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The explosive growth of modern web-scale applications has made cost-effectiveness a primary design goal for

their underlying databases. As a backbone of modern databases, LSM-tree based key–value stores (LSM store)

face limited storage options. They are either designed for local storage that is relatively small, expensive,

and fast or for cloud storage that offers larger capacities at reduced costs but slower. Designing an LSM

store by integrating local storage with cloud storage services is a promising way to balance the cost and

performance. However, such design faces challenges such as data reorganization, metadata overhead, and

reliability issues. In this article, we propose RocksMash, a fast and efficient LSM store that uses local storage

to store frequently accessed data and metadata while using cloud to hold the rest of the data to achieve

Extension of Conference Paper. An earlier version of this article was presented at 2021 IEEE International Conference

on Cluster Computing (CLUSTER), 7–10 September, 2021 [58]. In this article, we broaden the design to allow for faster

recovery. RocksMash proposes the extended WAL to trade faster recovery time for slightly more storage space. RocksMash

searches WAL files in reverse chronological order to reduce data to be processed, logically reducing the size of WAL files

to be processed, and thus improving scan efficiency. Evaluation results show that the proposed approach improves the

recovery performance by up to 10×.
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cost-effectiveness. To improve metadata space-efficiency and read performance, RocksMash uses an LSM-

aware persistent cache that stores metadata in a space-efficient way and stores popular data blocks by using

compaction-aware layouts. Moreover, RocksMash uses an extended write-ahead log for fast parallel data

recovery. We implemented RocksMash by embedding these designs into RocksDB. The evaluation results

show that RocksMash improves the performance by up to 1.7× compared to the state-of-the-art schemes

and delivers high reliability, cost-effectiveness, and fast recovery.

CCS Concepts: • Information systems → Cloud based storage; Hierarchical storage management;

Key-value stores; Storage recovery strategies;
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1 INTRODUCTION

Log-Structured Merge tree key–value stores (LSM stores), such as RocksDB [20], LevelDB [6],
BigTable [21], and Dynamo [29], are widely adopted in database storage systems serving many
modern applications, such as online retail, advertisements, online analytics, and instant messag-
ing [32, 36]. Log-Structured Merge tree (LSM-tree) is preferred because of its write efficiency
performance [21] as it does not perform in-place updates and buffers writes into memory. When
the memory is full, writes are flushed to disks and subsequently merged using sequential disk I/Os.
LSM-tree organizes data in levels and propagates new data from upper to bottom levels by internal
compaction operations. These compaction operations filter out stale data, reducing the data size,
and therefore, reducing the required storage space [31] and associated storage costs.

With the advent of cloud technology, cloud storage is increasingly popular for businesses look-
ing to improve efficiency, disaster recovery, and agility [25, 53]. While some organizations have
found that using local storage or a hybrid mix is a more effective solution. This is because local stor-
age provides faster data access performance than cloud, and a complete security-oriented control
over the data [51]. Therefore, more and more storage systems are deliberately designed to reap the
benefits of both local storage and cloud storage by integrating local storage resources with public
cloud storage services [61]. However, building a fast and efficient LSM store on a blend of local
storage and cloud storage is challenging.

First, due to the imbalance of performance and cost between local and cloud storage, splitting
LSM-tree between local and cloud storage to achieve a desirable performance and achieve cost-
effectiveness is challenging. Cloud storage provides more space and higher data reliability at lower
costs compared to local storage [1]. But we observed a considerable performance degradation,
when building an LSM store using cloud storage, compared to using local storage. Moreover, reads
are showing a severe (more than 98%) performance degradation than writes (about 40%) when
using cloud storage (detailed in Section 2.2).

The second challenge is to develop an efficient cache that compensates for memory’s limited
size to improve read performance. Mutant [61] and some others approaches [9, 11] try to cache
hot files on high performance storage to improve the read performance. They are, however, ineffi-
cient for both data and metadata. Their coarse granularity (typically several megabytes) is less
space efficient. Besides, they are unable to effectively distinguish compaction invalidated data
when managing data blocks. As a result, the cache hit ratio of these approaches is compromised,
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particularly when the working set data changes over time. Metadata, primarily index and filter,
are not preferentially cached in memory or the persistent cache [56], despite the fact that every
LSM read request will first visit them before sending an I/O for data blocks to storage. However,
caching all Sorted Strings Table (sstable) metadata in memory occupies a significant amount of
memory for large datasets [40]. Existing sstable metadata optimizations either focus on the index
[43, 48] or the filter [62]; they rarely improve both at the same time with a unified structure and
has non-zero false-positive rates for filtering, resulting in a suboptimal reduction of metadata size
and alleviation of the number of metadata I/Os.

Last, in this extension, we further consider service availability issues for LSM stores that are
hybrids of local and cloud storage, as data in local storage is not visible to remote nodes. So quickly
resuming accesses to local data becomes crucial. Existing approaches mirror all sstables and write-

ahead-logs (WALs) to the dedicated cloud storage by background copying [11, 46]. However,
frequently writing sstables to cloud storage will cause significant data traffic and incur fees [4].
Besides, naively extending WALs to cover local data will increase its size, thus replaying WALs is
essentially conducting the heavy upper level compactions [17], leading to suboptimal LSM store
failure recovery performance.

In this article, we address the above issues by presenting the design of RocksMash. Rocks-
Mash is designed to exploit both local and cloud storage to achieve high performance and cost-
effectiveness while maintaining fault-tolerance. RocksMash comprises a read-centric data layout,
an efficient LSM-aware persistent (LAP) cache, a space-efficient and fast sstable metadata Mash-
Meta, and a parallel recovery method.

First, the LSM tiering philosophy facilitates RocksMash to constructe the data layout center on
read performance. The sstables in the top-k levels are stored on local storage for fast access while
the rest are stored on cloud for low storage cost (detailed in Section 3.1). In this way, most of the
local storage space is spared for caching, improving its space efficiency for read performance.

Second, to speedup the reads to the data stored on the “remote” cloud storage, RocksMash pro-
poses LAP cache to efficiently use the spared local storage space as the high performance per-
sistent cache for hot data blocks and all sstable metadata. LAP cache reduces data block I/Os to
cloud and eliminates metadata accesses to cloud storage. Furthermore, RocksMash creates Mash-
Meta, which achieves zero false-positive filtering rates and significantly reduces the size of sstable
metadata by encapsulating indexing information in filters.

Third, in this extension, to ensure fault-tolerance and improve data recovery performance for
LSM stores that are hybrids of local and cloud storage, RocksMash extends the WAL with negilible
overhead and stores them on a dedicated, fast, and small cloud storage to expose local data to
remote nodes. During recovery, the proposed extended WAL eliminates time-consuming upper-
level compactions and significantly speeds up the construction of sstables, resulting in improved
recovery performance.

We make following contributions in this work.

● We make observations that guides the design of integrating cloud storage to LSM stores.
● We propose an LAP that improves the space efficiency and reduces accesses to cloud storage.
● We propose a space-efficient and high performance metadata structure MashMeta for ssta-

bles that significantly reduces the metadata space overhead and eliminates unnecessary I/O
requests.
● We propose a parallel failure recovery approach that ensures a quick resumption of services

remotely. To the best of our knowledge, the proposed parallel recovery in this extension is
the first work that remotely recovers LSM stores using loosely coupled data dependencies
among sstables.
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Fig. 1. The LSM store overview and recoverying with the WAL.

● We implemented RocksMash based on RocksDB and evaluated its performance by using an
instance’s physically-attached NVMe SSD as local storage and AWS Elastic Block Store

(EBS) gp2 as cloud storage. The evaluation results show that the performance of Rocks-
Mash outperforms the state-of-the-art scheme Mutant by up to 1.7×, and improves the re-
covery performance by up to 10×.

In the rest of this article, we first introduce LSM stores and our motivation in Section 2. We
present the design of RocksMash in Section 3. In Section 4, we present our experimental results.
Related work is presented in Section 5. Finally, we conclude this article in Section 6.

2 BACKGROUND AND MOTIVATION

2.1 Background

LSM store architecture. LSM stores persist data in the unit of an sstable and organize them in
a multilevel treelike structure as shown in Figure 1(a). The size quota of each level grows larger
from L0 (typically a few hundreds of megabytes) to Ln (up to terabytes).

Sstable. An sstable consists of data blocks that store user key–value pairs and metadata blocks
that mainly contain filter blocks and index blocks, as shown in Figure 1(a). All key–value pairs
among data blocks are sorted by keys, and a data block usually contains several key–value pairs.
So LSM stores use the starting key of each data block as the santry and put these keys and their
belonging block offsets in the sstable into index blocks. Binary search on santry keys in index
blocks can quickly locate a target key in a data block. To avoid unecessary accesses reading data
blocks, LSM stores add filter blocks that use bloom filters [18] to probe the existence of a key in
this sstable. A positive probe result indicates the target key is probably in this sstable, and a false
probe result ensures its non-existence and saves a read request to the data block.

Write. As shown in Figure 1(a), an LSM store first writes data to the WAL to ensure durability
of data during system failures. After that, the LSM store buffers the data in an in-memory data
structure that is typically a skip-list MemTable. When a MemTable is full, it is turned immutable
and later flushed to the disk as sstables, then placed at level L0.

Compaction. When the size of Li reaches its quota, a number of sstables at level Li are merge-
sorted with a list of overlapping sstables at Li+1 and stale key–value items are discarded, this is
called compaction. As a result, compaction operations ensure that there are no overlapping key-
ranges between sstables at level Li where i ≠ 0.
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Fig. 2. The cost and performance
of different storage services. The
SSD is the instance-attached SSD.
gp2 and st1 are AWS EBS that use
SSD and HDD, respectively.

Fig. 3. RocksDB performance on
the local SSD (instance attached)
or the cloud storage (EBS-gp2)
when memory is exhausted.

Fig. 4. The recovery time in-
creases when the WAL file cover-
ages change.

Read. When a read request is received, the MemTable and immutable MemTables will be first
checked. If the requested value can be found in either one of them, then the request will be served
from memory. Otherwise, sstables of all LSM levels are searched from top to bottom until the target
key is found.

To accelerate locating a key in the LSM-tree, the LSM store records the smallest and largest key
of each sstable in memory, to use as boundaries, to quickly narrow down the search to an sstable.
Before locating data blocks in the sstable, the sstable’s metadata blocks are first accessed. First,
filter blocks are used to probe whether a key is stored in the candidate sstable. Note that filter
blocks can cause false-positive errors. Upon receiving a positive probe result, index blocks will be
used to narrow down the search to a data block that may store this key. This is followed by an
in-block search that will return the target key and its value if found. A false-positive probe result
causes in-block search misses, and the LSM store continues to search the next level in LSM-tree
until all levels are searched. Frequently accessed metadata and data blocks are cached in the table

cache and block cache. So the LSM store first looks up the table and block cache for requested
metadata or data blocks and sending I/Os to storage when needed. Note that metadata blocks use
nontrivial amount of memory space [7].

Recovery with WAL: Upon each write request, the LSM store starts by recording it in the WAL
and then apply the change to the mutable MemTable as shown in Figure 1(a). Changes are simply
recorded in chronological order in the WAL to recover key–value pairs in memory. After flush-
ing immutable MemTables to L0 sstables, corresponding changes in the WAL could be safely re-
moved. Meanwhile, when inserting or deleting sstables, the LSM store logs these file changes to the
MANIFEST. As shown in Figure 1(a), the LSM store could be restored to the latest consistent state
after checking all sstables with the MANIFEST and restoring MemTable and immutable MemTa-
bles by replaying WAL records. Note that the size of file MANIFEST is small and usually in the
magnitude of kilobytes.

2.2 Motivating Observations

2.2.1 Imbalanced Cost and Performance between Local and Cloud Storage. Figure 2 shows an
example of the performance-cost trade-off for RocksDB built by using local storage (i.e., Amazon
EC2 instance store [3]) and cloud storage service (i.e., EBS-gp2 in Amazon [1]).

Local storage and cloud storage exhibit varying performance and costs. For example in
Figure 2, using cloud storage (EBS-gp2) can reduce around 80% of the cost compared to the
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Fig. 5. Strong common key prefixes for database applications.

local server-attached SSD. Beside, the cloud storage is billed in actual resource usages and provides
a smooth storage volume expansion. As a result, more and more users move their applications to
the cloud [8]. However, cloud storage has a lower throughput for both read and write requests. In
Figure 3, the read and write throughput of RocksDB that is built on local storage (300-GB SSD)
compared to RocksDB that is built on cloud storage (1-TB EBS-gp2) is 80× and 40% higher, respec-
tively. Hence, designing an LSM store that offers the benefit of both local and cloud storage is
non-trivial. An efficient LSM store that uses local and cloud storage shall prioritize improving the
read performance in designs.

2.2.2 Similar Prefixes among Keys. To reduce read I/Os to cloud storage, it is important to avoid
sstable metadata accesses to it. Reducing the metadata size is a necessary design direction as
the metadata occupies a non-trivial memory space [7]. We notice that, as shown in Figure 5(a),
strengthening the common prefix of keys is quite common when mapping SQL table data to key–
value stores in various databases [5, 12, 48]. Moreover, LSM store compaction operations consoli-
date the prefix similarity among keys in an sstable, so this makes keys in bottom level sstables tend
to share longer prefixes. In this case, indexing keys in an sstable is intrinsically indexing sorted
strings with high similarity.

Figure 5(b) shows the common prefix similarity of keys in different level sstables by the term
of slopes. We insert 100M random integers and calculate the slope of each sstable. Gentle slopes
indicate the longer common prefixes in an sstable and vise versa. In Figure 5(b), bottom levels show
flat slopes, which means keys are almost identical except for the last byte in bottom level sstables.
So we leverage this strong similarity of keys to reduce both the filter and index size of sstables.

2.2.3 Slow Recovery. Because the native WAL does not record all of the data in these levels,
sstables from L0 to Li stored in local storage will be lost if the instance fails using the basic re-
covery approach introduced in Section 2.1. Simply extending WAL to include data from L0 to Li

sstables is suboptimal for following two reasons. First, naively replaying each valid write request
in the WAL to reconstruct L0 to Li sstables will repeatedly write and read some key–value pairs
several times [47], which is in vain and time consuming. Besides, this replay will result in L0 to
L1 compactions, and key range overlaps among L0 sstables will prevent LSM stores from handling
them concurrently [17]. Once the size of WAL files are larger, the recovery process will be longer.
For example, extending the native WAL to cover L0 and L1 sstables increases recovery time by
more than 4×, as shown in Figure 4. Second, this basic recovery method cannot generate the ex-
actly same L0 to Li sstables as in the failure node. This is because recovery operations build sstables
based on empty L0 to Li , while those L0 to Li sstables on the failure instance are not.
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Fig. 6. RocksMash write and read operation dataflows. The local storage is partitioned into two areas, one
for L0 to Li sstables, and the other for LAP cache.

We notice that sstables are “written once” but “read many times,” implying that each sstable can
be recovered independently. Except for reading WAL files, this method requires few I/Os for re-
covery. Thus, directly building top-k level sstables rather than recovering them indirectly through
compactions is more efficient, particularly for upper level compactions.

3 DESIGN

We introduce the design of RocksMash, a fast and efficient LSM store using a mix of local storage
and cloud storage. We first provide an overview of RocksMash (Section 3.1). We then describe in
detail how it reduces I/Os to cloud storage and improves the cache space efficiency with LAP cache
(Section 3.2). After that, we introduce how to reduce the metadata size by MashMeta (Section 3.3).
Finally, we introduce how RocksMash quickly recovers from a failed instance (Section 3.4).

3.1 Overview

RocksMash uses the small, fast, and usually expensive local storage for storing the frequently
accessed top i levels of the LSM-tree, while the rest of the LSM-tree is maintained by large, slow,
and usually cheap cloud storage. Since upper levels are much smaller and hotter than lower levels,
we move the top levels of the LSM-tree to the local storage. This relocation offloads a considerable
amount of time-consuming operations such as flush and compaction from the slower cloud storage
to the faster local storage.

Figure 6 details the storage structure of RocksMash. RocksMash retains the original LSM
MemTable in memory that contains one mutable and multiple immutable MemTables.

Moreover, RocksMash uses a fine-grained LAP cache to further mitigate accesses to the data
stored in cloud (details in Section 3.2). LAP cache is partitioned into a MetaCache and a Data-
Cache. Since metadata are more frequently accessed than data for LSM stores, the MetaCache
stores the metadata blocks of each sstable stored in cloud to eliminate metadata accesses to cloud.
While the DataCache caches the frequently accessed data blocks in sstables and evicts data in a
compaction-aware way. The extended WAL is stored on dedicated and fast distributed storage for
fast and parallel recovery of sstables (details in Section 3.4).
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Fig. 7. The comparison of persistent cache methods.

Note that when level Li (in local storage) is merged and flushed to the next level Li+1 (in cloud), a
certain amount of data will be transferred between local storage and cloud storage, we call this pro-
cess remote compaction. The overhead of remote compaction will not severely affect performance
(in Section 4).

Request processing. Figure 6 illustrates the write and read request processing. Upon the arrival
of a write request, RocksMash first stores the data into the extended WAL log ( 1 , detailed in
Section 3.4), then updates the MemTable ( 2 ). When the MemTable is full, immutable MemTables
will be flushed into local storage, which also triggers compaction ( 3 ) and leads to remote com-
paction ( 4 ). Note that after remote compaction, RocksMash inserts the new sstables’ metadata
blocks into LAP MetaCache in the local storage for the future data accesses ( 5 ).

For reads, if the target key cannot be found either in MemTable or immutable MemTables ( 1 ),
RocksMash proceeds to search sstables from level L0 to Ln for candidate sstables. RocksMash uses
sstable key boundaries to locate each candidate sstable and checks if it contains the key. Before ac-
tually reading a data block from a candidate sstable on storage, RocksMash first uses its metadata
to probe the existence and get the address of the target key and conducts a data block read if the
probing returns a positive result (detailed in Section 3.3).

If the target key is found in L0 to Li sstables, then RocksMash will read the data blocks from

local storage (2.1). Otherwise, RocksMash will check whether the requested data block is in the

DataCache within LAP cache (2.2). If not, then RocksMash will check whether the requested key
is in the cloud storage ( 3 ). If yes, then the request will be served ( 4 ) by the cloud storage and be
forwarded to the LAP DataCache ( 5 ) for the future accesses.

3.2 LSM-Aware Persistent Cache

The LSM store enables the use of high performance devices (e.g., SSD) as a persistent cache to im-
prove the read performance when the available memory cache is exhausted. However, few schemes
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optimize the persistent cache for LSM stores. Take RocksDB as the example, its persistent cache
usually contains multiple cache files that are organized in a LRU list. As shown in Figure 7(a), a key–
value pair (say kv6 from sst1) is loaded from slow disks into RocksDB’s persistent cache on a read
miss. The key–value pair is appended to the most-recently-used writable cache file CacheFile i+1
as shown in Figure 7(a). If the writable cache file is full, then it will be turned to read-only and a
new cache file will be created and inserted to the cache file LRU list. When the persistent cache is
full, the least recently used cache file will be deleted.

RocksDB persistent cache is unaware of compaction, which wastes a significant fraction of
cache space. This is because compaction leads to invalidating key–value pairs in the sstables
that are compacted. For example, sstable sst2 is compacted and invalidated (in gray) as shown in
Figure 7(a). However, invalid key–value pairs kv3 and kv1 from sstable sst2 are still kept in cache
file CacheFile i, which causes a significant waste of the cache space and also premature evictions
of the needed keys (kv2 and kv3 from sstable sst1).

To address these issues, RocksMash uses an LSM-tree-aware persistent cache on local storage,
called LAP. LAP is divided into a MetaCache and a DataCache.

MetaCache. MetaCache stores all the metadata blocks of the sstables stored in cloud to eliminate
remote metadata accesses. The total size of metadata is non-trivial when compared to the memory
size [7], but it is small compared to local storage whose size is typically at least tens or hundreds of
gigabytes. We discuss how to efficiently reduce metadata size in Section 3.3. As sstables are created
once and read many times, MetaCache groups the metadata of an sstable and manages them with
a hash table as shown in Figure 7(b). With MetaCache, RocksMash prevents metadata blocks from
been evicted from local storage. This makes RocksMash require only one I/O on local storage to
get metadata in the worst case.

DataCache. DataCache is a compaction-aware cache that stores popular data blocks to speedup
read requests. As shown in Figure 7(c), key–value pairs stored in DataCache are organized in
a LRU list. Key–value pairs of an invalid sstable are marked as invalid in the bitmap, such as
sst2_key3 and sst2_key1 in sst2 (steps 1 and 2). When a key–value pair sst1_key6 is loaded
into DataCache on a cache miss, the invalid key–value pair will be overwritten by newly added
key–value pair sst1_key6 (steps 3, 4, and 5) to improve cache efficiency.

As shown in Figure 7(c), the DataCache is partitioned into multiple buckets, and each bucket
holds several blocks from different sstables. A block is assigned to a bucket by hashing its sstable
file name. A bitmap is used for each bucket, where each bit in the bitmap corresponds to a block,
and if the bit is set, it indicates that the corresponding block holds a valid value. With DataCache,
invalid sstable data blocks are removed by resetting their bits in bitmaps. These operations will
not affect valid data. This block-level management improves the cache space efficiency.

3.3 Space-Efficient and Fast Indexing and Filtering (MashMeta)

To further improve cache space efficiency, RocksMash uses a space-efficient indexing method,
termed as the MashMeta, based on succinct trees [38]. The space-efficient indexing method re-
duces metadata space consumption that makes room for more data blocks, and thus improving
the cache hit ratio. This is because succinct data structures can represent the keys and occupy an
amount of space that is closer to the information-theoretic lower bound, while supporting fast
queries [38].

Given a key, RocksMash first uses sstable boundaries to locate the candidate sstable that stores
the key–value pair. After that, RocksMash uses its metadata to locate a data block for the final
search of the key. For each sstable in cloud storage, RocksMash constructs a compressed trie,
or a compressed prefix tree, and encodes the compressed trie in a novel compound succinct tree
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Fig. 8. The space-efficient MashMeta of an sstable in cloud storage. On the left, six key–value pairs are
stored in three data blocks. On the right, a trie for theses keys and their succinct encoding. Numbers in
dashed rectangles in the trie are the depth-first node number. The bold trie node number indicates this node
is a leaf node. A “]” in the succinct sequence indicates a starting key of a data block.

structure as the MashMeta, and uses it as replacement of both index and traditional bloom filter
of sstables in cloud. Figure 8 shows an example of a 10-node compressed tree (trie) that represents
the following keys “hello,” “hunda,” “hundred,” “hunk,” “huntee,” and “hunter” in an sstable in
the cloud. These key–value pairs are stored in three data blocks. Each node is associated with a
distinct node character and number, such as h and 0 for root node. The number of a trie node is
the depth-first traverse order. While each branch, or edge, is labeled with a branching character,
such as branches e and u. Each path from the root to a leaf node represents a key string. A leaf
node indicates the ending of a key.

The compressed trie is encoded in depth-first unary degree sequence (DFUDS) [33]. Figure 8
gives an example of trie DFUDS encoding. During trie depth-first traversal, i open parentheses
“(” are written when a node is visited the first time, and a closing parenthesis “)” is written after
that node traversal, where i is the number of children of that node. This results in a sequence of 20
balanced parentheses as shown in Figure 8. Consequently, the node is represented by the position
where its parentheses start. For example, node 0 is represented by a sequence of open and close
parentheses“(()”. While key hello is represented by the path from root node 0 to leaf node 1. In
this way, a close parenthesis “)” of a leaf node indicates the ending of a key. Note that the left most
“(” in the succinct sequence is purposely added to obtain a sequence of balanced parantheses [33].

To locate the data block in the candidate sstable that contains a key with the encoding sequence,
for each data block, RocksMash first replaces the closing parenthesis “)” of the leaf node in the
path of the first key with a close square bracket “]”. For example, for the first data block, the leaf
node (node 1) in the path of its first key hello is represented by “]” as shown in Figure 8. Since
the keys in sstables are sorted, “]” marks the boundaries for neighbour data blocks. Consequently,
while a key is searched in the DFUDS sequence, the number of “]” encountered until the target key
is found indicates the data block number. For example, there are 2 “]” visited before key “hundred”
is located in DFUDS order, which means that “hundred” is stored in the second data block. Ac-
cordingly, RocksMash can achieve precise and fast query for each key and also avoids the filter’s
false-positive errors with minimal space consumption.

3.4 Parallel Recovery

With RocksMash’s data layout, restoring access to the L0 to Li level sstables stored on the failure
node’s local storage quickly is critical for data availability. In this work, we assume that sstables
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Fig. 9. Recover the LSM store with WAL. It
replays key–value pairs from the WAL in the
chronological order. This causes expensive L0

to L1 compactions.

Fig. 10. Recover the LSM store with the proposed extended
WAL in parallel. RocksMash adds L0 to L1 sstable key lists
(hexagons) into the WAL.

on cloud storage are reliable, because cloud storage has the lower annualized failure rate [34] and
can be accessed directly from other nodes. To expose local sstables to remote nodes for recovery,
RocksMash stores the WAL file on a fast and dedicated cloud store (e.g., EBS-gp3). The data size
of top-k level sstables stored on local storage, however, is several gigabytes, resulting in Rocks-
Mash WAL files that are much larger than the vanilla RocksDB. As a result, the demand to quickly
restore L0 to Li sstables from large WAL files makes recovering storage service on a remote node
difficult.

For the basic recovery method, illustrated in Figure 9, its insight is to sequentially redo write
operations, which is inefficient for processing large datasets. Because every recorded key–value
pair in WAL files is considered valid, the basic recovery method will conduct many write opera-
tions. According to the write path, these key–value pairs will first form Memtable and immutable
MemTables in memory, then transferred to sstables and persisted to the recovery node’s local stor-
age. This basic method is inefficient in terms of both CPU usage and the number of I/O requests
when the WAL size is large and covers key–value pairs for L0 to Li sstables. First, it is not necessary
to construct the MemTable or immutable MemTable, because doing so generates only L0 sstables
but no L0 to Li sstables, wasting CPU cycles. Second, a large number of continuous write opera-
tions will inevitably result in L0 to Li compactions. As L0 sstables have key range overlaps, L0 to
Li compactions typically involve all sstables from these two levels, resulting in a large number of
I/Os. Worse, L0 to Li compactions are not parallelized, further degrading recovery performance.

RocksMash proposes parallelizing the restoration of L0 to Li sstables to address the aforemen-
tioned inefficiency for large size WAL. However, there are two challenges to overcome.

● How can the construction of sstables be parallelized? Vanilla LSM stores only record key–
value pairs to the WAL, and the MANIFEST only keeps track of the list of valid sstables. Each
sstable is unaware of the location of the key–value pairs to which it is assigned in WAL files.
The basic recovery design lacks the information required to connect key–value pairs in the
WAL and valid sstable file names in the MANIFEST, needing time-consuming upper level
compactions to correctly match them. As a result, for parallel recovery, RocksMash must
establish a connection between key–value pairs in WAL files and L0 to Li sstables.
● With the above connection, how can RocksMash maximize parallelism while ensuring that

read operations get the correct key–value pair after recovery? If each sstable searches WAL
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files in chronological order, as the basic recovery method does, then a large number of out-
of-date key–value pairs are picked up if there are many updates. However, due to the read
path of LSM stores, these stale key–value pairs will eventually be deleted by compactions
and will no longer be visible to users. So RocksMash needs to improve its scan efficiency
for sstables.

To address the two aforementioned parallel recovery challenges, as depicted in Figure 10, Rocks-
Mash proposes the extended WAL (hexagons in Figure 10) as the connection between key–value
pairs in WAL files and valid sstable lists in the MANIFEST. The idea is to trade faster recovery time
for slightly more storage space. RocksMash searches WAL files in reverse chronological order to re-
duce data to be processed and thus improve scan efficiency. RocksMash logically reduces the size
of WAL files by scanning them in this manner, because old WAL files usually contain out-of-data
key–value pairs that are not expected for read requests.

Extended WAL: RocksMash extends the WAL to include all data in sstables from L0 to Li . When
an L0 to Li sstable is generated, RocksMash logs its changes to the MANIFEST, then records its
key lists (hexagons in the extended WAL in Figure 10) at the same time to the WAL for quick
identification of sstable keys. Because a compaction job is not considered complete unless all new
sstables are successfully persisted, RocksMash can batch key lists of new sstables to reduce the
I/O number writing them. This way, RocksMash ensures a safe rolling back to the latest consistent
state with the MANIFEST and key lists, and no valid data will be lost, because the only difference
between new and deleted sstables are the removed stale data. The key lists of deleted L0 to Li

sstables in WAL are not visible to RocksMash, because deleted sstables are not included in the
latest consistent state in the MANIFEST.

Reverse chronological order search: Each sstable that needs to be restored is assigned a worker by
RocksMash. Each worker searches the new WAL files first, followed by the old files. In this way,
a worker ensures that the most recent version of a key–value pair is met first, in accordance with
the read path of LSM stores. Furthermore, RocksMash enables a worker to retrieve any version
of a key for Lx sstables (x ≠ 0, x ∈ [1, i]). In another word, random versions of a key–value pair in
Li sstables does not affects the correctness of future read request results after resume. Suppose an
Lx sstable worker gets a random version of a key–value pair (say, keysuspect ), keysuspect would
be the only valid verion in all Lx sstables, because there are no key overlaps among Lx sstables. If
keysuspect is an out-of-date version, then there must be a latest version of it in an L0 to Lx−1 sstable,
and keysuspect will not be first met by the LSM search routine. This pick up rule, combined with
the reverse chronological order search, allows RocksMash to logically truncate WAL sizes when
there are a lot of updates in WAL files.

Building sstables in parallel: When the instance node fails, RocksMash uses a new instance to
recover L0 to Li sstables stored in the failure instance. RocksMash reads the MANIFEST and the
extended WAL to get sstable file lists of the last consistent state. RocksMash then fetches data for
L0 to Li sstables from the extended WAL with the help of key lists, and rebuilds these sstables in
parallel. Figure 11 shows an example of the recovery steps:

● step 1 read WALs: RocksMash fetches the L0 to Li sstable key lists and all WAL files to the
new instance node.
● step 2 find key values: After getting key lists of valid sstables RocksMash assigns a worker

for each sstable to scan WAL files and fetch keys in its list. Scanning should begin from the
newer WAL files to older ones to ensure workers meet the latest key first. As L0 sstables have
key range overlaps, the scanning pointer of the older L0 sstable workers are not allowed to

exceed scanning pointers of the younger L0 sstables workers (step 2.1). This ensures younger
L0 sstables always get the latest key–value pairs for correctness. After L0 workers complete
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Fig. 11. RocksMash recovers sstables in failure instance node storage from the extended WAL in parallel.
It reads sstable key lists from the WAL (step 1), then retrieves key–value pairs from the WAL in parallel
for multiple sstables in parallel (steps 2.1 and 2.1). And afterwards, it rebuilds sstables (step 3). It finally
replays remaining key–value pairs (belowing the bolded bar) in the extended WAL for building the MemTable
(step 4).

scanning, L1 to Li sstable construction workers are free to fetch any version of key–value

pairs if needed (step 2.2).
● step 3 build and write sstables: A worker begins to build the sstable upon getting all its

key–value pairs. Recovered sstables are installed to RocksMash after reconstruction.
● step 4 build MemTable: After recovering L0 to Li sstables, RocksMash starts to restore

MemTable and immutable MemTables. RocksMash leverages the information of the lat-
est L0 sstable to reduce the size of WAL records to replay. Since every change is logged
to the WAL in chronological order, the latest key in the latest L0 sstable indicates a po-
sition, where keys are earlier than this time were safely persisted in sstables and keys
younger were still in MemTable or immutable MemTables. In this case, RocksMash re-
plays WAL records younger than the latest key of the latest L0 sstable to restore data in
memory.

After above steps, RocksMash completes the recovery for data in the memory and local storage
of the failed instance to the latest consistent state.

Simply preserving all data of L0 to Li sstables in the WAL will largely increase the size of WAL,
so RocksMash periodically flushes the L0 and Li sstables to their next levels to shrink the size
of WAL files by leveraging the RocksDB built-in time-to-live (TTL) mechanism [10]. This flush
mechanism flushes sstables of L0 to Li older than the predefined time, and we evaluate this effect
in Section 4.5.

4 EVALUATION

We answer two questions in the evaluation: How does RocksMash perform compared to state-of-
the-art methods? and How effective are RocksMash LAP cache, the MashMeta, and the parallel
recovery?
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Fig. 12. YCSB workload characteristics. R: Read, U: Update,
I: Insert, S: Scan, RMW: Read-modify-write.

Fig. 13. Performance of putting different
number of LSM store levels in local storage
under random writes.

4.1 Evaluation Setup

Testbed. Our testbed consists of a five-node local storage cluster (two management nodes and
three storage nodes) and a 3-TB AWS EBS-gp2 cloud storage. Each node in the local storage cluster
is a m5d.2xlarge AWS EC2 instance that is equipped with 8 vCPUs, 32 GB memory, and a physically-
attached 300 GB NVMe SSD [3]. Each storage node deploys an LSM store as the storage engine
that uses the NVMe SSD as local storage, connects a 1-TB EBS-gp2 volume as cloud storage, and
connects a 32-GB EBS-gp3 volume with the maximum provisioned performance for the WAL.

Benchmarks. Two benchmarks, YCSB benchmark [24] and db_bench[10] are used to evaluate
RocksMash performance compared to the state-of-the-art methods. YCSB is used to simulate real-
world workloads. YCSB has six workloads denoted as A to F, and their characteristics are listed in
Figure 12. db_bench is used to test RocksMash individual designs. db_bench generates different
types of workloads, such as random writes, sequential writes, random reads, range query, marked
as “FR,” “FS,” “RR,” and “SR,” respectively. Throughout the evaluation, the default key, value, and
sstable size are set to 16 B, 256 B, and 8 MB, respectively, and each workload contains 10 M requests.
After loading YCSB workloads, the total data size is about 50 GB, and the data size of L0, L1, and L2

is about 1.3%, 2.4%, and 96.3%, respectively. After loading db_bench workload, the total data size
is about 5 GB, the data size of L0, L1, and L2 is about 5%, 13%, and 82%, respectively. As a result,
unless otherwise noted, the majority of data is stored on cloud storage.

Schemes. We compare RocksMash with two state-of-the-art schemes, RocksDB [10] and Mu-
tant [61]. RocksMash is implemented based on RocksDB, and we embed our sstable placement
method by modifying the compaction module. As for the effect of the number of LSM levels stored
in the local storage, Figure 13 shows the throughput of varying the i of Li from 1 to 3 under ran-
dom write requests. Remote compaction operations happen between Li and Li+1 have a modest
effect, especially when i is larger than 2. Considering the workload size of our evaluation, Rocks-
Mash puts L0 and L1 in local storage and other levels in cloud storage by default. The LAP cache is
mainly implemented in the persistent cache module. The MashMeta replaces metadata structures
for sstables in the cloud. The parallel recovery is implemented by modifying the WAL module and
recovery procedures.

RocksDB stores all data on cloud storage. This is because the current RocksDB is not designed for
a hybrid or a mix of different types of storage infrastructures. We use this RocksDB configuration
to simulate the scenarios where most of the data is stored in cloud storage to reduce cost. Mutant
caches hot sstables in the local storage, where its cache size on the local storage is controlled by the
overall storage cost target per gigabyte data for both local and cloud storage. We borrow its default
configuration that sets the target cost to $0.3G/month. This target cost for Mutant indicates that
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Fig. 14. Performance on a single instance node.

the local and cloud storage size to be 41% and 59% of the workload size, respectively. We believe
this configuration for Mutant is fair to unleash its performance. By default, we set the persistent
cache size to be 20% of the workload size.

4.2 Overall Performance

We first evaluate the performance of RocksMash and compare it with the performance of RocksDB
and Mutant. Next, we integrate RocksMash with TiDB [35], an open source distributed Hybrid
Transactional/Analytical Processing database that supports MySQL syntax, to simulate real-world
scenarios.

Figure 14(a) and (b) show the absolute and normalized throughput (Kops/second) for Rocks-
Mash, Mutant, and RocksDB. Note that in this experiment, RocksMash and Mutant are running
on the storage node, which has a blend of 1-node local storage (300-GB NVMe instance storage)
and cloud storage (1-TB EBS-gp2). As shown in Figure 14(a), RocksMash achieves the highest
throughput for all six workloads. For example, RocksMash improves throughput by 2× compared
to RocksDB under workload C. This is because RocksDB stores all data on cloud storage. Com-
pared with Mutant, RocksMash’s throughput increases by 1.6× for workload F, because Mutant’s
sstable level cache efficiency is lower than RocksMash’s fine-grained LAP cache. We also observed
that all three schemes show a better throughput for A, B, and F, because these workloads contain
a large proportion of reads and follow a cache friendly Zipfian distribution. Moreover, all three
schemes have the lowest throughput for range query workload E, as LSM stores’ traversal to lev-
els causes amplified I/Os. However, RocksMash achieves a good improvement by 2.2× and 1.7×
compared to RocksDB and Mutant, respectively, for workload E. The reasons for this are the fol-
lowing. First, compared to RocksDB, RocksMash stores the popular sstables at upper levels on
the fast local storage, which reduces the need for frequent slower data retrievals from cloud and
therefore improves the performance of the whole system. Second, although Mutant caches hot ssta-
bles in local storage, its file level migrations to cache are heavier and its cache space-efficiency is
suboptimal.

Next, we integrate these three schemes with TiDB as a row store engine. In this experiment, the
local storage cluster contains 5 nodes. We first load random key–value pairs into TiDB, and then
run six YCSB workloads and measure the performance. Results are given in Figure 15, and the
Y axis shows the normalized throughput. Similarly to Figure 14, RocksMash outperforms both
RocksDB and Mutant across all six workloads. For example, RocksMash can largely improve the
throughput by 1.8× and 1.7× compared to RocksDB for workloads C and E, respectively. Compared
to Mutant, RocksMash’s throughput increases by 1.3× for workload D. Due to the data replication
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Fig. 15. Performance under the distributed
database.

Fig. 16. The persistent cache performance under the read-
only YCSB workload C. The line for RocksDB is in gray, and
the line for RocksMash is in black.

Fig. 17. Effects of LAP MetaCache and DataCache.

policy among storage nodes by TiDB, there is more write traffic, but RocksMash still improves
the performance.

4.3 Cache Effectiveness

Next, we analyze the effectiveness of RocksMash LAP cache. To understand how LAP cache im-
proves RocksMash’s performance, we first evaluate the overall performance of LAP cache and
then separately evaluate the performance of each of its components, the MetaCache and Data-
Cache.

Overall cache performance. Figure 16 shows the overall and the read throughput for both
LAP cache and RocksDB traditional persistent cache under workload C. Workload C is a read-only
workload of YCSB. In Figure 16(a), the LAP cache shows a stable and higher overall throughput
than the persistent cache of RocksDB. The throughput of RocksDB persistent cache fluctuates be-
cause of its low space-efficiency (detailed in Section 3.2). As shown in Figure 16(b), compared to
RocksDB, RocksMash’s LAP cache provides a much higher read throughput to users due to its
high space efficiency and high cache hit ratio (detailed in Section 3.2). Moreover, we observed that
LAP cache almost halves the benchmarking completion time compared to RocksDB because of its
higher performance.

MetaCache. When not all metadata can be stored in memory, RocksMash MetaCache is in-
tended to cache all metadata on local storage, thereby reducing metadata I/Os to the cloud. To
demonstrate MetaCache’s effectiveness, we compare RocksDB with metadata cache (i.e., index
and filter block) on local storage and RocksMash with MetaCache. The cloud stores all sstables.
To simulate the worst-case scenario, we add a RocksDB configuration that disables all memory
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Fig. 18. LAP DataCache lookup
latency breakdown.

Fig. 19. RocksMash random read
throughputs and miss ratios of
cached data for various persistent
cache sizes.

Fig. 20. LAP DataCache miss ra-
tios of cached data for various
bucket sizes.

and persistent cache mechanisms, and we label this configuration as “No metadata cache” in
Figures 17(a) and (b). Using random read workloads with empty lookups (i.e., search for non-
existent keys), we evaluate read throughput (Figure 17(a)) and how many I/Os to the cloud for
each lookup (Figure 17(b)).

Overall, as shown in Figure 17(a), caching metadata on the local storage improves the through-
put of both RocksDB and RocksMash. When there are no empty lookups (i.e., the empty lookup
ratio is 0), the read performance of RocksDB is comparable to that of RocksMash, and this is due
to the limited IOPS quota of purchased cloud storage. The poor performance of both RocksDB and
RocksMash, however, suggests that improving hits in local storage or memory is critical. When the
empty lookup ratio rises, so does the throughput. These performance improvements are due to the
reduction of slow I/Os to the cloud, as illustrated in Figure 17(b). Caching metadata on local storage,
whether via the RocksDB metadata cache or the RocksMash MetaCache, significantly reduces the
I/O count to the cloud for each lookup. RocksMash sends fewer I/Os to the cloud than RocksDB as
empty lookup ratios increase, resulting in a larger improvement for RocksMash. When there are
only empty lookups (i.e., the empty lookup ratio is 100%), RocksMash has a 78% higher throughput
than RocksDB. This is because an LSM store must go through all levels before correctly confirm-
ing a non-existent key. RocksMash sends no I/Os to the cloud for empty lookups, because Mash-
Meta in MetaCache has a zero false-positive rate of probing. RocksDB reads more data blocks
from the cloud on the contrary, because the false-positive rate of RocksDB metadata is greater than
zero. In conclusion, caching metadata on local storage benefits both RocksDB and RocksMash, but
MetaCache with MashMeta makes RocksMash more advantageous under empty lookups.

DataCache. We evaluate the DataCache cache hit ratio by comparing it against the persistent
cache of RocksDB. We vary the cache size from 10% to 30% of the workload dataset size. We use
db_bench to generate two different workloads: a uniform workload where each key–value item
is equally accessed and a non-uniform workload with Zipfian distribution. Figure 17(c) shows
the cache hit ratio under the workload with uniform distribution. For a cache size of 10%, the
RocksDB persistent cache hit ratio is only 7%. DataCache hit ratio is 1.9× higher than RocksDB
persistent cache, because DataCache has a higher space-efficiency and more popular data blocks
can be cached. As the cache size increases to 30%, DataCache hit ratio increases to 31%, a 1.5×
improvement over RocksDB persistent cache.

The cache hit ratio increases for both DataCache and RocksDB persistent cache when the
workload is non-uniform (see Figure 17(d)), since the cache works better for skewed work-
loads. In this experiment, we test two more workloads by tuning the db_bench parameter
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read_random_exp_range (labeled as exp.). The larger the value of this parameter, the more skewed
the read request distribution is. When the workload skewness is medium (i.e., exp. is 5), both Dat-
aCache and RocksDB persistent cache improve the hit ratio slightly (bars in black in Figure 17(d)).
When we increase the workload skewness (i.e., exp. to 15), both cache methods improve the hit
ratio significantly (bars in grey in Figure 17(d)), because the cache is able to preserve a higher
number of frequently accessed data blocks compared to less skewed workloads. As RocksDB gath-
ers key–value pairs to a cache file in their arrival order, it is difficult for the cache file level LRU
policy to preserve hot data in the persistent cache. RocksMash DataCache manages data in the
unit of a block, and the block level eviction policy is able to cache more hot data blocks in the
persistent cache. As a result, RocksMash shows increased hit ratio improvements compared to
uniform workloads.

We add the evaluation of the read latency cost split-up in Figure 18 to address concerns about
lookup latency within a DataCache bucket. RocksMash uses the bucket by default to reduce the
number of elements searched in a linear manner. A bucket and a data block have default sizes of
8 MB and 4 KB, respectively. Each bucket can hold two thousand data blocks and has a maximum
of two thousand elements in its LRU list. Because RocksMash caches all LRU lists in memory,
linearly searching a LRU list of this magnitude is not as expensive as reading data blocks from local
storage. As shown in Figure 18, accessing the local storage dominates the cost, whereas looking
up in bucket LRUs costs less than 7%. As a result, LAP DataCache has a low lookup overhead.

To inspect conflicts within a bucket, we vary the workload locality and persistent cache size.
The miss ratio of reading cached keys is used as the metric for LAP DataCache in this experiment.
Reading cached keys in the LAP DataCache is expected to hit if there are few conflicts in buckets.
As a result, the lower this metric is, the fewer the conflicts in buckets. First, we vary the persistent
cache size to 10%, 20%, and 30% of the dataset, and then evaluate the miss ratio of reading cached
keys in LAP DataCache. Figure 19 shows that skewing the workload distribution (i.e., exp. from
5 to 15) reduces the miss ratio dramatically. Because LAP DataCache distributes hot sstables to
different buckets, conflicts between them are mitigated. When the size of the LAP DataCache is
increased, the miss ratio decreases. This is primarily due to the capacity. Then, the persistent cache
size is then set to 20% of the dataset, and the bucket size is varied. By default, we set the bucket size
to 8 MB, and each bucket holds data blocks from several sstables. In this experiment, we reduce
the number of buckets, increasing the size of each bucket to 40 and 120 MB, and each bucket can
hold data blocks from more sstables. Figure 20 shows that, regardless of workload distribution,
larger buckets slightly increase the miss ratio. Because there are more hot sstables in a bucket, the
number of conflicts within a bucket increases. This insignificant increase in miss ratio, however,
demonstrates that hashing sstables and distributing sstables to buckets is an effective way to avoid
hot data block conflicts in LAP DataCache.

4.4 MashMeta

To evaluate the effects of the MashMeta, we use RocksMash that is only equipped with the
MashMeta and compare against RocksDB. In this test, we store all the data in local storage to
narrow down the variance between metadata structures and to accelerate experiments. We first
evaluate the gain in memory space of the MashMeta, then we measure its effects on the write
and read performance.

Metadata size. Figure 21(a) shows the total size of all sstable metadata after loading 10M random
writes. Compared to the size of traditional block-based sstable metadata, the MashMeta reduces
up to 62% of the metadata size and reduces filter false-positive rate to zero. As most traditional
optimizations either focus on the index or the filter [48, 62], they cannot improve both of them
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Fig. 21. Effects of the MashMeta.

at the same time with a single structure, and they cannot achieve a false-positive rate of zero for
filtering. While the proposed MashMeta halves the metadata size and at the same time enhances
the filter functionality in reducing unintended I/Os.

With the MashMeta, RocksMash could save a significant amount of memory. This spared mem-
ory space could be used for the block cache. In Figure 21(b), RocksMash uses the spared 32 MB
memory (as in Figure 21(a)) to compensate the table and block cache. The random read per-
formance (shown as patterned bars) is therefore increased by 2× compared to RocksMash and
RocksDB in cases where the memory is exhausted with no memory space for table and block cache.

Construction overhead and query performance. The MashMeta is built when generating sstables,
and so, we use the FR workload to evaluate the overhead of constructing it. We use RocksDB as
the comparison, because its index block is built with little overhead by picking up one key from
every data block. We use the RR and SR workloads to evaluate the read and range query perfor-
mance of MashMeta, and use RocksDB as the comparison. RocksDB uses binary searches within
index blocks to locate a target data block in an sstable. In Figure 21(b), the FR performance of
RocksMash is on a par with RocksDB. Under various key sizes, RocksMash and RocksDB have
comparable CPU utilization, as shown in Figure 21(c). This indicates that the MashMeta does not
bring significant overhead. This is because the data transfer dominates the compaction overhead
and building the MashMeta for sstables only occupies a small fraction of time during compaction
operations. Besides, the long shared prefixes among keys in bottom level sstables contribute to
a reduction in computational overhead. The slight FR performance drop of RocksMash shows
the moderate construction overhead, and it is due to encapsulating all keys into the MashMeta.
The MashMeta also shows a moderate (less than 5%) RR overhead across different key sizes in
Figure 21(b). However, considering the significant reduced metadata size (Figure 21(a)) and the
benefits gained from leveraging the spared memory space for caching (Figure 21(b)), this construc-
tion and query overhead of MashMeta is tolerable. For range query performance, we vary range
sizes and show the performance in Figure 21(d). RocksMash improves the range query perfor-
mance for all range sizes, and the largest gain, by 1.2×, is achieved when the range size is 64. As
the range size grows, the data block transfer overhead dominates and the benefits on throughput
of the MashMeta gradually decreases.

4.5 Recovery Performance

In this part, we first assess whether putting the WAL on a cloud volume affects the write perfor-
mance. After that, we analyze the proposed parallel recovery performance.

A write request first logs its data in the WAL. Even configured with the maximum provisioned
performance [2] (IOPS 16,000 and throughput 1,000 MB/s at the cost of $119), the EBS-gp3 has a
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Fig. 22. Write performance of using
the local storage or EBS-gp3 for WAL.

Fig. 23. Recovery speed. “FS” is fillseq. “Read” is reading WAL
files; “Find” is sstable worker finding belonging key–value pairs;
“B&W SSTs” is building and writing sstables.

much lower IOPS performance when compared to the local storage. So we evaluate whether using
the EBS-gp3 for the WAL degrades the write performance. In this experiment, we configure L0

and L1 sstables in the local storage, and L2 sstables in the EBS-gp2 for RocksMash. We set eight
threads for db_bench to simulate heavy random write traffics. Figure 22 depicts RocksMash’s ran-
dom write throughput when using local storage or the EBS-gp3 for the WAL. The performance
difference is due to two factors. First, for writing WAL of the vanilla RocksDB, the IOPS perfor-
mance is insignificant. The RocksDB groups WAL writes by default [13, 23], which significantly
reduces I/Os when writing key–value pairs to WAL files. We do not see any IOPS performance
saturation when using either local storage or EBS-gp3 for WAL files. Second, local storage has a
lower bandwidth than EBS-gp3. We evaluate the local storage’s IOPS and bandwidth performance,
and instance m5d.2xlarge limits its IOPS by 80 K and bandwidth by 260 MB/s. Even though local
storage outperforms EBS-gp3 in terms of IOPS, its bandwidth is limited due to instance limita-
tions. RocksMash allocates L0 to L1 levels on local storage; heavy write workloads cause constant
compactions, occupying many bandwidths of local storage and throttling RocksMash’s overall
write performance. If RocksMash uses local storage with high IOPS and bandwidth, then we rec-
ommend using high-performance cloud storage for WAL files. We use EBS-gp3 for WAL in the
following experiments.

Parallel recovery performance. Figure 23 shows the recovery speed in terms of the time spent
per gigabyte of WAL files. The proposed parallel recovery method is ∼8.6–10.1× faster than the
basic recovery method for both FR and FS workloads (Figure 23(a)). This gain drops to 2.5× when
the FR value size is larger (Figure 23(b)) because of faster L0 to L1 compactions. Figure 23(c) also
shows how the parallelism (number of threads) affects the recovery performance. When Rocks-
Mash allocates three threads for recovery, the time for finding sstable belonging key–value pairs
is shortened. Most of the recovery time is spent on finding key–value pairs for sstables (detailed
in Section 3.4). Using three threads helps RocksMash reduce about 45% of the recovery time. This
benefit is primarily due to improvements on preparing key–value pairs for sstables in parallel and
thus reducing the time of putting key–value pairs to their corresponding sstables. In summary, the
proposed parallel recovery significantly improves RocksMash’s recovery performance by up to
10× compared to the basic recovery.

WAL sizes. The recovery performance largely depends on the size of WAL files. To evaluate how
the preserved WAL size changes, we perform 10 M random writes to RocksMash and RocksDB,
and configure TTL to 20 seconds (choice explained further below) for RocksMash and the default
60 seconds for RocksDB. Figure 24 shows the real-time total size of WAL files and upper level
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Fig. 24. Realtime sizes under ran-
dom writes. RocksMash lines are
in black, and RocksDB lines are in
grey. Lines of different widths rep-
resent different LSM store data lo-
cations.

Fig. 25. The number of new L0 and L1

sstables and their metadata sizes.
Fig. 26. Random write per-
formance with and with-
out key list writing to the
extended WAL.

sstables L0 and L1. The real-time size shows the possible amount of data to be recovered. The WAL
real-time size of RocksMash (black and bold line) fluctuates between 3 and 5 GB, which is always
larger than the WAL size of RocksDB (grey and bold line). This is because RocksMash keeps all
L0 and L1 key–value pairs in WAL files, while RocksDB only keeps mutable and immutable data
in WAL files. Besides, data in the WAL is in chronological order while data in sstables is in key-
order. This mismatch in the order scatters L0 and L1 data to different WAL files, which amplifies
the number of WAL files that need to be preserved and makes the WAL sizes of RocksMash much
larger than the sum size of these two level sstables. Note that, the data size of reserved WAL is at
the size of about ten gigabytes, therefore it is usually three orders of magnitude smaller than user
data. Besides, EBS-gp3 and EBS-gp2 have a similar storage cost, hence the WAL storage cost on
EBS-gp3 will not cause many cost increases.

Figure 25 shows the effects of TTL on writing upper level sstable key lists to WAL files. Since
RocksMash flushes L0 and L1 sstables to their next level more frequently than RocksDB, this
reduces the number of L1 sstables, and thus lowering the chances of heavy L0 to L1 compactions.
In this case, L0 to L1 compaction jobs involve fewer sstables and no compaction jobs generate
more than five new sstables in RocksMash. This lowers the number of written sstable key lists to
WALs. The real-time total size of RocksMash new upper level sstable metadata (which includes
their key lists) is larger than RocksDB’s new upper level sstable metadata (which does not have
key lists). This is because RocksMash adds key lists of these sstables to WALs. But writing key
lists to WALs does not incur significant write traffic as shown in Figure 26. This is due to the fact
that a compaction job is not considered complete unless all new sstables are successfully persisted,
so RocksMash can batch key lists of new sstables to reduce the I/O number writing them. Second,
the majority of compaction jobs involve multiple sstables [55], and Figure 25 shows that the data
sizes of their key lists are typically less than 1,000 KB, implying that writing data of this magnitude
to the WAL will not result in significant I/O pressures.

To evaluate the overhead of TTL induced compactions, Figure 27 shows the overall compaction
data size after loading 10M random writes to RocksDB and RocksMash with different TTL. A
shorter TTL helps RocksMash reduce the WAL file size. When we set TTL to 20 seconds, Rocks-
Mash has 8% more compaction read data and 9% more compaction write data compared to setting
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Fig. 27. WAL file sizes and cumulative com-
paction data sizes under different TTLs.

Fig. 28. RocksMash random write
throughputs under different TTLs.

TTL to 60 seconds. As these upper level compaction operations read from and write to the local
storage, the high performing local storage could mitigate these moderate overhead. In Figure 28,
periodic flushing operations merely affect the write performance due to the following two reasons.
First, the majority of L0 to L1 sstables have a lifetime of about 10 seconds due to write operations
[26]. Because the time between two TTL flushing operations is two to 10 times longer than the
lifetime of the majority of L0 to L1 sstables, extra compaction data sizes caused by periodic flushing
operations are greatly reduced. Second, the time between two periodic flushing operations is suffi-
cient, which reduces the number of periodic flushing operations and dilutes the impact of induced
compactions even further. In summary, setting TTL to 20 seconds helps reduce the WAL size and
does not incur significant compaction overheads.

5 RELATED WORK

LSM with heterogeneous storage. Heterogeneous storage provide different opportunities for LSM
stores. The major motivation of adopting cloud storage services into LSM stores is cutting the
overall storage cost. Mutant [61] prioritizes the overall storage cost rather than the performance,
and takes advantage of workload localities to cache hot sstables for cloud storage. However, its
coarse-grained caching methods is suboptimal for space efficiency on expensive storage. Aurora
reduces network traffics for cloud databases [53]. The high performing Non-Volatile Memory is
mostly used for improving the flush performance [39, 41, 60]. SpanDB [23] tiers LSM levels into the
high performance SDPK-capable SSDs and capacity-advantaged SSDs, and it further exploits the
parallelism of SPDK to improve WAL performance. PrismDB [14] uses CLOCK algorithm strive to
pin hot objects to upper levels. However, the LSM-tree structure makes it challenging to efficiently
pin the majority hot objects in small-sized upper levels.

LSM index optimizations. SlimDB [48] exploits the semi-sorted application scenarios and lever-
ages the share key prefixes to reduce index sizes by the binary-trie based entropy-encode tries [43].
However, the entropy-encode trie is not directly applicable to string keys. LSM-trie [57] reduces
read and write amplifications for small-sized value stores, and it uses hash keys to aggressively
organizes all sstables as a single level. Jungle [15] uses B+ tree to index overlapped sstables in LSM
that uses tiering merge policies, and this ensures one read to sstables to get the target data block.
RemixDB [63] proposes a globally sorted view index structure REMIX to manage sstables, and this
global view helps improve the range lookup performance. Bourbon [26] integrates learned index
to LSM and uses it in place of sstable indices to improve read performance.

LSM filter optimizations. Stacked Filters [30] absorb frequently queried non-existing keys into
the filter and compose a stacked filter structure to get lower false-positive rates and space over-
heads. Rosetta [45] puts a key’s all binary prefixes into bloom filters and organizes them in implicit
segment trees to improve point and range lookup performance. SuRF [62] proposes an optimized
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succinct tree based range filter that is tunable for space overheads or false-positive rates. Mash-
Meta differs from SuRF in terms of the design philosophy, methods, and benefits. First, SuRF fo-
cuses solely on the filter, and even with more memory space, it cannot achieve a zero false-positive
rate for filtering. Second, SuRF employs Level-Ordered Unary Degree Sequence [37], which differs
from MashMeta’s DFUDS and makes it difficult to encapsulate indexing information without in-
curring significant space overhead. Third, it does not reduce the index size, which is close to the
size of the filter. Monkey [27] proposes to allocate more memory for upper level sstable filters to
reduce their false-positive rates. ElasticBF [42] extends Monkey by dynamically changing sstable
filter settings according their hotness rather than their locations.

LSM cache optimizations. AC-Key [56] aims at LSM cache mechanisms in the memory and hy-
brids different kinds of cache object and dynamically adjusts their sizes to improve cache efficiency.
There are two differences between our work and AC-Key. First, AC-Key focuses on memory cache
management optimization. Because it does not prioritize caching metadata for sstables, it is un-
able to efficiently eliminate metadata read I/Os to cloud storage. Second, the local storage uses
block interfaces, so their benefits of caching small objects (e.g., key–value pointers) are dimin-
ished. Internal compactions cause non-trivial cache invalidations, which in turn harms the LSM
read performance. LSbM-tree [52] uses a compaction buffer to minimize these cache pollutions.
Leaper [59] leverages machine learning methods to predict hot data and actively prefetches them
into the cache to ease this problem. Kassa et al. [40] extend the persistent cache with Storage

Class Memories (SCM). However, there are two significant differences with RocksMash. First,
they focus on combining DRAM and SCM, but their design does not assign top-k level sstables to
the high performance SCM, thereby missing out on the opportunity to saturate the high perfor-
mance of SCM devices. Second, their work does not optimize the metadata of sstables, which takes
up a significant amount of DRAM space.

SSD as the cache and general caching methods. A large body of work use SSDs as the cache
for slower storage. These SSD caching methods either take advantage of the high random per-
formance [19, 22, 28, 44] or absorb device and workload characteristics into cache manage-
ments [16, 50]. LeCaR [54] introduces machine learning methods to improve the cache replacement
policy. Cacheus [49] extends LeCaR to automatically be more adaptive to various workloads.

LSM recovery approaches. MyRocks mirrors all sstables and WALs to cloud-managed storage by
background copying [46]. However, writing sstables to cloud storage on a regular basis, however,
will result in significant data traffic and additional fees [4]. Both Aurora [64] and Rockset [11]
choose the WAL to transfer the most recent updates to other nodes, but details are not disclosed.
RocksMash extends additional metadata for sstables and adds it to WAL for recovery, significantly
improving recovery speed while consuming little storage space.

6 CONCLUSION

In this article, we examine how integrating cloud storage affects the performance of LSM stores.
We found that the read performance is severely affected by the capped performance of cloud stor-
age due to storage cost concerns. We also found that the key patterns in many applications could
be leveraged to help with the LSM store read performance that uses cloud storage. Taking these
findings into consideration, we have presented RocksMash, a fast and efficient LSM store that
efficiently splits LSM-tree between local storage and cloud storage to achieve cost-effectiveness.
Moreover, to reduce the memory footprint for metadata and improve read performance, Rocks-
Mash uses an LSM-aware persistent cache that stores metadata in a space-efficient way and
caches popular data blocks by using compaction-aware layouts. Furthermore, RocksMash ex-
tended WALs for fast parallel data recovery. The evaluation results show that RocksMash delivers
a better performance compared to RocksDB, high reliability, and cost-effectiveness.
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