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Abstract

Applications running on HPC systems waste time and energy
if they: (a) use resources inefficiently, (b) deviate from allocation
purpose (e.g. cryptocurrency mining), or (c) encounter errors and
failures. It is important to know which applications are running on
the system, how they use the system, and whether they have been
executed before. To recognize known applications during execution
on a noisy system, we draw inspiration from the way Shazam recog-
nizes known songs playing in a crowded bar. Our contribution is an
Execution Fingerprint Dictionary (EFD) that stores execution finger-
prints of system metrics (keys) linked to application and input size
information (values) as key-value pairs for application recognition.
Related work often relies on extensive system monitoring (many sys-
tem metrics collected over large time windows) and employs machine
learning methods to identify applications. Our solution only uses the
first 2 minutes and a single system metric to achieve F-scores above
95 percent, providing comparable results to related work but with a
fraction of the necessary data and a straightforward mechanism of
recognition.
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1 Introduction

Scientific applications need high computing power provided by High Per-
formance Computing (HPC) systems in order to answer scientific research
questions. Operating HPC systems is costly and applications are compet-
ing for resources. It is therefore necessary to ensure orderly and efficient
operations of HPC systems. The associated challenges are efficient energy
and resource management, optimal resource allocation and scheduling, and
orderly operations in the face of anomalies (including errors and misuse).

Operational Data Analytics (ODA) refers to operational data analysis
for HPC system optimization [3]. Monitoring and Operational Data An-
alytics (MODA) is a broader term that also encompasses data collection
(monitoring). MODA is a research field with the purpose of improving
HPC operations and research. Through MODA, answers and actionable
insights can be provided to the aforementioned challenges that go beyond
system health checks. MODA also raises its own challenges: avoid addi-
tional overhead, avoid heavy storage requirements, and provide low-latency
responses.

Motivation: Applications running on HPC systems waste time and
energy if they: (a) use resources inefficiently, (b) deviate from allocation
purpose (e.g. cryptocurrency mining [13]), or (c) encounter errors and
failures. It is important to know which applications are running on the sys-
tem, how they use the system, and whether they have been executed before.
Frequently used applications (e.g. for molecular dynamics or earthquake
simulation) are executed repeatedly over time, potentially with different
input sizes and by different users. Currently there is no mechanism for
keeping track of past application executions [4].

If we keep track of application executions and recognize that a job ex-
ecutes a known application, we can: (a) make predictions about resource
usage based on executions in the past (improving job scheduling [14] and
predicting energy consumption [12]), (b) detect deviations from past re-
source usage (indicating anomalies and potential errors), (c) detect resource
usage of known malicious applications (e.g. cryptocurrency mining [5]),
and (d) lower power consumption by reducing CPU frequency for memory-
bound applications [10].

Problem statement: To enable the aforementioned scenarios, we need
to first find a mechanism to recognize the repeated execution of known
applications in the presence of system noise and perturbations. In order to
not interfere with the system itself, we want to understand how applications
can be recognized in a lightweight and explainable manner.

Existing solutions: Related work often relies on extensive system
monitoring (many system metrics collected over large time windows) and
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employs machine learning methods to identify applications [6][7][8][9]. Such
solutions are unattractive for use in production because they are too data-
intensive and only provide high-latency responses after execution.

Proposed solution: To recognize known applications during execution
on a noisy system, we draw inspiration from the way Shazam recognizes
known songs playing in a crowded bar [2]. Our contribution is an Execution
Fingerprint Dictionary (EFD) that stores execution fingerprints of system
metrics (keys) linked to application and input size information (values) as
key-value pairs for application recognition.

Evaluation: We evaluate the proposed EFD through experiments on a
public data set containing labeled data (system metrics from CPU, memory,
and network) collected during repeated executions of multiple applications
with different input sizes on multiple nodes [6]. Our solution only uses the
first 2 minutes and a single system metric to achieve F-scores above 95
percent, providing comparable results to related work but with a fraction
of the necessary data and a straightforward mechanism of recognition.

2 Related work

Taxonomist by Ates et al. [5] used a machine learning approach to classify
applications executing on individual nodes. They used 721 system metrics
and a time window spanning the whole execution. The authors mentioned
but did not evaluate the potential to use their approach for smaller time
windows. For the EFD evaluation, we rely on the dataset [6] used in the
aforementioned work and compare against their results. Liu et al. [9] used
performance counters to classify HPC applications with machine learning.
They worked with application labels extracted from the executable name,
which does not contain information about input sizes. Motaki et al. [7] used
the Gath-Geva clustering algorithm on resource usage data to build clusters
of similar applications. They discussed the potential of clusters for applica-
tion identification but did not evaluate their solution from this perspective.
Ramos et al. [8] relied on performance counters to cluster similar applica-
tions. The authors noted that the same application is sometimes present in
multiple clusters, caused by input sizes changing application characteristics
or specific input sizes only triggering specific parts of the code, thus altering
application behavior.

Existing solutions often generalize application characteristics over differ-
ent input sizes and node configurations. Generalization can be problematic
if input sizes and node configuration change application behavior. In con-
trast, we do not generalize characteristics and we do not use machine learn-
ing on large amounts of data. Inspired by Shazam, we build a dictionary for
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execution fingerprints linked to application information of past executions.
Compared to related work, our approach uses considerably less data and
only requires a small time interval at the beginning of an execution.

Yamamoto et al. [4] followed an alternative approach: classification of
applications based on static job information (e.g. job script, and executable
files). Characteristics, like power consumption, can be estimated before
execution based on applications with similar job information that were ex-
ecuted in the past. In contrast to their work, we do not generalize based on
static job information, we directly recognize individual applications based
on resource usage.

Recognizing application executions is similar to recognizing music songs.
A well known music recognition service is Shazam, which recognizes short
recordings of songs played in potentially noisy environments [2]. Shazam’s
recognition mechanism has 4 aspects that are relevant for this work: (1)
using frequency as a statistical feature, (2) combining frequency peaks into
fingerprints, (3) temporally aligning fingerprints for recognition, and (4)
storing fingerprints in a hash-based lookup table [1]. Our work is a proof
of concept that focuses on the fourth aspect and uses a lookup table in
the form of a dictionary for execution fingerprints of HPC applications. As
statistical feature we compute the mean of resource usage measurements
during a small time interval at the beginning of an execution. We (cur-
rently) do not employ combinatorial fingerprints or temporal alignment.

3 Method

Our solution for application recognition is a dictionary-based approach that
stores execution fingerprints linked to application information. Figure 1
provides an overview of the Execution Fingerprint Dictionary (EFD).

Learning: The dictionary is built by learning on a set of repeated
executions with known application names. We construct execution finger-
prints (keys) that are linked to application information (values) and stored
as key-value pairs in the dictionary. Fingerprints contain the rounded mean
of measurements for individual nodes of a specific system metric during a
particular time interval of an execution. Fingerprints consist of: (a) metric
name, (b) node ID, (c) time interval, and (d) rounded mean. An example
fingerprint might look like this: [nr mapped vmstat, 0, [60:120], 6000.0].

An example EFD for the system metric nr mapped vmstat is shown in
Table 4, where the ’key’ column shows application execution fingerprints.
We chose the interval between 60 and 120 seconds after the beginning of an
application execution to avoid the perturbations in the initialization phase
while still reporting results relatively early during an execution.
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Figure 1: Overview of the execution fingerprint dictionary-based applica-
tion recognition mechanism. (1) Per-node resource usage measurements are
rounded to reduce precision (pruning) and added to the dictionary with
application information as key-value pairs. (2) Fingerprints of unlabeled
executions are looked up. (3) Application names are returned to the user
if matches are found.

Pruning: Computing the mean produces precise floating point values
that are unlikely to repeat due to system perturbations and noise. Com-
puting distance measures for every example introduces unnecessary com-
putational steps. Inspired by Shazam, we continue with low complexity by
relying on dictionary-based matching of fingerprints with rounded values.

To get matching fingerprints, we need to guarantee that the same mea-
surement gets rounded in the same way during training and testing. There-
fore, we need to know how to round a measurement before seeing it. For
this purpose we employ a rounding method with a configurable parameter
called rounding depth. The rounding mechanism is showcased in Table 1.
Rounding depth defines the position of a non-zero digit, counting from the
left, to which we will round.

Table 1: Rounding Depth for Measurements
Original Rounding Depth

Value ... 5 4 3 2 1
1358.0 ... - 1358.0 1360.0 1400.0 1000.0
5.28 ... - - 5.28 5.3 5.0
0.038 ... - - - 0.038 0.04

Similar but distinct measurements will be rounded to the same finger-
print. Fingerprints (keys) are unique in our dictionary, rounding drastically
reduces the number of entries and ”prunes” the dictionary. No pruning will
lead to precise fingerprints that have high exclusiveness and low repetition
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count. Excessive pruning will lead to heavily rounded fingerprints that
have low exclusiveness and high repetition count. Rounding depth is the
only tunable parameter in the EFD. During the learning phase we find the
optimal rounding depth through cross-fold validation within the training
set.

Testing: Given an execution of the test set we construct fingerprints
with the same rounding depth as in the learning phase, for each node of the
execution. Fingerprints of each node are looked up in the dictionary, and
the most matched application name is returned. If multiple applications
have the same number of matches (potentially caused by key collisions) the
EFD cannot distinguish between them and will return an array of these
application names. For evaluation purpose we consider the first application
name in the array.

4 Evaluation and Results

To evaluate the EFD we compare F-scores (harmonic mean of precision
and recall) to the Taxonomist by Ates et al. [5]. The application name–
input size pairs contained in the dataset are shown in Table 2. The dataset
contains repeated executions on multiple nodes. The publicized dataset
is a subset of the original, containing only one third of the repeated exe-
cutions and only 562 of the original 721 system metrics. System metrics
from CPU, memory, and network were collected every second from every
node of a given execution through the LDMS monitoring solution [11]. For
more information on the applications, the HPC system, and the employed
monitoring solution, we refer to the work of Ates et al. [5].

Table 2: Dataset used for Evaluation

Applications
Input
Sizes

Node
Count

Repeated
Executions

FT, MG, SP, LU, BT, CG,
CoMD, miniGhost*,

miniAMR*, miniMD*, kripke*

X, Y, Z
L*

4
32

30
6

* Input L is only available for a subset of applications.

Experiments: We evaluate the EFD through different offline experi-
ments that showcase utility and recognition capabilities. Executions have
two identifying dimensions: application name and input size. The experi-
ments differ in the way the learning and testing sets are split along those
dimensions:
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1. Normal fold: 5-fold cross validation on the full dataset (all applica-
tions and inputs in both learning and testing.)

2. Soft input: Extends normal fold, removes individual input sizes from
learning, testing sets stay the same.

3. Soft unknown: Extends normal fold, removes individual applications
from learning, testing sets stay the same.

4. Hard input: Learning set contains 3 out of 4 input sizes and testing
set only the 4th (exclusively testing with unknown input sizes).

5. Hard unknown: Learning set contains 10 out of 11 applications and
testing set only the 11th (exclusively testing with unknown applica-
tions).

F-score and cross-fold validation are implemented using the sci-kit learn
library [15]. In the ”soft / hard input” experiments, we test the capabil-
ity of the dictionary to recognize applications with unknown input sizes.
Each input size is removed once and results are averaged. We look at the
application name to decide correctness (e.g. returning FT X for FT Y is
considered correct). In the ”soft / hard unknown” experiments we test
whether the dictionary wrongfully recognizes unknown applications. In the
latter case we consider finding no matching fingerprints as a correct pre-
diction for unknown applications. Each application is removed once and
results are averaged.

Figure 2: Comparison between Taxonomist (using 721 system metrics and
the entire execution time window) and EFD (using only 1 system met-
ric nr mapped vmstat and only the first 2 minutes of the execution time
window). The ’hard input’ and ’hard unknown’ experiments were not con-
ducted in the Taxonomist [5].
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”Soft” experiments reflect normal operations, where some applications
and inputs are known, while others are unknown. ”Hard” experiments have
very harsh criteria for success, because we exclusively test with unknown
applications or input sizes. Figure 2 shows the results of our solution com-
pared to the results reported by the Taxonomist. Table 3 shows an excerpt
of individual results of other system metrics using the normal fold experi-
ment.

Table 3: Excerpt of Individual System Metric Results

System Metric Name
F-score

Normal Fold
nr mapped vmstat 1.0
Committed AS meminfo 1.0
nr active anon vmstat 1.0
nr anon pages vmstat 1.0
Active meminfo 0.99
Mapped meminfo 0.99
AnonPages meminfo 0.97
MemFree meminfo 0.97
PageTables meminfo 0.97
nr page table pages vmstat 0.97
AMO PKTS metric set nic 0.96
AMO FLITS metric set nic 0.95
PI PKTS metric set nic 0.95
... ...

5 Discussion

An example EFD based on the system metric nr mapped vmstat is shown
in Table 4 and discussed below. This EFD was built with a subset of the
applications and input sizes and a fixed rounding depth to reduce the size
and show a full example.

Exclusive fingerprints and collisions: The example EFD in Table 4
shows how recognition can be achieved through application exclusive ex-
ecution fingerprints. It also shows a collision between SP and BT from
the NAS parallel benchmark suite [16], which are applications known to be
similar [17]. If multiple applications have the same number of matches, the
EFD cannot distinguish between them and will return an array of these
application names. For evaluation purpose we consider the first application
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name in the array, in this case SP. The example EFD was fixed to rounding
depth 2. Rounding depth 3 avoids this collision and also recognizes BT.

Recognizing applications with unknown input: Depending on
the application and system metric considered, execution fingerprints re-
peat even for different application input sizes. This, however, does not
apply to all applications (e.g. miniAMR). This behavior can be exploited
to recognize some applications executed with unknown input sizes. HPC
workload variation is problematic for our recognition approach and the
question whether we can find suitable input independent system metrics for
larger sets of applications remains open. The results of the ”hard input”
experiment, shown in Figure 2, show that there is room for improvement.

Table 4: Example Execution Fingerprint Dictionary
Key (execution fingerprint) Value

Metric Name Node Interval Mean Application + Input Size

nr mapped vmstat 0 [60:120] 6000.0 ft X, ft Y, ft Z

nr mapped vmstat 1 [60:120] 6000.0 ft X, ft Y, ft Z

nr mapped vmstat 2 [60:120] 6000.0 ft X, ft Y, ft Z

nr mapped vmstat 3 [60:120] 6000.0 ft X, ft Y, ft Z

nr mapped vmstat 0 [60:120] 6100.0 mg X, mg Y, mg Z

nr mapped vmstat 1 [60:120] 6100.0 mg X, mg Y, mg Z

nr mapped vmstat 2 [60:120] 6100.0 mg X, mg Y, mg Z

nr mapped vmstat 3 [60:120] 6100.0 mg X, mg Y, mg Z

nr mapped vmstat 0 [60:120] 7600.0 sp X, sp Y, sp Z, bt X, bt Y, bt Z

nr mapped vmstat 1 [60:120] 7500.0 sp X, sp Y, sp Z, bt X, bt Y, bt Z

nr mapped vmstat 2 [60:120] 7500.0 sp X, sp Y, sp Z, bt X, bt Y, bt Z

nr mapped vmstat 3 [60:120] 7100.0 sp X, sp Y, sp Z, bt X, bt Y, bt Z

nr mapped vmstat 0 [60:120] 8400.0 lu X, lu Y, lu Z

nr mapped vmstat 1 [60:120] 8300.0 lu X, lu Y, lu Z

nr mapped vmstat 2 [60:120] 8300.0 lu X, lu Y, lu Z

nr mapped vmstat 3 [60:120] 8300.0 lu X, lu Y, lu Z

nr mapped vmstat 0 [60:120] 7900.0 miniGhost X, miniGhost Y, miniGhost Z

nr mapped vmstat 1 [60:120] 7900.0 miniGhost X, miniGhost Y, miniGhost Z

nr mapped vmstat 2 [60:120] 7900.0 miniGhost X, miniGhost Y, miniGhost Z

nr mapped vmstat 3 [60:120] 7900.0 miniGhost X, miniGhost Y, miniGhost Z

nr mapped vmstat 0 [60:120] 7800.0 miniAMR X

nr mapped vmstat 1 [60:120] 7800.0 miniAMR X

nr mapped vmstat 2 [60:120] 7800.0 miniAMR X

nr mapped vmstat 3 [60:120] 7800.0 miniAMR X

nr mapped vmstat 0 [60:120] 8000.0 miniAMR Y

nr mapped vmstat 1 [60:120] 8000.0 miniAMR Y

nr mapped vmstat 2 [60:120] 8000.0 miniAMR Y

nr mapped vmstat 3 [60:120] 8000.0 miniAMR Y

nr mapped vmstat 0 [60:120] 11000.0 miniAMR Z

nr mapped vmstat 1 [60:120] 11000.0 miniAMR Z

nr mapped vmstat 2 [60:120] 11000.0 miniAMR Z

nr mapped vmstat 3 [60:120] 11000.0 miniAMR Z

nr mapped vmstat 2 [60:120] 10000.0 miniAMR Z

nr mapped vmstat 1 [60:120] 10000.0 miniAMR Z

The impact of node configuration: Certain applications use nodes
in consistently different ways, e.g., SP and BT from the NAS parallel bench-
mark suite [16]. The absence of fingerprints where the nodes are not used
differently, indicate that all training examples used the nodes in this way.
The Taxonomist evaluates and labels individual nodes, whereas the EFD
evaluates the entire execution. Applications on HPC systems are executed
on multiple that can be used differently. It, therefore, stands to reason that
we recognize an application through all involved nodes.
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Measurement variation and system noise: Some application name–
input size pairs produce more than one fingerprint per node (e.g. mini-
AMR Z). Different learning examples may produce different fingerprints
due to measurement variations, potentially caused by system perturbations
and noise. Pruning the dictionary can soften the impact of measurement
variations, but excessive pruning will produce generic fingerprints that are
no longer exclusive.

Robustness against unknown applications: If unknown applica-
tions produce execution fingerprints that are not in the dictionary, they
will not be recognized and thus correctly labeled as unknown. This is an
in-built safeguard against unknown applications. However, it is unclear
whether we can build exclusive fingerprints for larger sets of applications.
Going forward, we can make fingerprints more exclusive by combining mul-
tiple system metrics and / or multiple time intervals from the execution
time window. The results of the ”hard unknown” experiment, shown in
Figure 2, reflect the room for improvement regarding EFD’s recognition
robustness against unknown applications.

6 Conclusion

This work contributes a proof of concept that a Shazam-inspired dictionary-
based approach can recognize repeated executions of applications on HPC
systems. The proposed EFD solution recognizes a repeated application
execution with F-scores above 95 percent within the first 2 minutes by only
using a single system metric. These results provide comparable F-scores to
related work but with a fraction of the necessary data and a straightforward
mechanism of recognition.

The way application execution fingerprints are built allows the co-existence
of fingerprints for different system metrics and time intervals within the
same dictionary. This opens future work on more exclusive, temporally
aligned, and combinatorial fingerprints, which would bring the EFD closer
to the mechanism used by Shazam [1]. If application execution fingerprints
are sufficiently exclusive, learning new applications is as simple as adding
new keys to the dictionary. Populating the dictionary with different time
intervals could enable resource usage prediction, by using the dictionary
in reverse, namely by looking up applications to report potential future
resource usage based on resource usage in the past.
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