
HAL Id: hal-01247236
https://hal.science/hal-01247236

Submitted on 21 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Cloud-Based Secure Authentication Protocol for
Contactless-NFC Payment

Nour El Madhoun, Fouad Amine Guenane, Guy Pujolle

To cite this version:
Nour El Madhoun, Fouad Amine Guenane, Guy Pujolle. A Cloud-Based Secure Authentication Pro-
tocol for Contactless-NFC Payment. IEEE 4th International Conference on Cloud Networking, Oct
2015, Niagara Falls, Canada. pp.328-330, �10.1109/CloudNet.2015.7335332�. �hal-01247236�

https://hal.science/hal-01247236
https://hal.archives-ouvertes.fr


A Cloud-Based Secure Authentication Protocol for
Contactless-NFC Payment

Nour El Madhoun∗, Fouad Guenane†, Guy Pujolle∗
∗Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place Jussieu 75005 Paris, France

†Télécom ParisTech, 46 rue Barrault 75013 Paris, France
Email: {nour.el-madhoun, guy.pujolle}@lip6.fr; fouad.guenane@telecom-paristech.fr

Abstract—Nowadays, NFC technology is used in contactless
payment applications by offering the NFC payment functionality
in credit/debit cards, smartphones and payment terminals. Thus,
an NFC payment transaction is executed in a simple and practical
way. EMV is the security protocol for both contact and contactless
payment systems. However, during an EMV payment transaction,
this standard does not ensure two main security constraints
between a customer payment device and a payment terminal:
(1) mutual authentication, (2) confidentiality of sensitive banking
data exchanged. These weaknesses represent a major risk in
the case of NFC payment because the transaction is performed
using NFC radio waves in an open environment. The risk is
reduced in the case of contact payment because the transaction
is executed in a closed environment by inserting the card into
the terminal. In this paper, we propose a new security protocol
for NFC payment transactions based on a Cloud infrastructure.
We verify the correctness of this proposal using Scyther tool that
provides formal proofs for security protocols.

Index Terms—NFC, security, EMV, Cloud, mutual authentica-
tion, confidentiality, NFC smartphone.

I. INTRODUCTION

Today, Near Field Communication (NFC) technology is be-
ing experimented in several countries for contactless payment
operations by equipping smartphones, bank cards and payment
terminals with the NFC function. An NFC purchase transaction
between an NFC smartphone (or an NFC bank card) and an
NFC point of sale terminal is performed instantaneously in a
practical way within a short range of communication (around
10 centimetres) without any physical contact [1].

Europay Mastercard Visa (EMV) is the security standard for
traditional contact payment transactions. In its specifications:
(1) no mutual authentication is ensured between credit/debit
cards and payment terminals but only card authentication
which is well guaranteed, (2) no encryption mechanism is
implemented to encrypt sensitive banking data exchanged
during an EMV transaction [2]. However, EMV has been
implemented in new NFC payment devices in the same manner
as contact payment systems, without any particular attention
given to contactless communication security. Authors in [3],
[4] show that an attacker equipped with an NFC reader charac-
terized by a special antenna, can steal confidential information
stored on NFC bank cards or on NFC smartphones (NFC
function is ON) that are in its (NFC reader) operating range.

This work aims to propose a Cloud-based security protocol
for mobile NFC payment transactions allowing to overcome
vulnerabilities that have been emerged in the EMV standard.

This protocol uses asymmetric cryptography to ensure: mutual
authentication (with non-repudiation) between an NFC smart-
phone and an NFC point of sale terminal and the integrity of
private banking data. The confidentiality (encryption) of bank
data is guaranteed using a symmetric session key calculated
during authentication steps. We analyze the proposal by a
verification tool called Scyther that provides formal proofs for
security protocols.

This paper is organized as follows. Section II introduces the
proposed security protocol for NFC payment whereas Section
III presents Scyther verification results. The last section pro-
vides a brief conclusion and outlines future work.

II. PROPOSED PROTOCOL

TABLE I
ABBREVIATIONS

Abb. Description Abb. Description
P NFC Payment terminal S NFC smartphone
C Cloud infrastructure CAi Certification Authority

(i=1..2)
H(M) One way hashing

function of M (M =
m1,m2,..)

AB Acquiring Bank (for P)

IB Issuing Bank (for S) X Banking data stored on
the secure element of S

RPi Random number gener-
ated by P (i=1..2)

RSi Random number gener-
ated by S (i=1..2)

TS Time-stamp generated
by P

Cert(Y) Certificate of Y (Y= P;
S; AB; IB)

pk(Y) public key of Y sk(Y) secret key of Y
KMaster Master session Key

generated by C
k(S,C) session Key allows to

exchange information
between S and C

A. Actors of the Protocol

Tab-I is used to simplify future descriptions. The proposed
protocol includes three actors (Fig-1):

1) Cloud infrastructure (C): it is an emerging technology
using Hardware and Software resources in order to provide
services for NFC smartphones through a secure connection
over the Internet. This platform represents a set of servers and
contains databases. We assume that it: is characterized by a
high level of availability in any time and location around the
world, stores a list of trusted certification authorities, contains
a security application allowing to confirm the authenticity of
payment terminals to smartphones by proceeding to verify
certificates and digital signatures (see section II-B2).



2) NFC smartphone (S): we are interested in NFC mobile
payment where an NFC smartphone S is a connected object
(Wi-Fi, 4G), offering through an NFC Android application a
secure communication channel with the Cloud C using a new
session key k(S,C) at each connection. To make purchases with
S, the user needs only to approach S to the NFC payment
terminal. Hence, the main goal of the proposed protocol is to
offload the verification procedure of the NFC payment terminal
authenticity, from the smartphone S to the Cloud C in order to
effectively use the smartphone’s resources (see section II-B2).
Thus, S includes a cryptographic module providing a secure
storage, so it stores: the private banking data X, pk(S)/sk(S),
Cert(S) containing pk(S) and signed by the issuing bank’s
secret key sk(IB), Cert(IB) containing pk(IB) and signed by the
CA1 secret key sk(CA1), an electronic signature {H(X)}sk(IB)
of X generated by sk(IB) (after hashing X).

3) NFC Payment Terminal (P): it is a device used to
perform NFC purchase transactions in shops for example.
By default, it is connected to an information system and
its acquiring bank in real time. It verifies the authenticity
of smartphones locally. We assume that it has: pk(P)/sk(P),
Cert(P) containing pk(P) and signed by the acquiring bank’s
secret key sk(AB), Cert(AB) containing pk(AB) and signed by
the CA2 secret key sk(CA2), a list of trusted certification au-
thorities, an application that allows verification of certificates
and signatures to authenticate smartphones (see section II-B4).

Android 
Application

Cloud 
Infrastructure

NFC SmartphoneNFC Payment 
Terminal 

Databases

Application 
Servers

Directory 
Server

Authentication 
Server

Point Of Sale

P S C

(1)

(4)

(5)

(6)

Fig. 1. The proposed NFC security protocol

B. Protocol Description

This section describes the proposed protocol by listing all
the steps of exchanged messages between the actors (Fig-1):

1) S Authentication request (P -> S):

SignP : {H(P, S,RP1, ReqS, TS)} sk(P )

P, S,RP1, TS,Cert(P ), Cert(AB), ReqS, SignP (1)

In the first step, P sends to S in cleartext: a random
value RP1 and a time-stamp TS both used to prevent replay
attacks, Cert(P), Cert(AB), an S authentication request ReqS
and SignP. The latter is a signature generated by sk(P) of
’P, S, RP1, ReqS, TS’ message after its hash. Therefore,
’Cert(P), Cert(AB), SignP’ allow to authenticate P, guarantee

the integrity of ’P, S, RP1, ReqS, TS’ message and ensure
that P cannot deny having sent SignP in the future (non-
repudiation of origin). In this work, we assume that S does
not have an application allowing to verify the authenticity of
P, but in the next step, it will send the received message (1)
to C to execute an authentication verification procedure.

2) P Authentication and session requests (S -> C):

A : P, S,RP1, TS,Cert(P ), Cert(AB), ReqS, SignP

{A, C,RS1, ReqP,ReqSession} k(S,C) (2)

A is the message (1) received from P requesting S au-
thentication and providing proofs authenticating P: ’Cert(P),
Cert(AB), SignP’. We propose that S will not send its au-
thentication proofs to P before it confirms the authenticity of
P. However, to confirm or reject the authenticity of P, the
verification procedure (of ’Cert(P), Cert(AB), SignP’) will be
done in C. Therefore, S sends to C in an encrypted text with
k(S,C) (session key of the current connection): A, a random
value RS1 used to prevent replay attacks, an P authentication
request ReqP and a session request ReqSession. The latter
asks C to generate a master session key to begin a payment
transaction with P. RS1 acts as a time-stamp and S is able to
distinguish between sessions by means of RS1.

After receiving (2), C deciphers the message, checks TS
validity and if it is not valid, then it will not respond to S.
Otherwise, C proceeds classically in order to authenticate P. It
checks that: Cert(P) and Cert(AB) are valid today, the issuing
CA2 of Cert(AB) is a trusted certification authority, pk(CA2)
validates the signature contained in Cert(AB), pk(AB) validates
the signature contained in Cert(P), pk(P) validates SignP.

3) P Authenticity and session confirmations (C -> S):

B : C, S, P,RP1, RS1, TS,Confirm,Cert(P )

{B,KMaster} k(S,C) (3)

If C leads to successful verification results, then it authen-
ticates P and sends to S in a ciphertext with k(S,C): B which
contains mainly a confirmation authenticity message ’Confirm’
indicating that S can trust P using pk(P) and a master session
key KMaster. Otherwise, if P authentication has failed, C
sends to S a rejection authenticity message ’RejectP’ to finish
communication with P: {C,S,P, RP1, RS1, RejectP}k(S,C).

4) Authenticity of S (S -> P):

D : S, P,C,RS1,KMaster, Cert(S), Cert(IB)

SignS : {H(S, P,C,RS1, RP1, TS,KMaster)} sk(S)

E : {S, P,RS1, RP1, TS}H(KMaster,RS1, RP1)

{D,SignS,E} pk(P ) (4)

After receiving (3), S checks ’RP1, RS1, TS’ and if they
are not valid, then it will not respond to P. Otherwise, S
confirms P authenticity and prepares its authentication proofs
’Cert(S), Cert(IB), SignS’. It sends to P in an encrypted text
with pk(P): D, SignS and E. SignS is a signature generated
by sk(S) of ’S, P, C, RS1, RP1, TS, KMaster’ message after its



hash. H(KMaster, RS1, RP1) is a new session key generated
by hashing ’KMaster, RS1, RP1’ and is used to start a secure
payment transaction session (confidentially) between S and P.
E is ’S, P, RS1, RP1, TS’ message encrypted with H(KMaster,
RS1, RP1).

’Cert(S), Cert(IB), SignS’ allow the authentication of S,
guarantee the integrity of ’S, P, C, RS1, RP1, TS, KMaster’
message and ensure that S cannot deny having sent SignS in
the future (non-repudiation of origin). Therefore, P decrypts
(4) using sk(P) to obtain ’RS1, KMaster, Cert(S), Cert(IB),
SignS’ and proceeds classically to authenticate S. It checks
that: Cert(S) and Cert(IB) are valid today, the issuing CA1
of Cert(IB) is a trusted certification authority, pk(CA1) vali-
dates the signature contained in Cert(IB), pk(IB) validates the
signature contained in Cert(S), pk(S) validates SignS.

5) Confirmation to S (P -> S):

{P, S,RP2}H(KMaster,RS1, RP1) (5)

If P leads to successful verification results, then it authenti-
cates S, decrypts E using H(KMaster, RS1, RP1) session key,
checks RS1, RP1, TS and if they are not valid, then it will not
respond to S. Otherwise, P starts a payment transaction session
with S by sending a new random value RP2 (serves to prevent
replay attacks) in a ciphertext with H(KMaster, RS1, RP1). S
also can decrypt (5) and obtain RP2. If S authentication has
failed, then P sends to S a rejection authentication message
’RejectS’ and finishes communication with S: P,S, RejectS.

6) Confirmation to C (S -> C):

{{S,C, P,RS2}H(KMaster,RS1, RP1)} k(S,C) (6)

In this step, S confirms to C that it will start a payment
transaction session with P by sending in an encrypted text
with k(S,C): a new random value RS2 (serves to prevent replay
attacks) encrypted with H(KMaster, RS1, RP1). C decrypts (6)
using k(S,C) and it can also decrypt {S, C, P, RS2}H(KMaster,
RS1, RP1) because KMaster is generated by itself in the step
(3) and it already knows ’RS1, RP1’ from the message (2).

7) Exchange bank data and confirmation to P (S -> P):

{S, P,RP2− 1, RS2, X,SignX}H(KMaster,RS1, RP1)
(7)

S starts with P the payment session securely using the ses-
sion key H(KMaster, RS1, RP1) by sending: RS2 (previously
sent to C), RP2-1, the banking data X and SignX. The latter
is the electronic signature {H(X)}sk(IB) of X by sk(IB). SignX
ensures to P banking data integrity. Therefore, P decrypts (7),
checks RP2-1 and obtains RS2, X and its signature. P checks
also SignX using pk(IB) obtained in step (4).

III. SCYTHER VERIFICATION

The correctness verification of a security protocol has
proven today to be extremely difficult for humans. In this
work, we have chosen to verify the proposed security protocol
a tool called Scyther that has previously been successfully used
and applied in both research and teaching [5]. As illustrated
in Fig-2, the protocol guarantees with success all Scyther

claims for P, S, C and no attacks are found. Authentication
claims: Alive, Weakagree, Niagree and Nisynch are used to
detect replay, relay and man in the middle attacks. Secret and
SKR (Session Key Reveal) are confidentiality claims. Formal
definitions for all Scyther claims can be found in [6] and [7].

Fig. 2. Verification results

IV. CONCLUSION AND FUTURE WORK

In this paper, we introduced a new security protocol for
NFC payment transactions allowing to solve security vul-
nerabilities that have been detected in the EMV protocol.
We have based this solution on a Cloud infrastructure to
verify payment terminals authenticity and confirm it to smart-
phones. It ensures: mutual authentication and non-repudiation
between an NFC smartphone and an NFC payment terminal,
integrity and confidentiality of private banking information.
We have successfully analyzed the protocol correctness by
using the Scyther verification tool that provides formal proofs
for security protocols. As future work, we aim to improve
this proposed solution, develop a prototype and show its
effectiveness in a real environment.

REFERENCES

[1] V. Coskun, B. Ozdenizci, and K. Ok, “A survey on near field commu-
nication (nfc) technology,” Wireless personal communications, vol. 71,
no. 3, pp. 2259–2294, 2013.

[2] EMV Books - Integrated Circuit Card Specifications for Payment Sys-
tems, Book 1: Application Independent ICC to Terminal Interface Re-
quirements, Book 2: Security and Key Management, Book 3: Application
Specification, Book 4: Cardholder Attendant and Acquirer Interface
Requirements, Version 4.3„ November, http://www.emvco.com/, 2011.

[3] M. Emms and A. van Moorsel, “Practical attack on contactless payment
cards,” in HCI2011 Workshop-Heath, Wealth and Identity Theft, 2011.

[4] R. Lifchitz, “Hacking the nfc credit cards for fun and debit,” Hackito
Ergo Sum conference, April 2012.

[5] C. J. Cremers, “The scyther tool: Verification, falsification, and analysis
of security protocols,” in Computer Aided Verification. Springer, 2008.

[6] G. Lowe, “A hierarchy of authentication specifications,” in In Proc. 10th
IEEE Computer Security Foundations Workshop. IEEE, 1997.

[7] C. Cremers and S. Mauw, Operational semantics and verification of
security protocols. Springer Science & Business Media, 2012.


