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Abstract—Heterogeneous cloud computing servers provide ac-
cess to different types of hardware accelerators in order to
satisfy the computational demands that standalone general-
purpose multi-processors can not deliver. The combination of
different technologies provides more opportunities to accelerate
the most compute-intensive applications by exploiting the key
features of each type of hardware accelerator. Unfortunately,
the design effort drastically increases when considering complex
applications. We propose a methodology which provides an
early speedup prediction when combining hardware accelerators
and insights about potential performance leaks. In addition, we
consider a couple of metrics to analize the computational use of
the accelerators and the exploitation of the heterogeneous system.
Our methodology is applied to a real-time surveillance system,
which is composed of Field-Programmable Gate Arrays (FPGA)
and Graphic-Processing Units (GPU). The methodology is used
to provide an early speedup prediction, which is used to guide
the combination of both accelerators. The achieved acceleration
is only a 3.5% lower than estimated by our methodology.

Index Terms—Heterogeneous Cloud Computing, High-
Performance Computing, Hardware Accelerators, GPU, FPGA,
Speedup

I. INTRODUCTION

Heterogeneous cloud computing has evolved rapidly in the
recent past, mostly due to applications in the fields of Big
Data Analytics (BDA) or Artificial Intelligence (AI), which
demand more computational power than multi-processors can
deliver. Field-Programmable Gate Arrays (FPGAs), Graphic-
Processing Units (GPUs), and even Application-Specific Inte-
grated Circuits (ASICs), are different types of hardware accel-
erators currently available in cloud computing servers. GPUs
have become successful thanks to their massive parallelism,
unified design and programming model. These accelerators
are most appropriate for vector calculations in general, but
are less suited for irregular calculations. FPGAs are a different
kind of hardware accelerators that provide a programmable and
massively parallel architecture. They have an open architecture
that is modelled by the control path and data path of the
algorithm. The scope of applications that can be accelerated
is enlarged when combining the power of GPUs with the
flexibility of FPGAs. Heterogeneous clusters are presented in
[1], [2] while the authors of [3] and [4] propose a hybrid
desktop. These hardware accelerators have been recently in-
cluded in the catalog of the major cloud services providers.
For instance, Microsoft Azure offers FPGAs-in-the-cloud [8],

which communicate to their hosts through dedicated Peripheral
Component Interconnect Express (PCIe) interface. Google
Cloud [5] offers Tensor Processing Unit (TPU), an ASIC
designed from the ground up for machine learning, to accel-
erate deep learning models on their cloud computing services.
Similarly, cloud services provided by Alibaba or Amazon,
which originally only offered GPUs for their heterogeneous
cloud computing services, have been recently extended to
include FPGAs in their catalogs. Thus, Amazon [6], [7],
Microsoft [8] or Alibaba [9] provide heterogeneous cloud
computing servers, composed of different types of accelera-
tors, to execute the most compute-intensive applications. The
introduction of OpenCL as a common programming language
for heterogeneous computing servers composed of FPGA and
GPU accelerators, has increased the portability of the code
between hardware accelerators. The performance degradation
is, however, not negligible, demanding a design exploration
before combining accelerators [10]. Thus, the selection of the
most suitable technology to accelerate a particular application
is left to the end-user. The designer must know the compu-
tational power of the accelerator, its key features, what type
of I/O is used as interface and its available BW to make the
best selection. This design effort drastically increases when
searching for the most performance-efficient combination of
different hardware accelerators. The achieved acceleration,
when compared to general-purpose processors, might not be
obtained due to a different accelerator or achieved as a result
of the proper task scheduling between accelerators.

In this paper, we propose a design methodology to properly
exploit the combination of different types of hardware accel-
erators. The use of different hardware accelerators demands
insight knowledge about the key features, guiding the selection
of the appropriated accelerator for the task’s characteristics
and demands. For instance, FPGAs are more suitable for low-
latency demanding applications, while applications allowing
data-independent parallel execution would benefit from GPUs’
characteristics. Authors in [11] propose the use of idioms,
which a re patterns of computation and memory access, to
identify the most suitable hardware accelerator where to com-
pute a certain algorithm. Our approach considers combination
of hardware accelerators and bases the performance expec-
tations on application’s profiles in order to provide realistic
estimations. Moreover, the proper task scheduling is critical



due to the communication overhead as a result of the combi-
nation of hardware accelerators. This overhead might strongly
decrease the speedup, becoming the main cause of perfor-
mance degradation when scaling the tasks’ execution. Some
authors, like in [12] or in [13], have proposed extensions of
the Amdahls Law for heterogeneous computing. Despite this
simple analytical model provides insights about the achievable
speedup when parallelizing the execution of an algorithm, it
must be adapted to heterogeneous computing by considering
the achievable acceleration of each different technology and
the impact of the tasks scheduling. Our methodology does
not only consider the impact of the additional communication
when combining accelerators, but also provides insight into
how efficiently are the accelerators used.

The main contributions of this work can be summarized as
follows:

• A methodology to identify achievable performance when
combining accelerators.

• The identification of performance boundaries.
• Metrics to evaluate the occupancy level of the accelerators

and the efficiency of the system.
The paper is organized as follows. Different heterogeneous

cloud computing solutions have been proposed combining
different hardware accelerators. In Section II the proposed
methodology is introduced. The metrics used to determine
parameters like the accelerator’s occupancy or the overall
efficiency of the systems are explained. The performance
bounds and the factors related to performance degradation are
also identified. An explanation about how the methodology can
be applied to a heterogeneous platform is given in Section III.
A surveillance system is used as case study to demonstrate
how our methodology can be applied. Finally, conclusions are
drawn in Section IV.

II. METHODOLOGY

Combining different hardware accelerators on a heteroge-
neous platform is challenging. The performance benefits of
this combination must go beyond exploiting the key features
of each standalone accelerator. On the one hand, a speedup is
expected when running a compute-intensive task on a different
type of hardware accelerator. The use of different hardware
accelerators provides more opportunities for acceleration by
exploiting the accelerators based on their characteristics. On
the other hand, the performance increases due to the use
of an additional accelerator. Nonetheless, this acceleration is
strongly linked to an adequate scheduling and balance of the
tasks executed on each accelerator. The overall performance
results from both speedups. Although the presented method-
ology can be generalized for n accelerators, from here on we
only refer to two types of hardware accelerators for the sake
of simplicity.

A. Finding a candidate

The combination of several types of hardware accelerators
means that at least one task is executed on each accelerator.

However, this combination demands a significant effort real-
locating the computational tasks. A first step is a profiling of
the application to identify the most compute intensive tasks,
which are usually the best candidates to be accelerated. The
second step is an evaluation of the level of concurrency of the
tasks since a certain speedup can be obtained if the application
allows concurrent execution of the tasks. Once the compute
intensive candidates are identified, a preliminary performance
estimation must be done in order to avoid unexpected degra-
dation.

An overlap speedup (Soverlap) is the acceleration resulting
from concurrency when the execution of the tasks are com-
pletely overlapped on the accelerators. It demands a perfect
balance on the scheduling of the tasks between accelerators
exists, beyond the achieved speedup of the candidate task on
the accelerator. Eq. 1 defines the achieved acceleration due
to executing a candidate task of the application in another
accelerator.

Soverlap(task) =
tacc1
exec

max(tacc1
exec − tacc1(task), tacc1(task))

(1)

where tacc1exec is the execution time of the application and
tacc1(task) is the time demanded by the candidate task.

The information obtained by profiling provides an idea
about the complexity of the application and insights about
achievable acceleration. For instance, let’s consider an appli-
cation composed of 2 main tasks (A and B). If we consider the
tasks A and B as the loop-body of a loop, with independent
iterations and without data dependencies within an iteration,
both tasks can be executed concurrently. We can distinguish
two potential accelerations:

• If tacc1(A) >= tacc1(B), any acceleration of task B
would have no significant impact. The unique accelera-
tion results from the overlap speedup of both accelerators.
Benefit is due to concurrency.

• If tacc1(A) < tacc1(B), task B is an interesting candi-
date since its acceleration will report benefits together
with the overlap speedup of both accelerators, thanks to
concurrency and to the speedup running on the second
accelerator.

Considering the case where task B is the most intensive one,
and therefore the candidate to be accelerated, Eq. 1 results:

Soverlap(B) =
tacc1(A) + tacc1(B)

tacc1(B)
(2)

B. Accelerating the candidate

Heterogeneous computing provides more opportunities to
accelerate the execution of our candidate. The attainable
speedup of a task depends directly on the hardware features
and the adequacy of the algorithm to the architecture. The
selection of the most appropriate type of tasks for a given
hardware accelerator is not a trivial task. Several authors
have proposed algorithm classifications, based on patterns of
computations and memory access [14], [15], which facilitate
the identification of the most suitable hardware accelerator. Al-
ternatively, existing performance models, such as the roofline
model [16], can be used to predict the peak performance for



different technologies. For the particular case of the FPGAs, a
new class of programming tool called High-Level Synthesis
(HLS) tools can help to estimate performance [17]. Most
of the HLS tools provide reports with estimations of the
FPGA resource utilization, latency, and throughput of the
resulting RTL module. This information allows a fast design
space exploration and an early performance estimation or even
performance prediction [18]. Both features drastically reduce
the migration effort as will be seen in our case study.

Independently of the selection method, the overall impact
of accelerating a task is limited. For instance, when the
execution time of the task on the accelerator is lower than
the remaining computations on the original accelerator, the
last one dominates the total execution time.

Sth(task) =
tacc1
exec

tacc1
exec − tacc1(task)

(3)

For our previous example, this will occur when tacc1(A) >
tacc2(B), where tacc2(B) is the execution time of task B on
a second accelerator. This is the basis of Amdahl’s law [12],
the sequential part dominates the overall time execution and
the achievable speedup. For the previous case, the speedup of
the application is given by:

Sth(B) =
tacc1(A) + tacc1(B)

tacc1(A)
(4)

This theoretical speedup is only reached when the execution
part that has not been accelerated dominates the overall
execution time. Notice that any further acceleration of task
B will have no impact when tacc1(A) > tacc2(B). Therefore,
a maximum speedup of task B exists above which any further
acceleration has no impact. This limit can be obtained applying
Eq. 5:

S
task
ideal =

tacc1(task)

tacc1
exec − tacc1(task)

(5)

when assuming independent tasks. Considering the previous
example, the timing of task B running on the second accel-
erator (tacc2(B)) must equal tacc1(A). In such a case, the
achievable speedup by accelerating task B becomes:

S
B
ideal =

tacc1(B)

tacc1(A)
=

tacc1(B)

tacc2(B)
(6)

Any further acceleration of task B will be hidden by the
execution of task A, which becomes the dominated one. The
contribution of the task’s acceleration and the concurrency
speedup is given by:

Scombined(task) =
tacc1
exec

max(tacc1
exec − tacc1(task), tacc2(task))

(7)

where Scombined(task) is the overall acceleration due to con-
currency and the task’s acceleration. For the previous example,
it becomes:

Scombined(B) =
tacc1(A) + tacc1(B)

max(tacc1(A), tacc2(B))
(8)

C. Communication

Despite the performance increases due to the additional
hardware accelerator, communication is a critical factor. When
splitting an application, all the function context must be
transferred in runtime, and probably adapted at design time,

for another architecture. Parameters like the amount of data
to be transferred and available BW of the I/O interface
must be taken in consideration. The communication overhead
(Coverhead) might be so high that it reduces any potential
speedup. The total time exclusively dedicated to communicate
decreases the final performance and must be subtracted from
the achievable speedup.

Coverhead =
tcomm

tacc1
exec

(9)

where tcomm is the additional time exclusively dedicated to
communicate with the new accelerator. During tcomm there is
no overlap with any computation.

The performance degradation due to communication im-
pacts on Soverlap(task) and Scombined(task), and can be
defined as:

Doverlap(task) =
max(tacc1

exec − tacc1(task), tacc1(task))

max(tacc1
exec − tacc1(task), tacc1(task)) + tcomm

(10)

Dcombined(task) =
max(tacc1

exec − tacc1(task), tacc2(task))

max(tacc1
exec − tacc1(task), tacc2(task)) + tcomm

(11)

where Doverlap(task) and Dcombined(task) corresponds to
Soverlap(task) and Scombined(task) respectively.

D. Schedule

The communication has a direct dependency with the
schedule of the tasks on the accelerators. If both accelerators
are well-balanced it is possible to hide the communication
between accelerators. In order to measure how efficiently the
heterogeneous platform is used, we introduce the concepts
of occupancy and efficiency. The total occupancy of the
accelerators, together with the transfer time, provide useful
information about the level of the balancing of the tasks. The
occupancy of the accelerator reflects what percentage of the
runtime the accelerator is computing:

Occupancyi =
tacci
comp

texec
× 100 (12)

The occupancy of the accelerators together with the commu-
nication time provide an idea about the level of parallelization.

• If the sum of the occupancy of all accelerators and
the communication cost is 100%, there is no overlap.
Therefore, the effort should be dedicated to balance the
tasks.

• If the occupancy of one accelerator is significantly low,
and the data transfer is not high enough to justify it, that
could be a symptom that a semi-complete balance has
been achieved between accelerators. In such a case, the
candidate can be further accelerated.

• If the occupancy is high on both accelerators, the data
transfer would be hidden by the computations. This is
the goal of combining accelerators.

The efficiency of the system is defined in Eq. 13 as the product
of the occupancy of the accelerators. This parameter reflects
if the platform is completely exploited by the application due
to the occupancy and the data transfer relation.

Efficiency =

n∏
i=1

Occupancy(i) (13)



Parameter Equation

Soverlap(task)
tacc1
exec

max(tacc1
exec−tacc1(task),tacc1(task))

Sth(task)
tacc1
exec

tacc1
exec−tacc1(task)

Stask
ideal

tacc1(task)

tacc1
exec−tacc1(task)

Scombined(task)
tacc1
exec

max(tacc1
exec−tacc1(task),tacc2(task))

Coverhead
tcomm
tacc1
exec

Doverlap(task)
max(tacc1

exec−tacc1(task),tacc1(task))

max(tacc1
exec−tacc1(task),tacc1(task))+tcomm

Dcombined(task)
max(tacc1

exec−tacc1(task),tacc2(task))

max(tacc1
exec−tacc1(task),tacc2(task))+tcomm

Occupancyi
tacci
comp

texec
× 100

Efficiency
n∏

i=1
Occupancy(i)

Soverlapreal
(task) Soverlap(task) ·Doverlap(task)

Scombinedreal
(task) Scombined(task) ·Dcombined(task)

TABLE I
Relevant parameters involved on combining hardware accelerators.

The first three parameters are known a priori while the rest are
obtained a posteriori.

Similarly to communication, a certain performance degrada-
tion occurs when the computations of tasks on the accelerators
are not perfectly overlapped. Although scheduling strategies
can then be applied to improve the computations’ balance, they
are directly determined by the data dependencies between the
tasks.

E. Summary

In order to clarify our approach, we want to summarize the
most relevant points. Firstly, in order to find a good candidate
to be accelerated, the overlap speed up expressed by Eq. 1
provides an idea about the speedup obtained by combining
accelerators. The acceleration of a task does not need to be
extremely high. The maximal effective accelerator speedup
(Eq. 5) gives an idea about the effort required to achieve
the maximum overall speedup (Eq. 3). The communication
has a high cost, which cannot be omitted since it decreases
the overall speedup. Our definitions of occupancy (Eq. 12)
and efficiency (Eq. 13) help to identify where to focus in
order to achieve the highest acceleration. Nevertheless, the
communication and the non-overlapped execution of the tasks
introduce performance degradation. Table I summarizes the
parameters and their formulation.

III. CASE STUDY

Cloud video surveillance systems are used to record video,
detect events or for simple monitoring, all performed in
remote servers. This type of systems are used to preserve
video recording that can not be damaged or removed by
intruders. Recent smart systems also offer motion detection
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Fig. 1. The heterogeneous cloud server is composed of a multi-core
CPU, one GPU and 2 FPGAs.

and person detection [19], all performed in the cloud. This
type of application does not only demand a high BW but
also the execution of several compute-intensive tasks on the
remote server. The performance demands drastically increase
when considering real-time person detection using multiple
cameras. Our case study consists of the implementation of
an algorithm, called fastHOG [20], capable to perform real-
time person detection. This algorithm is implemented on a
heterogeneous system composed of two different hardware
accelerators. The proposed methodology is used to exploit the
combination of both accelerators to reduce the execution time
of the person detection algorithm.

A. Heterogeneous Cloud Server

Figure 1 details the heterogeneous system, which is com-
posed of an Nvidia TESLA 2050 GPU and two Xilinx Virtex-6
LX240 FPGAs. Both hardware accelerators share a PCIe in-
terface to provide high-BW communication. The data transfer
between both accelerators has to pass, however, through the
host memory.

OpenStack cloud computing can be used to support this
heterogeneous system, like proposed in [21], and in [22]. The
stack description to support this heterogeneous clod server
is out of the scope of this paper, therefore, we do not
provide further technical details about the virtualization of
this heterogeneous cloud server. The benefits of combining
accelerators are explained in the following section.

B. Person Detection: fastHOG

The fastHOG is an application to detect pedestrians orig-
inally proposed to be executed on a GPU [20]. It is based
on the Histogram Oriented Gradient (HOG) detector, which
is a sliding window algorithm, and on a pre-trained linear
Support Vector Machine (SVM) classifier, which is used to
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assign a matching score. Figure 2 shows the main stages.
The application starts with a downscaling and a gamma nor-
malization of the input image. Next, gradient orientation and
magnitude are determined for each pixel of the preprocessed
image. The resulting gradients are grouped in cells of 8x8
gradients. Furthermore, the cells are grouped in blocks of 2x2.
Each block corresponds to the position of a sliding window
and because the stride of this window is 8 gradients, each
cell pertains to 4 blocks. For each block four histograms of
gradient orientations are computed whereby each histogram
corresponds to a cell of the block. It should, however, be noted
that gradients of one cell may contribute to the histograms of
another cell also. The four histograms of a block are stored in a
2-dimensional matrix of histograms where the position of each
histogram corresponds to the position of the corresponding
cell, i.e. the histograms of the top cells are on the top row
and the ones of the bottom cells on the bottom row. The
result is normalized using the L2-normalization and used as
input for the pre-trained linear SVM classifier. Here after, the
input image is downscaled and the whole process is repeated.
The total computation of an image requires 31 iterations, each
processing a scaled version of the original image.

C. Profiling fastHOG

The first step implementing an algorithm on different
architectures is a runtime analysis. This profiling helps to
identify the most interesting candidate to be accelerated. The
runtime of fastHOG executed on the Nvidia TESLA 2050
GPU is breakdown in Table II. This timing analysis makes

Operation Execution time [ms] %
Downscale image 1.237 1.59

Compute Gradients 13.461 17.33
HOG 47.851 61.61

Normalization 5.506 7.09
SVM 9.615 12.38
Total 77.67 100

TABLE II
Detailed execution time of fastHOG on the Tesla C2050.
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Fig. 3. New dataflow of fastHOG combining GPU and FPGA
board. The communications between both hardware accelerators is
do through the PCIe ports and the host memory.

clear that HOG is the most intensive part, and therefore, the
best candidate to be accelerated. The fact of being the most
intensive component favours that even a minimal acceleration
has a measurable impact on the application. Moreover, the
HOG computation is a good candidate to be implemented on
an FPGA [23], where it can perform faster than other machine
learning approaches [24].

A deeper analysis of the fastHOG scheduling shows that the
L2-normalization is done over each individual block of 2x2
cells (or equivalently 16x16 gradients). However, the linear
SVM classifier requires several blocks to be computed since
its detection window has 64×128 pixels, equivalent to 7×15
blocks. The L2-normalization is a good breakpoint to reduce
the communication impact since it reduces the output data.
Therefore, the HOG computation and the L2-normalization
are the best candidates to be allocated on the FPGA. Figure 3
shows the new dataflow of fastHOG combining the GPU and
the FPGA boards, as well as their communication through
the host. Once HOG is loaded on the FPGA, the fastHOG
execution starts and ends on the GPU while the most intensive
part is executed on the FPGA. The communication must
always pass via the host memory.

Table III summarizes how the formulas introduced in Sec-
tion II are used. Firstly, the expected Soverlap(HOG,L2-Norm)
due to the FPGA can be obtained applying Eq. (1). Secondly,
the maximum speedup, which occurs when the execution of
HOG on the FPGA is lower than the execution time of the
HOG on the GPU, is obtained using Eq. (3). Notice that
while the Soverlap(HOG,L2-Norm) is achieved only thanks to use
an additional accelerator, the Sth(HOG,L2-Norm) is the upper
performance bound which assumes an additional speedup by
running HOG on the FPGA. Finally, the desirable acceleration
of HOG and L2-Normalization running on the FPGA is
defined in Eq. 5.

D. Accelerating HOG on the FPGA

Adapting the HOG computation to FPGA required to con-
sider some features of this technology. On FPGAs, float-
ing point (FP) operations have high resource and performance
costs. A comparison of the initial design is done using FP
and fixed point (FxP), giving a latency of 1.28 s and 0.48 s



Speedup Equation Value

Soverlap(HOG,L2-Norm)
tGPU (fastHOG)

tGPU (HOG,L2-Norm)
1.45

Sth(HOG,L2-Norm)
tGPU (fastHOG)

tGPU (fastHOG)−tGPU (HOG,L2-Norm)
3.198

SHOG,L2-Norm
ideal

tGPU (HOG,L2-Norm)

tGPU (fastHOG)−tGPU (HOG,L2-Norm)
2.194

TABLE III
Expected accelerations by considering HOG and the

L2-normalization as candidates.

respectively, almost three times as fast as the FP version. The
translation of the FP to FxP is the first adaptation of the
algorithm. In addition, the data bit-width adjustment of the
internal operations of the HOG algorithm not only reduces
the logic consumption but also increases performance. This is
a consequence of the latency reduction, since low bit-width
operations are faster, although less accurate.

Computing histograms in parallel usually results in memory
access conflicts that need to be managed. Our solution is
to split histogram memories in individual memory banks,
allowing simultaneous access. Once one block is computed,
the contents of those memories are added in parallel with the
computation of the next block. The use of HLS tools like
the Vivado HLS tool alleviates the design effort to accelerate
HOG. Moreover, it is not only possible to realize a faster
design exploration but also to obtain a valid solution by
operating in streaming mode and pipelining the operations.
The available set of directives for memory treatment and
supported I/O interfaces facilitates the memory partitioning.
Due to the operation in streaming, the histogram computation
starts as soon as the first data is available. The outputs of the
same block need to be normalized with the L2-normalization,
which is a low-latency operation to be executed in parallel with
the computation of the new block. Thus, the I/O data transfer
and the normalization are hidden by the HOG latency. The
final FPGA design demands around 47 ms to communicate to
the host and to compute HOG and L2-normalization, which is
over 27x faster than the initial adapted code for FPGAs. This
has been possible due to Vivado HLS directives and minor
adjustments on the sequential code. Finally, in order to exploit
the available resources on the FPGA, up to 16 HOG blocks
can be placed in parallel. Because each block processed during
the HOG computation is independent of each other, each HOG
component on the FPGA processes one block at the time.
Further details are available in [25]. The effort accelerating
the HOG computation can be summarized as follows:

• Migrate from FP to FxP in most HOG operations.
• Avoid memory conflicts by using internal memory.
• Pipeline the execution of the HOG computation and the

L2-normalization.
• Operate in streaming mode.
• Replicate the HOG cores as much as possible in order to

exploit the FPGA’s resources and the available I/O BW .

In spite of the modifications, the performance on the FPGA
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Fig. 4. Measured bidirectional bandwidth for each iteration using
the x16 PCIe between the GPU and the CPU. The decrement of the
achieved bandwidth is more critical between the GPU and the host
since the communication between the host and the FPGA is hidden
by the computation due to operating in pipeline.

is only slightly faster than on the GPU. There exist several
implementations of HOG on FPGAs that significantly offer
higher performance [24], but implementing them would de-
mand a complete redesign. Since our purpose is to present a
methodology and not to implement the fastest possible HOG
computation on the FPGA, we consider this implementation,
which has been achieved using Vivado HLS in a short time, as
good enough to help us on our purpose. Moreover, a second
FPGA is used in our analysis to further accelerate HOG.

E. Analysing the communication

Once the application has been profiled, the data transfer
must be analysed. This analysis identifies potential bottlenecks
due to the available BW of the communication interfaces on
the hybrid platform. The communications between stages of
the applications is done by transferring a certain amount of
data as a result of the finalization of the previous stage.

As mentioned above, the fastHOG application consists of a
number of iterations, each of which tries to detect a pattern
in a downscaled version of the input image. The number of
iterations depends on the size of the original input image; in
our case there are as many as 31 iterations. Because the input
image is downscaled for each iteration, the amount of data
transferred through the PCIe port decreases. This fact has an
additional negative impact on the available PCIe BW . As
explained in [26], the attainable BW decreases when smaller
amounts of data are transferred due to the PCIe overhead.
Figure 4 shows the measured BW between the GPU and
the host for the particular execution of fastHOG. Despite our
experimental measurements of ×16 PCIe BW rounds 5.5
GB/s, the small amount of data transmitted leads to a low BW
consumption for most of the iterations. This communication
cost must be considered as an overhead which reduces the
final speedup. As a result, the total additional time dedicated
to transfer data between the GPU and the CPU rounds to 18
ms, which represents a 14.68% of the total execution time
based on Eq. 9.
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Fig. 5. Different strategies to increase the final performance by reducing the Coverhead.

F. Scheduling of the accelerators

In the original implementation, the input image is first
transferred to the GPU where the gradients are computed. For
the first iteration 6.5 MB must be transferred from the GPU
to the host and from the host to the FPGA. There, the HOG
computation and the L-2 normalization are executed. Finally,
the results of the FPGA must be sent back via the host to the
GPU where the linear SVM is computed. The whole process
is repeated for each iteration processing downscaled versions
of the original image. Following this strategy, the speedup
obtained computing the HOG and the L2-normalization on
the FPGA is ×0.85 of the performance of the Tesla GPU
standalone version. The main performance decreases due to the
additional data transfers of data between the GPU and the host
over the PCIe bus. The performance becomes increasingly
worse for the smaller amounts of data transferred because of
the overhead involved with such a transfer:

• The first strategy, then, to achieve a higher BW is
to carry out all downscale and gradient computation
operations on the GPU together. Then, all 31 results
can be transferred to the host at once. The host can
store these results and send them one after the other to
the FPGA until all HOG computations are completed.
Finally, all results are sent to the GPU to complete all
SVM computations. The main benefit of this approach is
the higher PCIe BW that can be achieved for the data
communication between the GPU and the host.

• The second strategy is an improvement of the previous
because the amount of data transferred from the host to
the GPU is about 3 MB, consuming less than 5% of
the total execution time. Therefore, if the GPU and the
FPGA are computing in parallel, the total execution time
decreases even when the maximum PCIe BW is not
reached for the host to GPU data transfer.

• One of the most important details of the combination of
both accelerators is the way to communicate. There is no
direct communication between the GPU and the FPGA
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Fig. 6. The occupancy of the accelerators helps to identify the level
of task’s balancing between accelerators. While the percentages sum
100% there will not be overlap and the communication would have
a significant impact.

since all data is transferred through the Northbridge
and sent to the host memory. Besides this performance
bottleneck, due to the complexity of the application and
the use of two hardware accelerators, it is possible to
properly balance the tasks between the GPU and the
FPGA by using the host memory. The third strategy
increases the number of tasks executed on the GPU
while the FPGA is computing. The data transfers occur
while the HOG computation and the L2-normalization
are computed on the FPGA. Therefore, the FPGA is busy
most of the time while the GPU is generating all the data
that the FPGA is going to require for the next iterations.

Figure 5 details the schedule of the four strategies. For
every strategy, the occupancy of each accelerator is calculated.
Figure 6 shows the evolution while the strategies improve the
balance of the tasks between accelerators. On the first two
strategies, where there is no overlap between accelerators, the
percentages sum 100%. As soon as the tasks on the accelera-
tors start to be overlapped, the impact of the communication
is hidden and the occupancy increases on both accelerators.
In our case, as there is no real speedup on the HOG FPGA’s
implementation, the execution time on the FPGA dominates
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original GPU standalone version.

the execution of the application. Thus, it is not possible to
increase the occupancy on the GPU side further.

Finally, Figure 7 shows the evolution of the Scombinedreal

respect to the original fastHOG computed on the GPU stan-
dalone. Our third scheduling strategy attains a speedup of 1.39,
slightly below the expected Soverlap(HOG,L2-Norm) detailed
in Table III due to a residual 2.2% related to Coverhead.
The use of the second FPGA available on the described
platform enables further acceleration when distributing the
computation of of HOG and L2-Normalization between both
FPGAs. Notice that this additional accelerator only accelerates
the computation of of HOG and L2-Normalization, by almost
reaching SHOG,L2-Norm

ideal . Moreover, the use of an additional
FPGA does not increases Coverhead since the additional com-
munication is only related to the data transfer between the
GPU and the CPU.

G. Summary

Our methodology helped us to early predict the achievable
speedups and, through scheduling strategies, to achieve the
highest reachable performance. Although there is no real
acceleration executing the HOG and the L2-normalization on
the FPGA, the expected Soverlap is achievable by exploiting
the task’s balance between the GPU and the FPGA. Finally,
our scalable methodology shows how additional accelerators
can be used to obtain closer speedups to the ones predicted in
Table III.

IV. CONCLUSIONS

Heterogeneous cloud computing servers are able to satisfy
the most computationally demanding applications at the cost of
additional design effort to exploit the advantages of each type
of hardware accelerator. The proposed methodology enables
an early estimation of the achievable performance acceleration
due to combining hardware accelerators. The combination of
heterogeneous accelerators provides more opportunities to ac-
celerate compute-intensive tasks by exploiting the key features
of each technology. However, the impact of the communication
must be considered in order to avoid performance degradation.
Nevertheless, we believe that tasks with high data traffic
demands can better exploit the BW of PCIe more efficiently
than tasks with lower data demand. Our methodology shows

how an adequate rescheduling of the tasks executed on the
hardware accelerators significantly increases the performance
acceleration thanks to hiding the communication latency by
the accelerator’s computation.
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