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Abstract—Cyber-physical systems in the factory of the fu-
ture will consist of cloud-hosted software governing an ag-
ile production process executed by autonomous mobile robots
and controlled by analyzing the data from a vast number of
sensors. CPSs thus operate on a distributed production floor
infrastructure and the set-up continuously changes with each
new manufacturing task. In this paper, we present our OSGi-
based middleware that abstracts the deployment of service-
based CPS software components on the underlying distributed
platform comprising robots, actuators, sensors and the cloud.
Moreover, our middleware provides specific support to develop
components based on artificial neural networks, a technique that
recently became very popular for sensor data analytics and robot
actuation. We demonstrate a system where a robot takes actions
based on the input from sensors in its vicinity.

I. INTRODUCTION

The term Industry 4.0 refers to a vision on future manufac-
turing environments with smart systems and production facil-
ities autonomously exchanging information, triggering actions
and controlling each other independently [1]. The integration
of the Internet-of-Things (IoT) in the manufacturing process
is a key enabler, as it delivers the necessary information for
context-aware assistance of people, machines and robots active
on the production floor in the execution of their tasks.

With manufacturing moving to high-mix, low-volume pro-
duction with high cycle rates, factory cyber-physical systems
(CPS) must be able to flexibly accommodate changing produc-
tion floor configurations. Agile manufacturing thus requires a
CPS software design that adheres to the principles of mod-
ularity, service orientation and decentralization [2]. Sensors,
actuators, factory robots as well as cloud-hosted components
should be dynamically discoverable as services that can be
combined to realize distributed CPS applications.

In this paper, we present the design and implementation
of a middleware solution allowing developers to build CPSs
comprised of services communicating through well defined
service interfaces. While the component-based approach is
applicable to many CPSs, we primarily target scenarios in
which the information of sensor networks is used to control
factory robots. We deploy an optimized component runtime on
sensor gateways, robots and the (edge) cloud that abstracts the
deployment of and communication between these distributed

components. The middleware dynamically discovers attached
robots and sensors and exposes these as a service.

One key feature of our middleware is the advanced support
for components that make use of Artificial Neural Networks
(ANN). ANNs are a family of computational models, loosely
inspired by the human brain, that are used to accurately clas-
sify and recognize patterns from large amounts of unstructured
data [3]. ANNs are able to generalize sytem input, and are very
well suited to discover patterns and take similar decisions in
similar conditions. This is important in realistic environments,
where various factors may impact the fidelity of sensor data,
for example, light conditions, noise based on time of the
day, etc. Although the technique is known for a few decades,
only very recently important breakthroughs were achieved by
significantly increasing the number of computational elements
(neurons) in the ANN. These deep neural networks are very
useful at both sensing and actuation endpoints of CPSs, e.g. for
image classification [4], speech recognition [5] and visuomotor
robotic control [6].

The remainder of this paper is structured as follows. Sec-
tion II summarizes the related work done in intelligence
for factory robotics and robotics in an IoT environment.
Section III presents the overall architecture of our middleware
solution. In Section IV, AIOLOS is introduced which enables
applications to be deployed and distributed on a wide variety
of devices. Section V describes the Thing Abstraction Layer
(TAL) responsible for providing abstraction interfaces for
dynamically discovered sensors and actuators. In Section VI,
we introduce the DIANNE framework to manage, build, train
and deploy neural networks on compute devices. Section VII
showcases the preliminary results and Section VIII concludes
this paper.

II. RELATED WORK

Robots, sensors/actuators and server (cloud) systems are the
three pillars of any CPS. Most related work has focused on
the integration of two of these three pillars.

In [7], the authors propose an IoT architecture for ‘things’
from industrial environments. The proposed architecture is
based on the OPC.NET specification and is built around two
components: the data server and the client application. The
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Fig. 1. Architectural layers of our middleware platform. AIOLOS abstracts the distributed deployment of components across nodes with varying hardware
architectures and processing power. The Thing Abstraction Layer provides the necessary interfaces for low data rate sensors, robots and high data sensor such
as cameras. DIANNE provides additional support for components based on artificial neural networks.

data server collects sensor information and sends commands
to actuators while the client application is the front-end appli-
cation of this data server. The data server can acquire sensor
data from fieldbuses (BACnet, LonWork, CANopen, Modbus,
EtherCAT), used in smart homes and industrial environments.

The support of the cloud brings various benefits for robots.
Riazuelo et al. [8], [9] illustrated the benefit of offloading Si-
multaneous Localization And Mapping (SLAM) from a mobile
robot to the cloud. By allocating the computationally expensive
tasks to the cloud they can decrease the costs and power of the
robot computer by limiting the on-board processing to simple
camera tracking. Bekris et al. [10] propose an architecture
to take advantage of splitting computation between the cloud
and the robot for motion planning and manipulation, with
the additional benefit of environment knowledge sharing. The
“Lighting” framework [11] uses the cloud for collective robot
learning by distributing planning and trajectory adjustments
from the indexed trajectories from many robots. A more
detailed survey on cloud robotics and automation can be found
in [12].

Chibani et al. [13] discuss the challenges and trends of
ubiquitous robots and categorize these into three major topics:
1) Making robots more autonomic; 2) Social awareness and
affective interaction; 3) Engineering of ubiquitous robotic
platforms. Concerning the last item, the authors point out that
an ubiquitous robotic platform should address the issue of
connecting robots with smart devices, provide a middleware
layer to create plug and play applications and add the ability
of providing intelligence to these robots.

The middleware discussed in this paper provides a com-
bined solution of the previous mentioned work, enhancing
the developers’ options and giving them the power to extend
the middleware. Our proposal focuses on the abstraction of
things by making available high level control of devices into
a middleware.

III. DESIGN OVERVIEW

The approach discussed here provides a unifying develop-
ment platform to connect sensors to robots. Developers can
create their application as a set of loosely coupled components.

The middleware abstracts the deployment on the underlying
set of nodes comprising sensor gateways, robots and cloud
infrastructure. Figure 1 shows the different architectural layers
of the system.

The previously developed OSGi-based AIOLOS ap-
proach [14] forms the foundation of our system, enabling to
deploy components of one application over distributed nodes
in a way that is transparent to the application developer.
The OSGi [15] runtime is supported on various types of
hardware architectures. Developers create components either
immediately on AIOLOS, or by leveraging on additional func-
tionality provided by the DIANNE layer. DIANNE provides
supporting services and abstractions to develop components
using artificial neural networks, and is further discussed in
section VI. AIOLOS-compatible service interfaces for input
and output devices are provided by the Thing Abstraction
Layer (TAL), which is responsible for all communication
between application components and sensors and robots. We
have implemented TAL wrappers for ROS and DYAMAND,
which are platforms for controlling robots and sensors respec-
tively. They are further discussed in section V.

The created components are distributed in the form of
bundle packages (jar files) that can be started on any device
hosting an AIOLOS runtime. Additional bundles can be started
or components can be migrated between runtimes to rebalance
the computational workload. This creates a very dynamic
environment where sensors and actuators can go on- or off-
line at any moment. When connection is lost to a remote
runtime, the middleware can launch a local version of the
remote service.

IV. DISTRIBUTED SOFTWARE

AIOLOS [14] is our open-source framework that enables
component-based application models to be deployed on multi-
ple devices without the developer having to manage the inter-
component communication1. The framework is based on an
OSGi runtime, compatible with a multitude of heterogeneous
devices, ranging from constraitned devices such as Raspberry
Pi and Intel Edison up to high-end containers or virtual

1Source and documentation available at http://aiolos.intec.ugent.be
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Fig. 2. AIOLOS framework is able to run on client devices (with support for Java vm) and in the (edge) cloud. Every service interface is proxied by AIOLOS,
allowing to transparently distribute software components, switch between remote and local execution, or scale out to remote infrastructures.

machines in the cloud. Recent work by other authors indicated
that the performance overhead of OSGi on embedded devices,
such as sensor gateways, is negligible [16].

The underlying principles of AIOLOS are demonstrated in
Figure 2. The AIOLOS runtime instances deployed on various
devices in the same IP subnet are able to discover each other
automatically. AIOLOS creates proxies for every component
service interface running on the same node, as well as for
the interfaces imported from services running on other nodes.
Method calls are forwarded by the proxy to a component
instance implementing the service interface. This component
instance can run on the same node (continuous line on the
figure) or on a remote node (dashed line).

Proxy policies are used when multiple implementations of
the same service interface are available, as these are hidden
behind the same proxy. Because each service call is intercepted
by the AIOLOS proxies we can gather monitoring information
such as link delay, execution time, return value and argument
size. Based on this monitoring information a runtime model
can be created to help the proxy policies take decisions which
implementation candidate to pick. One example scenario is
cloud offloading of computationally intensive components.
AIOLOS proxy policies support dynamic trade-offs between
parameters such as on-board processing and network com-
munication, as for example presented in [17], where the
authors compare various robot-cloud configurations for the
components involved in robot navigation. Another scenario
is a big/little artificial neural network deployment [18], [19],
where the big neural network on the cloud is only executed if
the confidence of the small neural network is considered too
low.

V. THING ABSTRACTION LAYER

The Thing Abstraction Layer (TAL) provides a ‘Thing’
interface that exposes physical devices as an OSGi service.
There are two types of ‘things’: sensors and actors, and
consequently we have created implementations of sensors and
robotic actors.

A. General Sensors and Actors

TAL has an abstraction for a wide range of things with
sensing and actuation functionality. Things are exposed as
services of a given type. Sensing types include temperature,
light, contact, camera, and actuator types are e.g. lamp, lock,
etc. Each type interface specifies appropriate getters and
setters for the properties of that device type. This abstraction
enables developers to create their own devices or wrap existing
frameworks for ease of development.

To discover sensors and actors with proprietary commu-
nication interfaces and command syntax, such as EnOcean,
ZigBee, Philips Hue, common USB devices, etc. we use the
DYAMAND [20] framework. DYAMAND is an extendable
interoperability framework for service discovery and device
access protocols. A custom plugin wraps DYAMAND as a
TAL provider and exports all discovered devices as TAL
services.

Video4Linux 2 (V4L2) is an other standard we included in
TAL to support realtime video capture on Linux systems. By
implementing a V4L2 TAL provider multimedia sensors, such
as webcams, TV tuners, etc., are exposed as OSGi services
and discoverable as ‘things’.

B. Robotic Actors

The Robot Operating System (ROS) [21] is a set of software
libraries, tools and conventions designed to facilitate the
creation of complex behaviours for robotic platforms. ROS
is designed to be modular so users can pick and choose the
combination of modules that works for them and do not waste
robot resources. ROS provides a service-based API to control
robotics from within an application.

At the basic level the ROS middleware offers a message
passing interface that provides inter-process communication
for robotics applications. Further, ROS provides a number of
core features we use in our system:

1) A message passing system with a clear interface using
the anonymous publish/subscribe mechanism defined in
the message Interface Description Language (IDL).



2) Recording and playback of publish/subscribe messages.
3) Remote method calls to allow for synchronous request/re-

sponse interaction between processes.
4) A robot description language to describe and model

robots in the Unified Robot Description Format (URDF),
which consists of XML document with the physical
properties of the robot.

We opted for ROS because it has bindings for C, C++,
Python and Java. Next to that it is supported by many robots
and sensors, and interfaces with many robot simulators. To
integrate ROS with our architecture we needed to create an
OSGi service which is discoverable by our Thing Abstraction
Layer.

One challenge to integrate robot control through ROS is
the inherently asynchronous behavior of the publish/subscribe
messaging mechanism. When a message is published the robot
itself undertakes this action and updates the required topics.
This means that the publisher needs to listen for the topic
updates from the robot if the publisher wants to react upon
it. OSGi services on the other hand are either blocking or
“fire-and-forget”. Hence, we needed a mechanism to insert a
callback interface when the state of a specified topic changes.

Our solution is the ROS OSGi wrapper with support for
asynchronous programming by using the OSGi’s Promise
API. A Promise is a holder for asynchronous calculations or
computations which allows the user to register callbacks to
notify the user when it is finished or has failed. Although
these Promise objects are lambda friendly, this API itself has
no hard dependencies on Java 8.

Listing 1. ROS OSGi service API.
p u b l i c i n t e r f a c e Robot {

Promise<? ex tends Robot> w a i t F o r ( long t ime ) ;
Promise<? ex tends Robot> w a i t F o r ( Promise<?>

c o n d i t i o n ) ;
}
p u b l i c i n t e r f a c e Arm ex tends Robot {

Promise<Arm> s e t P o s i t i o n ( i n t j o i n t , f l o a t p o s i t i o n
) ;

Promise<Arm> s e t P o s i t i o n s ( f l o a t . . . p o s i t i o n ) ;
}
p u b l i c i n t e r f a c e O m n i D i r e c t i o n a l ex tends Robot {

Promise<O m n i D i r e c t i o n a l> move ( f l o a t vx , f l o a t vy ,
f l o a t va ) ;

}

Listing 1 shows a (part of the) interface towards a ROS-
enabled robot. Developers can chain each action of the robot
on a previous action or on a certain event. The Java Future
class has similar behavior except that no callbacks can be
registered and in the end a synchronous get() method needs
to be called, which does not allow for chaining.

Listing 2. ROS component usage.
Arm arm = . . . ; O m n i D i r e c t i o n a l base = . . . ;
arm . s e t P o s i t i o n s (4 f , 2 . 2 f , −1.4 f , 2 . 6 f , 1 . 2 5 f )

. t h e n ( p −> arm . s e t P o s i t i o n ( 0 , 2 f ) )

. t h e n ( p −> base . move ( 0 . 5 f , 0 f , 0 f ) )

. t h e n ( p −> base . w a i t F o r ( n e u r a l N e t . d e t e c t O b j e c t ( ) ) )

. t h e n ( p −> base . s t o p ( ) ) ;

Fig. 3. A feed-forward fully connected Artificial Neural Network split up
into a chain of DIANNE modules.

Looking at Listing 2 we can see the benefit of chaining
actions and conditions. In this example we move a robot arm
to a specific location taking into account the environment
of our robot by moving around an object. Later when the
arm is in position we instruct the base to drive forward. The
base’s ‘move’ method returns immediately because it is given
a direction and speed. This mechanism enables us to wait until
a predefined condition is achieved such as detecting an object
with a neural network using the inputs of the environment.

VI. DISTRIBUTED INTELLIGENCE

As motivated in section I, Artificial Neural Networks (ANN)
are a key technique used in many relevant scenarios: pattern
recognition of sensor data, robot control, etc. Our DIANNE2

framework provides support to integrate ANNs in service-
ased applications. We refer the reader to [22] for an in-depth
discussion of DIANNE and limit the discussion below to the
aspects relevant with respect to the scope of this paper.

In DIANNE, neural networks are constructed by defining
Modules and their interconnections. We implemented a wide
range of modules used as building blocks in state-of-the-
art deep neural networks, such as Convolution, MaxPooling,
Softmax and Rectified Linear Units modules [23]. The modules
have two information flows: a forward pass, used during
evaluation, and a backward pass, used during training to
propagate the errors of the outputs. An Input Module forwards
input data, e.g. from a sensor, to various processing modules.
Output is collected by an Output Module. Figure 3 shows
an example chain of modules for a fully connected neural
network.

DIANNE modules are implemented as OSGi services. To
account for device heterogeneity, different module implemen-
tations are available, including a pure Java based application
as well as a CUDA-based implementation for GPU-enabled
hosts.

2Source and documentation available at http://dianne.intec.ugent.be



Fig. 4. Demo setup of a KuKa Youbot with integrated compute node and a
Jetson TK1 as a GPU enabled edge device.

VII. USE CASES

To illustrate the features of this system, we use a neural
network trained for object recognition to decide what a factory
robot should do, e.g. pick and place objects, sorting screws in
bins, or even harder tasks such as mounting a side-panel to
a car. We created a proof-of-concept (see Figure 4) to sort
objects on a conveyor belt. A KuKa Youbot is used as the
factory robot in the environment and a camera is installed
to monitor the area of the conveyor belt. To demonstrate the
benefits of offloading DIANNE modules we used a Jetson TK1
as the GPU enabled edge cloud and the KuKa embedded PC
equipped with an Intel Atom D510 as the internal compute
device of the factory robot.

DIANNE is deployed with the OverFeat [24] neural network
model, which has two pre-trained parameter sets available,
accurate and fast. In this test we aim to proof the offloading
benefits of our framework so we opted for the accurate model
on the edge, which requires more computation, and the fast
model locally on the robot. OverFeat is an image classifier
built around a convolutional network that is trained on the
ImageNet 1K dataset. This dataset has 1000 different classes
of which we choose the objects to sort. The camera feed
is streamed to the first layer of the neural network which
forwards the outputs to the next layers until the output layer
is reached. The output classifies the camera feed, emitting a
1000-component vector. Each component indicates the prob-
ability that the object belongs to one of the 1000 predefined
classes. Based on the object with the highest probability and a
minimum threshold, a decision is made to steer the robot with
the correct action or do nothing when no object is detected.

Figure 5 shows the achieved frame rate when using Over-
Feat fast on the embedded pc compared to the frame rate
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Fig. 5. Frame rate during object classification using OverFeat accurate on
Jetson TK1 and OverFeat fast on KuKa embedded PC (Intel Atom CPU D510
4x@1.66Ghz).

while forwarding frames to the edge cloud with a GPU enabled
device. We decreased the bandwidth to the edge cloud, which
is an acceptable use case for wireless mobile robots, until the
link was disconnected. The results show that offloading the
neural network to GPU enabled devices is always better than
using embedded CPU compute power. The only reason the
neural network should be deployed locally is as a back-up case.
Keep in mind that during this experiment only the bandwidth
was altered while the latency was kept the same. A policy can
be created to switch between local and remote neural networks
based on given criteria such as latency, bandwidth, required
accuracy, etc. If the robot looses connection to the access point
it switches the camera feed to the locally deployed neural
network so the robot can still operate but with a slower frame
rate.

A other possible use case is to share a deployed neural
network between multiple robots. Each mobile robot has
DIANNE with OverFeat fast deployed locally and when it
connects to a wireless network the robot discovers all other
DIANNE runtimes in the environment. This enables each robot
to pick the best DIANNE runtime in the same subnet, based on
a policy, and forward the camera feed to this runtime. Adding
a powerful GPU device with a DIANNE runtime in such an
environment would benefit all mobile robots.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes a modular middleware platform fa-
cilitating the development of applications with components
distributed over robots, cloud and sensor systems. The ‘Things
Abstraction Layer’ (TAL) creates an abstraction for common
devices, sensors and robots. A ROS OSGi interface was
introduced to cope with the asynchronous behavior of ROS’s
publish/subscribe mechanism. We introduced DIANNE which
is able to build, train, evaluate and deploy Artificial Neural
Networks (ANN) utilizing specialized hardware if available.
Using AIOLOS as the foundation of this middleware we are
able to transparently distribute the intelligence between sensors
and actuators. This enables us to offload resource intensive
parts of ANNs to the cloud or powerful edge devices.

Currently the output of the ANNs control the robots through
preprogrammed actions. In the future we will train ANNs
with the inputs of the environment to directly control the
factory robots with the output of these trained networks. A



ROS simulator can be used to pre-train and evaluate the
outputs of ANNs while the actual deployment to a factory
robot can be enhanced by on-line training. By adding end-to-
end reinforcement learning to DIANNE we can enhance the
efficiency or accuracy of the robots while they are deployed
into an IoT environment.
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