapper and Reducer programs, we mea-

sure execution time, CPU cycles, and Context switching

when SGX is enabled/not-enabled. We use a Dell i5-

3340M @2.70GHz with 8GB of RAM, running Ubuntu

14.04.

Node execution time: As shown in Fig. 4a, the

execution time of a complete workflow of a client node

is higher than normal execution when using Intel SGX.

We verified this difference through Linux perf. This

additional execution time is caused by SGX special

instructions, SGX library calls, enclave initialization, and

memory encryption mechanisms.

Number of CPU cycles: We measured the number of

CPU cycles when SGX was enabled (Fig. 4b). Using

SGX results execution of a higher number of instruc-

tions because of instructions used by SGX to pro-

cess data and code in enclaves.

Context switching: Another phenomenon that has

impact on the performance of SGX applications is

context switching between the enclave and the rest of

application. During the execution of the application,

enclave data and code processing leads to CPU mode

changes. Therefore, each enclave enter/exit requires to

store/restore CPU states, operations which are costly in

terms of performance. Fig. 4c shows the number of

context-switches incurred in the execution of Mapper

and Reducer nodes. Overall, Intel SGX instructions

impose w11.2% performance overhead to Mapper and

Reducer nodes. This is essentially the overhead of using

OpenSGX in our prototype (i.e., performance emulation

of Intel SGX).

Our prototype leverages Intel SGX enclaves, thus pro-

vides the same security guarantees which are provided by

Intel SGX. Intel SGX (like other existing trusted comput-

ing approaches), protects the software against memory

attacks such as malicious OS, malicious hypervisor, and

malicious firmware. However, it does not protect against

cache-based side-channel attacks [10].

VII. RELATED WORKS

Zhang et al. [6] proposed an approach for secure com-

puting on cloud infrastructures based on trusted virtual



DRAFT

7

machines. Their approach implements trusted computing

mechanisms using TPM to guarantee data privacy and se-

curity. CoreOS [8] is a minimal Linux OS to run Linux

containers especially those that are Docker-based. It pro-

vides a secure and reliable cluster for running distributed

applications. It leverages Kubernetes for cluster manage-

ment and Docker for application management. It also

offers a trusted execution environment leveraging the

CoT mechanism. CoreOS extends the CoT to container

image by implementing specific mechanisms in rkt [11]

container engine to provide the remote attestation.

VIII. CONCLUSION

We have seen that containers hardened by a trusted

execution technology like Intel SGX bring more flex-

ibility and security to distributed computing. We pro-

posed a container-based model for secure distributed

computing over Fog infrastructures. To illustrate the

model, we implemented a container-based MapReduce

prototype. Evaluation results show a reasonable perfor-

mance overhead of using Intel SGX. As future work,

we intend to explore AMD-SEV for Linux containers.

REFERENCES

[1] “Trusted docker containers and trusted vms in openstack.”

https://01.org/sites/default/files/openstacksummit vancouver

trusteddockercontainers.pdf.

[2] S. Arnautov et al., “Scone: Secure linux containers with intel

sgx.,” in OSDI, pp. 689–703, 2016.

[3] V. Korkhov et al., “Distributed computing infrastructure based

on dynamic container clusters,” in International Conference

on Computational Science and Its Applications, pp. 263–275,

Springer, 2016.

[4] T. Garfinkel et al., “A virtual machine introspection based archi-

tecture for intrusion detection.,” in ”NDSS”, vol. 3, pp. 191–206,

2003.

[5] Intel, “Intel clear containers: Building a virtualization contin-

uum,” white paper.

[6] N. Zhang et al., “Enabling trusted data-intensive execution in

cloud computing,” in Communications and Network Security

(CNS), 2014 IEEE Conference on, pp. 355–363, IEEE, 2014.

[7] R. Pires et al., “A lightweight mapreduce framework for secure

processing with SGX,” CoRR, vol. abs/1705.05684, 2017.

[8] “Coreos container operating system.” https://coreos.com/.

[9] P. Jain et al., “Opensgx: An open platform for sgx research.,” in

NDSS, 2016.

[10] M.-M. Bazm et al., “Side-Channels Beyond the Cloud Edge :

New Isolation Threats and Solutions,” in CSNet, (Rio de Janeiro,

Brazil), Oct. 2017.

[11] “The security-minded container engine by coreos: rkt hits 1.0.”

https://coreos.com/blog/rkt-hits-1-0.html.

https://01.org/sites/default/files/openstacksummit_vancouver_trusteddockercontainers.pdf
https://01.org/sites/default/files/openstacksummit_vancouver_trusteddockercontainers.pdf
https://coreos.com/
https://coreos.com/blog/rkt-hits-1-0.html

	Introduction
	Distributed Computing on Fog Infrastructures
	Problem Statement
	Trusted Execution Over Fog Infrastructures
	Secure Distributed Computing Model
	implementation and Evaluation
	Related Works
	Conclusion
	References

