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Abstract—The increasing popularity of applications such as
video streaming in today’s mobile devices introduces higher
demand for throughput, and puts a strain especially on cellular
links. Cooperation among mobile devices by exploiting both
cellular and local area connections is a promising approachto
meet the increasing demand. In this paper, we consider that
a group of cooperative mobile devices, exploiting both cellular
and local area links and within proximity of each other, are
interested in the same video content. Traditional network control
algorithms introduce high overhead and delay in this setup
as the network control and cooperation decisions are made in
a source-centric manner. Instead, we develop a device-centric
stochastic cooperation scheme. Our device-centric scheme; DcC
allows mobile devices to make control decisions such as flow
control, scheduling, and cooperation without loss of optimality.
Thanks to being device-centric, DcC reduces; (i) overhead;i.e.,
the number of control packets that should be transmitted over
cellular links, so cellular links are used more efficiently,and (ii)
the amount of delay that each packet experiences, which improves
quality of service. The simulation results demonstrate thebenefits
of DcC.

I. I NTRODUCTION

The increasing popularity of applications such as video
streaming in today’s mobile devices introduces higher demand
for throughput, and puts a strain especially on cellular links. In
fact, cellular traffic is growing exponentially and it is expected
to remain so for the foreseeable future [1], [2].

Cooperation among mobile devices is a promising approach
to meet the increasing throughput demand over cellular links.
In particular, when mobile devices are in the close proximity
of each other and are interested in the same content, device-
to-device connections such as WiFi or Bluetooth can be op-
portunistically used to construct a cooperative system [3], [4].
Indeed, this scenario is getting increasing interest [3].E.g., a
group of friends may be interested in watching the same video
on YouTube, or a number of students may participate in an
online education class [3]. More details about the practicality
of this scenario is provided in [3]. To better illustrate this
setup, we provide the following example.

Example 1:Let us consider Fig. 1, where mobile device
users in close proximity are interested in the same video con-
tent. Fig. 1(a) shows no-cooperation where each mobile device
uses only its cellular link to stream video. For example, if the
cellular link rates are 100kbps, each user’s streaming ratewill
be 100kbps. Fig. 1(b) shows cooperation, where each mobile
device uses cellular and local area links simultaneously (these
links operate simultaneously thanks to using different parts of
the spectrum) to stream video. Each user downloads 100kbps
of video through their cellular connection, and 200kbps from
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Fig. 1. Mobile device users;A, B, and C are in close proximity, and
interested in the same video content. (a) No-cooperation. Each mobile device
uses its own cellular link to stream video. (b) Cooperation.Each mobile device
uses cellular and local area links simultaneously to streamvideo.

their neighbors. Thus, the streaming rate increases to 300kbps
from 100kbps, which is a significant improvement [3], [4]. One
important problem, and is the focus of this paper, is the design
of a stochastic control algorithm that is efficient in practice in
terms of overhead and delay. �

Traditional network control algorithms such as backpressure
[18], [19], [20] make control decisions such as routing and
scheduling (and cooperation decision in our problem setup)in
a “source-centric” manner. In our problem, this corresponds to
the case that the servers in the cloud make decisions about (i)
the number of video packets that should be pushed to each mo-
bile device, and (ii) the amount of cooperation among mobile
devices;i.e., the number of packets that each mobile device
should transmit to other mobile devices in its neighborhood. In
order to make these decisions, video servers should keep track
of the states of the mobile devices, which includes queue sizes
in mobile devices as well as cellular link qualities towardseach
mobile device. This puts significant amount of overhead over
the cellular links. Furthermore, when there is congestion over
the cellular links, the state information,i.e., control packets
can be delayed significantly, and the video servers may not
make timely decisions such as reducing or increasing the rates
towards each mobile device. This increases end-to-end delay,
which may not fulfill quality of service (QoS) requirements of
video streaming applications.

In this paper, we develop a device-centric cooperation
scheme to determine the number of video packets each mobile
device should receive via cellular links as well as from its
neighbors. Our approach is grounded on a network utility
maximization (NUM) formulation of the problem and its so-
lution [6]. The solution decomposes into several parts withan
intuitive interpretation, such as flow control, schedulingover
cellular links, and cooperation and scheduling over local area
links. Based on the structure of the decomposed solution, we
develop a stochastic algorithm; Device-Centric Cooperation;
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DcC. The following are the key contributions of this work:

• We consider a scenario where a group of cooperative mo-
bile devices, exploiting both cellular and local area links,
are within proximity of each other, and are interested
in the same content. We propose a novel “device-centric
cooperation” scheme for this scenario.

• We develop network utility maximization (NUM) for-
mulation of the device-centric problem, and provide its
decomposed solution. Based on the structure of the
decomposed solution, we develop a stochastic device-
centric algorithm; DcC. We show that DcC moves the
functionality required for cooperation to mobile devices
without loss of optimality.

• We evaluate our scheme via simulations for multiple
mobile devices. The simulation results confirm that DcC
reduces; (i) overhead;i.e., the number of control packets
that should be transmitted over cellular links, and (ii) the
amount of delay that each packet experiences.

The structure of the rest of the paper is as follows. Section II
gives an overview of the system model. Section III presents the
NUM formulation of our device-centric scheme. Section IV
presents the stochastic device-centric cooperation algorithm;
DcC. Section V evaluates DcC. Section VI presents related
work. Section VII concludes the paper.

II. SYSTEM MODEL

In this section, we provide an overview of the device- and
source-centric cooperation models demonstrated in Fig. 2.1

First, we provide a cooperative system setup that are common
to both device- and source-centric models.

A. Cooperative System

Setup:We consider a cooperative system shown in Fig. 2(a),
where each mobile device is able to connect to the Internet
via cellular links2, and forward packets to other mobile devices
through the local links,e.g.,Bluetooth or WiFi.

The cooperative system consist ofN mobile devices and
a source node. Note that the source node represents video
servers, proxies, and base stations. This representation allows
us to focus on the bottlenecks of the system, namely cellular
links from the base station to the mobile devices and the local
area links [4].N is the set of the mobile devices, whereN =
|N |. The mobile devices are interested in the same content and
they construct a cooperating group.3 We consider that time is
slotted andt refers to the beginning of slott.

Cellular Links: Each mobile devicek ∈ N is connected
to the Internet via its cellular link. At slott, Cc(t) is the
channel state vector of the cellular links, whereCc(t) =

1Note that we provide the source-centric model in addition toour device-
centric model so that we can make a connection and comparisonbetween
device- and source-centric schemes in the rest of the paper.

2Note that our device-centric scheme is generic enough to include Internet
connections via WiFi, but we only focus on cellular links forInternet
connection in this paper to make the presentation and analysis simple.

3We consider that all mobile devices volunteer to cooperate without any
malicious activity. This is possible in our setup due to existing social ties as
the mobile device users are in close proximity to each other.
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Fig. 2. (a) Cooperative system. (b) Source-centric cooperation. (c) Device-
centric cooperation.

{Cc
1(t), ..., C

c
k(t), ..., C

c
N (t)}. We assume thatCc

k(t) is the
state of the cellular links to mobile nodek. We consider that
cellular links towards different mobile devices are interference
free as interference could be handled by base stations. Let
ΓCc(t) denote the set of the link transmission rates feasible at
time slot t for channel stateCc(t).

Local Area Links:In our setup, we consider that mobile
devices are in close proximity and they hear each other.
Therefore, in the local area, each mobile device can connectto
another device directly. This gives us a fully connected topol-
ogy. Depending on the underlying technology, local area trans-
missions can be unicast (e.g.,Bluetooth, or WiFi) or broadcast
(can be achieved by extending WiFi [3]). In our formulations,
we consider both unicast and broadcast transmissions in the
local area. We consider protocol model in our formulations
[15], where each mobile device can either transmit or receive at
the same time. Since our local area network is fully connected,
only one mobile device can transmit in a slot.

At slot t, Cw(t) is the channel state vector of the local area
links, whereCw(t) = {Cw

1,2(t), ..., C
w
k,n(t), ..., C

w
N−1,N (t)}.

We assume thatCw
k,n(t) is the state of the wireless link

between nodek and n. Let ΓCw
u
(t) denote the set of the

link transmission rates feasible at time slott for channel state
Cw(t) for unicast transmission. Similarly,ΓCw

b
(t) denote the

set of the link transmission rates feasible at time slott for
channel stateCw(t) for broadcast transmission.

B. Source-Centric Model

The source-centric cooperation model is shown in Fig. 2(b),
where the source node transmits a video flow to a set of
mobile devicesN . The flow generation rate at the source for
mobile devicek is xk(t), k ∈ N . xk(t) is i.i.d. over the
slots and their expected values;Ak = E[xk(t)], E[xk(t)

2] are
finite. Note that even if all mobile devices are interested inthe
same content, they may receive the content at different rates.
In video streaming applications, this corresponds to different
levels of video quality. Flow ratexk(t) is associated with a
utility function Uk(xk(t)), which we assume to be strictly
concave function ofxk(t).

Flow rate over the cellular link towards nodek is
maxn∈N {xk,n(t)}, where xk,k(t) is the rate towards node
k to help nodek, while xk,n(t), k 6= n is the rate towards
nodek to help noden. The flow rate over the cellular link is
maximum of the rates,i.e., maxn∈N {xk,n(t)} as all mobile
devices are interested in the same content. Note thatxk,k(t) is



the rate over the cellular link towards nodek, while xk(t) is
the flow generation rate for devicek. Flow rate over the local
area link from nodek to noden is hk,n(t), k 6= n. Note that
hk,n(t) is to help noden using nodek as a relay.

In the source-centric model, at time slott, queueµk(t) is
constructed at the source, and it queues packets that will be
transmitted to nodek, and changes according to following
dynamics at every time slott.

µk(t+ 1) ≤ max[µk(t)−
∑

n∈N

xn,k(t), 0] + xk(t) (1)

At time slott, queueνn,k(t) is the queue size at mobile device
n, and it queues the packets that should be transmitted to node
k. νn,k(t) changes according to following dynamics at every
time slot t.

νn,k(t+ 1) ≤ max[νn,k(t)− hn,k(t), 0] + xn,k(t) (2)

C. Device-Centric Model

In the device-centric model shown in Fig. 2(c), a virtual
source is added to the system and the real source becomes a
virtual sink. Nodek receives packets with rateyk(t) from the
virtual source and forwards these packets to the virtual sink
and other mobile devices. The transmission rate over the cel-
lular link from nodek to the virtual sink ismaxn∈N {gsk,s(t)}.
The transmission rate from nodek to n is gkk,n(t).

Note that the flow rates;yk(t), gnk,s(t), g
k
k,n(t) are virtual

flow rates. In our device-centric scheme, these virtual flow
rates are used to determine the real flow values;xk(t), xk,n(t),
hk,n(t) as explained in Section IV.

In the device-centric model, at time slott, queueλk(t)
is a virtual queue size constructed at nodek. λk(t) changes
according to following dynamics at every time slott.

λk(t+ 1) ≤ max[λk(t)− gkk,s(t)−
∑

n∈N−{k}

gkk,n(t), 0]+

yk(t) (3)

At time slott, queueηn,k(t) is a virtual queue size constructed
at noden. ηn,k(t) changes according to following dynamics
at every time slott.

ηn,k(t+ 1) ≤ max[ηn,k(t)− gkn,s(t), 0] + gkk,n(t) (4)

In addition to the virtual queuesλk(t) andηn,k(t), a real queue
Qn,k(t) is constructed at noden and evolves according to the
following dynamics at every time slott.

Qn,k(t+ 1) ≤ max[Qn,k(t)− hn,k(t), 0] + xn,k(t) (5)

Note thathn,k(t) is the amount of the real outgoing traffic
from noden to k (i.e., from queueQn,k), andxn,k(t) is the
amount of the real incoming traffic to noden from the source
(i.e., to the queueQn,k). The relationship between the real and
virtual queues as well as real and virtual flows are provided
in Section IV.

III. D EVICE-CENTRIC NUM

In this section, we formulate the device-centric network
utility maximization (NUM) framework. This approach sheds
light into the structure of the our stochastic algorithm DcC,
which we present in the next section.4

A. Formulation

We provide NUM formulations for (i) unicast and (ii)
broadcast transmissions in the local area. For unicast setup,
the NUM formulation is P-Unicast:

max
y,g

∑

k∈N

Uk(yk)

s.t. gkk,s +
∑

n∈N−{k}

gkk,n = yk, ∀k ∈ N

gkn,s = gkk,n, ∀k ∈ N , n ∈ N − {k}

{max
n∈N

{gnk,s}}∀k∈N ∈ ΓCc ,

{gkk,n}∀k∈N ,n∈N−{k} ∈ ΓCw
u
. (6)

The objective of P-Unicast is to determiney = {yk}k∈N , g
= {gkn,s}k∈N ,n∈N which maximize the total utility function;∑

k∈N Uk(yk). The first constraint is the flow conservation
constraint at nodek; yk is the incoming traffic rate from virtual
source to nodek, andgkk,s +

∑
n∈N−{k} g

k
k,n is the outgoing

traffic rate from nodek to the virtual sink and the neighbors.
The second constraint is the flow conservation constraint at
noden for nodek’s flow; gkk,n is the incoming flow rate to
noden from nodek, and gkn,s is the flow rate from noden
towards virtual sink. The last two constraints are the capacity
constraints over cellular and local links.

For broadcast setup, the NUM formulation is P-Broadcast.
The objective function and the first three constraints of P-
Broadcast is the same as P-Unicast in Eq. (6). The rest of the
constraints of P-Broadcast:

gkk,n ≤
∑

J∈H|k∈J ,n/∈J

fn,J , ∀k ∈ N , n ∈ N − {k}

{fn,J }∀n∈N ,J∈H|n/∈J ∈ ΓCw

b
. (7)

The first constraint in Eq. (7) relates the broadcast transmission
rate to the link rate. LetJ be a set of nodes, andH be the set
of node combinations,i.e., J ∈ H. If packets are broadcast
from noden to node setJ , each nodek ∈ J can receive
the packets (depending on the loss probability). In the device-
centric system, this corresponds to simultaneous transmission
from nodes inJ to nodek. fn,J is the broadcast rate in the
source-centric system. Since there may be differentJ sets
which contain nodek, fn,J is summed∀J ∈ H|k ∈ J , n /∈
J to determinegkk,n. The second constraint in Eq. (7) is the
broadcast capacity constraint.

4Note that NUM optimizes the average values of the parametersthat are
defined in Section II. By abuse of notation, we use a variable,e.g.,φ as the
average value ofφ(t) in our NUM formulation if bothφ andφ(t) refers to
the same parameter.



B. Solution

Lagrangian relaxation of the first two constraints of both
Eq. (6) and Eq. (7) gives the following Lagrange function:

L =
∑

k∈N

Uk(yk) +
∑

k∈N

λk(g
k
k,s +

∑

n∈N−{k}

gkk,n − yk)+

∑

k∈N

∑

n∈N−{k}

ηn,k(g
k
n,s − gkk,n) (8)

where λk and ηn,k are the Lagrange multipliers. Note that
λk and ηn,k represent the virtual queue sizes defined by
Eqs. (3),(4). The values ofλk andηn,k are tracked at nodesk
andn, respectively. Note that these values are virtual values,
and a counter is sufficient to keep track of these values.

Eq. (8) can be decomposed into several intuitive sub-
problems such as rate control, and scheduling. First, we solve
the Lagrangian function with respect toyk:

yk = (U ′
k)

−1(λk) (9)

where(U ′
k)

−1 is the inverse of the derivative ofUk. SinceUk

is strictly concave function ofyk, yk is inversely proportional
to λk. This means that when the queue sizeλk increases,yk
should reduce. In the system implementation, nodek requests
yk packets from the real source (e.g.,video server).

Second, we solve the Lagrangian forgkk,s andgkn,s:

max
g

∑

k∈N

[λkg
k
k,s +

∑

n∈N−{k}

ηk,ng
n
k,s]

s.t. {max
n∈N

{gnk,s}}∀k∈N ∈ ΓCc , (10)

After gkk,s and gnk,s are determined, nodek requests
maxn∈N {gnk,s} packets from the source through its cellular
link. Note thatgkk,s and gnk,s are different fromyk as yk is
the total flow rate requested by nodek and this rate can
be transmitted through both its cellular link or from the
neighboring nodes, whilegkk,s and gnk,s are the rates over
cellular links.

Finally, we solve the Lagrangian with respect togkk,n. Note
that the solutions in Eq. (9) and Eq. (10) holds for both P-
Unicast and P-Broadcast. However, the solutions of P-Unicast
and P-Broadcast with respect togkk,n differ as explained
next. The solution of P-Unicast with respect togkk,n is:
maxg

∑
k∈N

∑
n∈N−{k}(λk − ηn,k)g

k
k,n subject to the last

two constraints of Eq. (6). The solution of P-Broadcast with
respect togkk,n is: maxg

∑
k∈N

∑
n∈N−{k}(λk − ηn,k)g

k
k,n

subject to all the constraints in Eq. (7).
Next, we design our stochastic algorithm; Device-Centric

Cooperation (DcC) based on the structure of the decomposed
NUM solutions, i.e., Eq. (9),(10) as well as the local area
scheduling solution presented above.

IV. D EVICE-CENTRIC COOPERATION(DCC)

Now, we provide our Device-Centric Cooperation (DcC)
algorithm which includesrate control, cellular link scheduler
and cooperation & local area link scheduler. Note that both
unicast and broadcast setups have the same rate control and

cellular link scheduling parts. The only different part is the
cooperation & local area link scheduling as explained later.

Device-Centric Cooperation (DcC):

• Rate Control:At every time slott, the rate controller at
nodek determines the number of packets that should be
requested from the source according to;

max
y

[MUk(yk(t))− λk(t)yk(t)]

s.t. yk(t) ≤ Rmax
k (11)

whereRmax
k is be a positive constant larger than the cel-

lular rate from the actual source, andM is a large positive
constant. The values ofRmax

k andM are important for
the stability of the DcC algorithm [7].yk(t) is the number
of packets that will be requested from the source.

• Cellular Link Scheduler:At every time slott, the cellular
link scheduler at nodek determines the number of packets
requested through the cellular links.

max
g

λk(t)g
k
k,s(t) +

∑

n∈N−{k}

(ηk,n(t)−Qk,n(t))g
n
k,s(t)

s.t. {gnk,s(t)}∀n∈N ∈ ΓCc(t). (12)

After gkk,s(t) and gnk,s(t) are determined, the real flow
rates are determined asxk,k(t) = gkk,s(t) andxk,n(t) =
gnk,s(t)− β, whereβ > 0 can be chosen to be arbitrarily
small, andmaxn∈N {xk,n(t)} amount of video packets
are requested from the source by nodek.

• Cooperation & Local-Area Link Scheduler for Unicast:
At time slot t, the link rategkk,n(t) is determined by;

max
g

∑

k∈N

∑

n∈N−{k}

[λk(t)− ηn,k(t) +Qn,k(t)]g
k
k,n(t)

s.t. {gkk,n(t)}∀k∈N ,n∈N−{k} ∈ ΓCw
u
(t). (13)

After gkk,n(t) is determined,hn,k(t) = gkk,n(t) amount of
video packets is requested from noden by nodek.

• Cooperation & Local-Area Link Scheduler for Broadcast:
At time slot t, the link broadcast rate is determined by;

max
f

∑

k∈N

∑

n∈N−{k}

∑

J∈H|k∈J ,n/∈J

[λk(t)− ηn,k(t)+

Qn,k(t)]fn,J(t)

s.t. {fn,J (t)}∀n∈N ,J∈H|k/∈J ∈ ΓCw

b
(t) (14)

After fn,J (t) is determined,fn,J (t) amount of video
packets are transmitted from noden to nodes in
J . The optimum value of gkk,n(t) is gkk,n(t) =∑

J∈H|k∈J ,n/∈J fn,J (t), ∀k ∈ N , n ∈ N − {k}.
Therefore, the real transmission rate of over each link is
equal tohn,k(t) = gkk,n(t) =

∑
J∈H|k∈J ,n/∈J fn,J (t),

∀k ∈ N , n ∈ N − {k}.

Theorem 1:If channel states are i.i.d. over time slots, and
the arrival ratesE[yt(t)] = Ak, ∀k ∈ N are interior of
the stability region of cellular and local area links, then
DcC stabilizes the network and the total average queue sizes,
including both virtual and real queues, are bounded for both



unicast and broadcast setups.
Proof: The proof is provided in [7].�

Theorem 2:If the channel states are i.i.d. over time slots,
and the traffic arrival rates are controlled by the rate control
algorithm in Eq. (11), then the admitted flow rates converge
to the utility optimal operating point with increasingM .
Proof: The proof is provided in [7].�

V. EVALUATION OF DEVICE-CENTRIC COOPERATION

In this section, we evaluate our DcC algorithm as compared
to Source-Centric Cooperation (ScC), and highlight the ben-
efits of DcC over ScC. Therefore, we first provide a brief
description of ScC algorithm in the following.

A. Source-Centric Cooperation (ScC)
• Rate Control: At every time slot t, the source node

determinesxk(t);

max
x

[MUk(xk(t))− µk(t)xk(t)]

s.t. xk(t) ≤ Rmax
k (15)

• Cellular Link Scheduler:At every time slott, the source
node determinesxk,k(t) andxn,k(t);

max
x

µk(t)xk,k(t) +
∑

n∈N−{k}

(µk(t)− νn,k(t))xn,k(t)

s.t. {xn,k(t)}∀n∈N ∈ ΓCc(t). (16)

• Cooperation & Local-Area Link Scheduler for Unicast:
At time slot t, noden determines the link ratehn,k(t);

max
h

∑

k∈N

∑

n∈N−{k}

νn,k(t)hn,k(t)

s.t. {hn,k(t)}∀k∈N ,n∈N−{k} ∈ ΓCw
u
(t). (17)

• Cooperation & Local-Area Link Scheduler for Broadcast:
At time slot t, noden determines the broadcast rate;

max
f

∑

k∈N

∑

n∈N−{k}

∑

J inH|k∈J ,n/∈J

νn,k(t)fn,J (t)

s.t. {fn,J (t)}∀n∈N ,J∈H|k/∈J ∈ ΓCw

b
(t) (18)

wherehn,k(t) =
∑

J∈H|k∈J ,n/∈J fn,J (t).

B. Benefits of DcC over ScC

In this section, we explain the benefits of DcC over ScC in
terms of overhead, delay, and practical deployment.

Overhead:ScC determinesxk(t), xk,k(t), and xn,k(t) at
the source node according to Eqs. (15), and (16). Therefore,
the source node should know the queue sizes;µk(t), νn,k(t),
and cellular downlink propertiesΓCc(t). Although µk(t) is
constructed at the source node,νn,k(t) is constructed at
mobile devices, and the cellular downlink propertiesΓCc(t)

are usually measured by mobile devices. Therefore,νn,k(t)
and ΓCc(t) should be carried to the source node from each
mobile device over a cellular uplink. These control messages
introduceO(N) overhead over each cellular uplink.

On the other hand, in DcC, mobile devices construct all the
real and virtual queues and make all decisions.E.g., mobile

devicek determines and requestsxk(t) andmaxn∈N {xk,n(t)}
amount of video packets from the source. These request
messages introduceO(1) overhead over each cellular uplink.
Thus, DcC reduces the overhead fromO(N) to O(1), which
is significant considering the fact that cellular link capacities
are limited as the demand for cellular links is already high
and keeps increasing [1], [2]. Furthermore, since DcC intro-
duces constant overhead over the cellular links, it provides
scalability.

Delay: DcC improves packet delay over ScC thanks to
employing virtual queues. Indeed, although the virtual queue
sizes could be large in DcC, the real queue sizes could be
significantly small as compared to the real queue sizes in
ScC. Furthermore, the loss of control packets carrying queue
size and cellular link quality information over cellular links
increases real queue sizes in ScC. On the other hand, DcC
makes all the decisions using local information in the mobile
devices, so control packets are not carried over cellular links
(only packet request messages are carried over the cellular
links in DcC), so the loss of control packets does not affect
DcC as much as ScC. The simulation results provided in the
next section demonstrate the benefit of DcC in terms of delay
as compared to ScC.

Practical Deployment:With the introduction of Dynamic
Adaptive Streaming over HTTP (DASH) or MPEG-DASH
[16], there is an increasing interest to client-based video
streaming applications,e.g.,Netflix uses DASH [17]. Accord-
ing to DASH, the clients request video chunks at different rates
using their connection level measurements. Our device-centric
approach, since it operates at the client side, could be easily
engaged with DASH to develop cooperative video streaming
applications. Note that this could not be possible in ScC as
it requires the video servers to be involved in the decision of
which video chunks should be transmitted to the clients. We
believe that our approach could be used to extend DASH for
cooperative video streaming in mobile devices.

C. Simulation Results

In this section, we demonstrate the benefits of DcC over
ScC in terms of overhead and delay through simulations. We
consider a cooperative video streaming system and topology
shown in Fig. 2 for different number of users.

Fig. 3 presents the average rate per mobile device versus
number of users for DcC and ScC. In this setup, the cellular
and local area link rates are the same and 1 unit, and there is no
loss over the links. As seen, in both DcC and ScC, broadcast
improves over unicast as local area resources are used more
efficiently. More importantly, DcC and ScC achieve the same
rates for both unicast and broadcast, which is expected from
Theorem 2. Note that we do not take into account the effect of
overhead in this simulation,i.e., the length of control packets
are zero bytes.

Let us now consider overhead. We consider that queue size
and channel state information are carried using 4 bytes from
the mobile devices to the video servers in ScC, and the video
rate request messages are carried from the mobile devices to
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Fig. 3. Average rate per mobile device in unicast and broadcast scenarios for (a) DcC and (b) ScC. (c) Percentage of overhead vs packet size.
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Fig. 4. Queue Sizes. (a) ScC. Queue sizes at the source. (b) ScC. Queue sizes at the mobile devices. (c) DcC. Real queue sizes at the mobile devices. (d)
Virtual queue sizes at the mobile devices.

the video servers using 4 bytes in DcC. The percentage of
the overhead as compared to packet size, which we assume to
be 1000 bytes is presented in Fig. 3(c). The overhead of ScC
is increasing with the increasing number of users, while the
overhead does not change with the increasing number of users
for DcC. For example, the overhead is almost 20% when the
number of mobile devices is 50. This means that 20% of the
cellular link capacities should be allocated to carry the control
messages in ScC. On the other hand, the overhead of DcC is
small for any number of mobile devices.

Fig. 4 presents queue size vs time for DcC and ScC. In this
setup, both cellular and local area link rates are 1 units, and
there is no loss over the links. As seen, the real queue sizes
of ScC; i.e., µk(t) and νk(t), could be very large, up to 75
packets. On the other hand, although virtual queue sizes could
be also large in DcC, the real queue sizes;Qn,k(t) is very low.
Thus, our scheme reduces queueing delay.

Fig. 5 presents transmission rate towards each user versus
the loss probability over the cellular links. In this setup,both
cellular and local area link rates are 1 units, and there is
loss only over the cellular links,i.e., there is no loss over
the local-area links. As expected, in both DcC and ScC, flow
rates decrease with increasing loss probability. However,DcC
improves over ScC when the loss rate increases, because
control packets are lost over the cellular links at high lossrates,
and the source cannot make correct decisions in ScC. Fig. 6
shows the average queue size versus the loss probability forthe
same setup. In particular, queue sizes are averaged over time
and per-node queues. For example,λavg is the average queue
size ofλ1, λ2, andλ3 which are time averages ofλ1(t), λ2(t),
and λ3(t), respectively. As seen, although the virtual queue
sizes increase in DcC with the increasing loss probability,the
real queue sizeQavg is very small and does not really increase
with the increasing loss probability. On the other hand, the
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Fig. 5. Rate versus loss probability over the cellular links. (a) DcC. (b) ScC.
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queue sizes in ScC, which are already very high as compared
to DcC, increase significantly with increasing loss rate, which
introduces significant delay.

VI. RELATED WORK

This work combines ideas from cooperation, network utility
maximization, and stochastic network control.

When several users are interested in the same content,
cooperative streaming is promising to improve throughput.For
instance, [8], [9], [10] consider a scenario in which device-to-
device and cellular connections are used to disseminate the
content, considering the social ties and geographical proxim-
ity for cooperation. Cooperation between mobile devices for
content dissemination taking into account social ties, hasbeen
studied extensively [11], [12]. Cooperative video streaming
systems are implemented over mobile devices in [13], [14]. As
compared previous work, the goal of this paper is to design
device-centric cooperation scheme.



The NUM framework is promising to understand how differ-
ent layers and/or algorithms, such as flow control, congestion
control, and routing should be designed and optimized [6],
[5]. We follow a similar approach, but we formulate the
NUM framework considering the specific requirements such
as device-centric design of the cooperative mobile devices.

The traditional source-centric, and backpressure-based
stochastic network control algorithms have emerged from the
pioneering work in [18], [19], which showed that in wireless
networks where nodes route packets and make scheduling de-
cisions based on queue backlog differences, one can stabilize
queues for any feasible traffic. It has also been shown that
backpressure can be combined with flow control to provide
utility-optimal operation guarantee [20]. Recently, receiver-
based flow control scheme is developed for overloaded net-
works [21]. As compared to previous work, our scheme is
designed for cooperative mobile devices, and it creates virtual
flows and queues to move control functionality to mobile
devices, and reduces the overhead over cellular links and delay,
which was not the focus of the previous work.

VII. C ONCLUSION

In this paper, we considered a cooperation scenario among
mobile devices for video streaming. We developed a device-
centric cooperation scheme; DcC. We showed that DcC re-
duces; (i) overhead;i.e., the number of control packets that
should be transmitted over cellular links, and (ii) the amount
of delay that each packet experiences. Simulations demonstrate
significant improvement in terms of overhead and delay.
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