
On the Formal Verification of Routing in Material Handling Systems

Thomas Klotz1, Norman Seßler1, Bernd Straube1, Eva Fordran1, Karsten Turek2, and Jens Schönherr3

Abstract— The correct design of complex material handling
systems (MHS) is a challenging task, mainly because of short
development cycles and ever increasing system sizes. For
baggage handling systems (BHS) at airports, the correct design
of routing strategies is of special importance, as these strategies
are non-trivial but safety-critical.

This paper presents a novel approach to prove the correctness
of routing in MHS. The approach is based on assume-guarantee
reasoning which allows to derive proofs of the overall system
using a divide and conquer strategy. The proposed approach is
automated and has been implemented in a tool. The application
of the approach is shown using a real-world BHS.

I. INTRODUCTION

The correct design of today’s material handling sys-

tems (MHS) becomes more and more difficult mainly be-

cause of their growing size and complexity. One typical

example for such systems are baggage handling systems

(BHS) at airports connecting a large number of gates and

terminals. These systems may consist of several hundreds or

even thousands of single system components.

Especially the implementation of complex routing strate-

gies is cumbersome and error-prone, as these strategies have

to deal with load balancing, alternative routes in case of a

failure, several levels of security checks, etc. In addition,

routing can partially be implemented based on local strate-

gies on Programmable Logic Controller level and/or based

on global strategies provided by a material flow computer

(MFC).

By validating the logistic system using simulation, design

errors can be found. However, the absence of design errors

cannot be proven. Model checking [1] as a formal method,

however, provides a general means to prove the correctness

of the system with regard to its specification.

Petri nets have been utilized for analysis of logistic sys-

tems at a high level of abstraction, e.g. for modeling supply

chains and workflows, schedulability analysis, stochastic

evaluation, etc. An overview on recent developments can be

found in [2]. However, this work aims at the verification of

the material flow control system and the conveying controls.

The field of formal verification of MHS has been tackled

by few works only. Düdder et al. [3] discuss the advantages

This work was partially supported by the German Research Foundation
under grants STR 412/4-1 and SCHM 2689/3-1.

1T. Klotz, N. Seßler, B. Straube, and E. Fordran are with the Fraunhofer
Institute for Integrated Circuits, Zeunerstr. 38, Dresden 01069, Germany
(e-mail: thomas.klotz@eas.iis.fraunhofer.de).

2K. Turek is with the Chair of Logistics Engineering, Institute of Mate-
rial Handling and Industrial Engineering, Technische Universität Dresden,
Dresden 01187, Germany (e-mail: karsten.turek@tu-dresden.de).

3J. Schönherr is with the Dresden University of Applied Sciences,
Dresden 01069, Germany (e-mail: schoenherr@htw-dresden.de).

of applying model checking in the field of MHS and present

the model of a conveyor. In [4], [5], it is shown how to

model an MHS in order to apply model checking. However,

the whole modeling is done manually for each system.

Another related field is the verification of routing algorithms

of communication networks. Renesse and Aghvami [6] show

how to formally verify a five node network using the SPIN

model checker. The state space explosion seems to hamper

the application to larger networks. Camara et al. [7] propose

an approach to the verification of mobile ad-hoc networks.

Abstractions were applied to reduce the state space.

However, the approaches mentioned above do not utilize

model libraries in order to allow reuse. On the contrary, the

authors of this paper introduced a modeling methodology for

MHS that allows to apply model checking to verify these

systems [8], [9]. The problem with the existing approach

is scalability, i.e. it can only be applied to systems of a

moderate size.

Thus, in order to cope with this problem, a compositional

approach for the verification of MHS has been developed.

The approach is based on the theory of assume-guarantee

reasoning which allows to derive properties of the overall

systems from proving properties of its subsystems. There-

fore, the MHS is partitioned into subsystems that are sub-

sequently verified separately. This paper focusses especially

on the verification of routing in MHS.

The paper is organized as follows: The necessary prelimi-

naries are given in Section II. The modeling methodology for

MHS is revisited in Section III. A compositional approach to

the verification of routing in MHS is thoroughly explained

in Section IV. The application of the approach to verify the

routing in the BHS of an international airport, as a real-world

case study, is presented in Section V. Section VI concludes

the work and provides directions for future work.

II. PRELIMINARIES

Model checking [1] allows to automatically prove whether

a set of properties representing the specification holds on a

model. Model checking systematically explores all the states

of the model in order to check the required properties. If

a property does not hold on the model, a counterexample

in terms of a simulation trace is generated and presented to

the user to ease debugging. The model is typically specified

using finite state machines (FSM) [10]. Additionally, the re-

quirements to the system have to be formalized as properties

in terms of temporal logic formulas.

A major problem of model checking is the so-called state

space explosion problem. This refers to the fact that the

number of states of a system grows exponentially with the



size of the system description. One method to tackle the

state space explosion problem is compositional verification.

It follows the principle of divide and conquer: properties of a

complex system are derived from properties of its modules.

With this, the model checking can be carried out on the single

modules separately, and thus, state explosion is reduced.

However, modules are usually designed in such a way

that they only fulfill certain properties in a given envi-

ronment (context). Based on this idea, assume-guarantee

reasoning (AGR) [11] has been proposed. In AGR, tuples

of the form 〈A〉M 〈P 〉 are checked by stating that if the

module M is part of a system that satisfies the assumption

A, then it is guaranteed that the property P holds.

To prove a property P for the composition of two FSMs

M1 and M2, the basic assume-guarantee rule [12] can be

used:

〈A〉 M1 〈P 〉
〈true〉 M2 〈A〉

〈true〉M1 ‖ M2 〈P 〉
(AGR-2)

The rule denotes that if M1 satisfies P under the as-

sumption A, and if M2 satisfies assumption A uncondi-

tionally, then the composition of M1 and M2 satisfies P .

By repeatedly applying this rule, it can be generalized to n

modules [13]:

〈A1〉 M1 〈P 〉
〈A2〉 M2 〈A1〉

...

〈An−1〉 Mn−1 〈An−2〉
〈true〉 Mn 〈An−1〉

〈true〉M1 ‖ M2 ‖ . . . ‖ Mn 〈P 〉
(AGR-N)

Grumberg and Long [12] proposed the temporal logic

A-Computation Tree Logic (ACTL) to be appropriate for

using model checking to do AGR. For ACTL, a standard

model checker is sufficient to prove whether a formula is

true for all systems containing a certain module.

A problem of AGR is to determine appropriate assump-

tions. The assumptions have to be a valid abstraction of the

entire system, though, if an assumption is too weak, false

negatives may occur. Thus, automatically finding sufficient

assumptions is a key issue in AGR.

III. MODELING METHODOLOGY FOR MHS

This section briefly explains the existing modeling

methodology for MHS [8], [9]. The notion of MHS elements

is revisited in Section III-A, and then, a description of the

MHS network is proposed in Section III-B. Section III-C

introduces MHS elements that allow routing.

A. MHS elements

The technical MHS is decomposed into a quantity of com-

monly used MHS components. For each of these technical

MHS components, a behavioral model, the MHS element,

is set up. This MHS model abstracts from the technical

behavior in order to provide a discrete model. The model

MHS 

Element 

i

INi OUTi

Prei Givei

Stopi

MHS 

Element 

i+1

MHS 

Element 

i-1

Errori

INi-1

Prei-1

Stopi-1

OUTi+1

Givei+1

Errori+1

Givei-1

OUTi-1

Errori-1

Suci Takei+1

INi+1

Prei+1

Stopi+1

Cleari-1 Suci+1Acki+1

Acki Cleari+1

Takei-1

Suci-1 Takei

Acki-1 Cleari

Fig. 1. Interconnection of MHS elements

of the technical MHS is obtained by combining instances

of the single MHS elements to a network of interconnected

MHS elements. This model is then used for formal verifica-

tion, simulation, etc.

To discretize the technical MHS wrt. space and time, the

following assumptions and restrictions are applied:

• The length of a cargo is 1 Length Unit (LU).

• At each discrete time step t, a cargo can move 0 or

1 LU.

• At each place, there can be only one or no cargo.

• The set C defines the types of cargos that have to be

distinguished. A cargo type is specified by a letter such

as a, b, c, . . .

• The special cargo type L ∈ C represents “no cargo”.

MHS elements are modeled using FSMs and have a

defined set of input and output variables. MHS elements can

be interconnected in an arbitrary order such that the resulting

network itself can again be regarded as an MHS model. That

means, an MHS model is a network of MHS elements and/or

MHS subnetworks which, in turn, are such interconnections.

Figure 1 shows a simple example of a network consisting

of a series connection of three MHS elements. The sub-

sequent MHS elements i − 1, i, and i + 1 are linked by

connecting and identifying the variables OUT i−1 → IN i,

Givei−1 → Prei, OUT i → IN i+1, Givei → Prei+1,

Clear i → Ack i−1, Takei → Suci−1, Clear i+1 → Ack i,

and Takei+1 → Suci.

The variables have a given semantics [8], e.g. the variable

Give may only become 1 if the MHS element wants to

transfer a cargo. The variables Clear and Ack are only

necessary for segmented MHS elements, where the receipt of

each cargo has to be acknowledged before the next cargo can

be transported. For MHS elements transporting more than

one cargo at a time, these signals can be omitted.

MHS elements that have been modeled are, amongst

others, conveyors, turntables, pushers with routing function,

cargo sources, and cargo sinks.

B. MHS network

This section introduces a description of MHS networks

(cf. Figure 2). The following notation is used: regular up-

percase letters refer to single components and calligraphic

uppercase letters to sets of components, e.g. N is a set of

components with the type N. Lower case italic expressions

refer to data types. The symbol “|” describes an alternative,

“[” and “]” mark optional components. Moreover, a function

to return a subcomponent is defined by the subcomponent



MHS network N := 〈E ,SRC,SNK, CN ,Sin ,Sout ,
Cglobal 〉

MHS element E := 〈ID,ET, CP in , CPout ,Sin ,Sout ,
[EP]〉

Source SRC := 〈ID,CPout ,Sin ,Sout , Cout〉
Sink SNK := 〈ID,CPin ,Sin ,Sout〉
Connection port CP := 〈CNin | CNout 〉
Connection CN := 〈ID,CPogn ,CPtgt 〉
Signal S := 〈ID,ST〉
Signal type ST := 〈signal type enum〉
Element type ET := 〈element type enum〉
Element parameter EP := 〈int value | C〉
Cargo C := 〈cargo type enum〉
Identification ID := 〈string value〉

Fig. 2. Description of the MHS network

name followed by round brackets, e.g. the expression ET(E)
represents a function to return the element type of an

MHS element E.

An MHS network N is a network of MHS elements E .

These elements are connected to each other with connections

from CN . An MHS element may be connected to a source or

sink from SRC and SNK, resp. Note that sources and sinks

are also MHS elements, however, they are handled separately

here. The different types of cargos occurring in the network

are given as Cglobal . An MHS network has input (output)

signals Sin (Sout ). The global stop function is realized by

adding the global signal S = 〈〈“Stop”〉 , 〈boolean〉〉 to each

element.

ET defines the type of an MHS element and, hence, the

number of input and output connection ports CPin and

CPout , resp.; its parameters are given in EP . The type can,

for instance, refer to a conveyor where a parameter is its

length.

A source has one output connection port CPout and a set

of cargo types Cout it can generate, while a sink has only

one input connection port CPin. Through a connection port,

the single input or output variables of an MHS element, such

as Give , can be accessed. A connection is a link between

an origin connection port CPogn and a target connection

port CPtgt, and describes the wiring of MHS elements

(cf. Section III-A).

Signals have an ID and a type. The element type is an

enumeration value. The cargo type represents the type of a

good that is transported through the MHS network. Finally,

the identification provides a unique identifier.

C. MHS elements with routing function

Figure 3 sketches the concept of an MFC and global

routing strategies in the existing modeling methodology. Thin

solid lines refer to signals from MHS elements, dashed lines

represent signals from the MFC to MHS elements, and thick

solid lines mark connections between MHS elements. Note

that only the signals needed for the illustration are depicted.

At the MHS element i, incoming cargos can be routed to

two different succeeding elements. The routing decision, i.e.

which successor is chosen in a certain situation, can be based

on the current system parameters or on the history. Moreover,

the routing decision may depend on local conditions, i.e. for

MHS 

Element 

i-1

MHS 

Element

i

MHS 

Element 

k

MHS 

Element 

i+2

MHS 

Element 

i+1

MHS 

Element 

j

Routing Decision

Fig. 3. Routing in MHS network by Material Flow Computer (MFC)

the example in Figure 3 from MHS elements i−1, i+1, and

i+2, or global conditions provided from the MFC. The MFC

receives information from all MHS elements, and thus, it can

implement complex routing strategies such as load balancing,

alternative routes etc. The MFC is also modeled using FSMs.

IV. COMPOSITIONAL VERIFICATION APPROACH

As mentioned in Section I, the MHS networks have to be

partitioned into subnetworks. This is described in Section IV-

A. Section IV-B introduces the compositional verification

approach for routing in MHS. The algorithms are given in

Section IV-C, while the verification results are explained in

Section IV-D. Finally, the implementation of the algorithms

is briefly discussed in Section IV-E.

A. Partitioning of MHS networks

First, the designer partitions the original MHS network

(cf. Figure 2) into subnetworks leading to the description

presented in Figure 4. (Practical aspects on how the partitions

should be chosen are discussed in Section V.) Note that the

figure only shows the components that have been changed;

the remaining components stay unaltered. In the following,

the changed components are briefly explained.

In an MHS network, subnetworks, sources, and sinks are

connected via connections CN ; sources and sinks are viewed

in such a way that they are always outside of subnetworks.

An MHS subnetwork is composed of MHS elements E .

Connections CN link MHS elements to other elements by

their input and output connection ports CPin and CPout ,

resp. Connection ports of a subnetwork allow for connections

with sources, sinks, and other subnetworks.

In order to verify routing, information about the cargo

types in the MHS network is needed. Therefore, a sink refers

to the set Cspec defining the cargo types that are required to

reach this sink. This set is derived from the specification

of the MHS. Additionally, the set Cport characterizes the

cargo types at the connection ports that are determined during

verification.

B. Verification method

The verification goal is to prove the correctness of the

routing in the given partitioned MHS network, i.e. whether

the set of determined cargo types at all sinks is the same as

the specified cargo types Cspec.

First, it is assumed that the partitioned MHS network does

not have feedback loops between MHS subnetworks. The



MHS network N := 〈SN ,SRC,SNK, CN ,Sin ,Sout ,
Cglobal〉

MHS subnetwork SN := 〈ID, E , CPin , CPout , CN ,Sin ,Sout〉
Sink SNK := 〈ID,CPin,Sin ,Sout , Cspec〉
Connection port CP := 〈〈〈CNin〉|〈CNout〉|〈CNin ,CNout〉〉,

Cport〉

Fig. 4. Description of the partitioned MHS network

handling of feedback loops is discussed at the end of this

section.

The method to formally verify routing works as follows:

the partitioned MHS network N without feedback loops

between MHS subnetworks spans an acyclic directed graph

where the direction is given by the flow of the cargos, i.e.

from sources SRC through subnetworks SN to sinks SNK.

At each of the sources, the possible cargo types being

generated Cout(SRC) are defined. Thus, from the given

cargo types at the sources, without any further assump-

tions, the possible cargo types CPout (SN) at the output

connection ports of the subnetworks directly connected to

theses sources can be formally verified. This first step refers

to 〈true〉Mn 〈An−1〉 in AGR-N (cf. Section II). Based on

the verified assumptions, i.e. the proven cargo types at

the input connection ports, the possible cargo types at the

output connection ports of subnetworks directly connected

to the subnetworks from the first step can be verified

(〈An−1〉Mn−1 〈An−2〉), and so on. Finally, whenever these

steps lead to the verification of the output connection ports

of subnetworks directly connected to sinks, the algorithm

terminates, as the properties of interest (possible cargo types

at sinks) have been proven (〈A1〉M1 〈P 〉).
For MHS networks with feedback loops between

MHS subnetworks a preprocessing is done. While feedback

loops inside MHS subnetworks stay untouched, feedback

loops connecting MHS subnetworks are resolved: The begin-

ning of each feedback loop is replaced by a source creating

the cargo types Cout and an appropriate sink consuming

them. The cargo types Cout that are fed back into the

MHS network are automatically computed: starting with

Cout := {L}, the set Cport(CPin (SNK)) of cargos reaching

the sink is determined using the verification algorithm ex-

plained above. If Cout 6= Cport(CPin(SNK)), then Cout :=
Cport(CPin(SNK)) and the verification is run again. This

calculation terminates whenever Cout = Cport(CPin(SNK)).
Then, Cspec of this sink is set to Cout .

C. Description of the algorithms

The algorithm to verify routing in partitioned MHS net-

works is shown in Algorithm 1. In lines 1–4, the possible

cargo types at each connection port are initialized to the

empty set. Next, the available cargo types at the sources are

propagated through connections to the connection ports of

the MHS subnetworks directly connected to these sources

(lines 5–7).

Afterwards, the set SN verify of subnetworks to be verified

is initialized to all subnetworks of the MHS network (line 8).

Each subnetwork is then handled as follows (lines 10–15):

input : MHS network N consisting of subnetworks SN
output: Cargo types at all sinks SNK of N

// Initialize

1 foreach CN ∈ CN (N) do
2 Cport(CPogn(CN)) := ∅
3 Cport(CPtgt(CN)) := ∅
4 end

// Propagate cargo types from sources

5 foreach SRC ∈ SRC(N) do
6 Cport(CPtgt(CNout(CPout(SRC)))) := Cout(SRC)
7 end

8 SN verify := SN (N)

// Main loop

9 while true do
// Verify subnetworks

10 foreach SN ∈ SN verify do
11 if ∀CP ∈ CPin (SN). Cport 6= ∅ then

// Compute cargo types of current

subnetwork

12 ComputeCargoTypes(N,SN)

13 SN verify := SN verify \ SN
14 end
15 end

// Cargo types at all sinks determined?

16 if ∀SNK ∈ SNK(N). Cport(CPin (SNK)) 6= ∅ then
17 foreach SNK ∈ SNK(N) do
18 if Cport (CPin (SNK)) = Cspec(SNK) then

// No routing error found

19 else if Cspec(SNK) ⊂ Cport (CPin (SNK)) then
// Routing error candidate

20 else
// Routing error found

21 end
22 end

23 return
24 end
25 end
Algorithm 1: Verify routing in partitioned MHS network

If all possible cargo types at input connection ports of a

subnetwork have already been determined (line 11), then

the routing in this subnetwork SN will be determined by

calling ComputeCargoTypes (line 12, cf. Algorithm 2

and explanation below). After this, the currently handled

MHS subnetwork is removed from the set SN verify (line 13).

Whenever all possible cargo types at all sinks have

been determined (line 16), the verified routing results are

compared to the specification (lines 17–22). The possible

verification results are discussed in Section IV-D.

The function ComputeCargoTypes (cf. Algorithm 2)

computes all the cargo types Cport that can reach the output

connection ports CPout of the given subnetwork (lines 1–

10). Therefore the assumptions about the incoming connec-

tion ports of the subnetwork, which have been proven in

previous steps, are used as environment of the subnetwork.

Each cargo type is processed separately (lines 3–7). There,

the function BlockType(CPout ,C) (line 4) calls the model

checker to prove that the given cargo type C cannot be

transferred at the output connection port CPout . This is

realized by trying to prove the ACTL (cf. Section II) formula



AG (¬ (CPout .OUT = C))

stating that there is no state where C reaches CPout . If the

outcome is true, the given cargo type C is added to the set of

blocked cargo types Cblock of this connection port (line 5).

After all cargo types have been examined, the set of cargo

types Cport that can reach CPout is determined (line 8). This

set contains all the cargo types that are not blocked at CPout .

From this follows the correctness of the ACTL formula

AG





∨

∀c∈Cport(CPout)

(CPout .OUT = c)





which specifies the cargo types at CPout . This formula

is used as an assumption (“source”) for the succeeding

subnetworks directly connected to this subnetwork.

Finally, this result is propagated from the current connec-

tion port CPout to the succeeding subnetwork (line 9).

D. Verification results

For each sink SNK, the verified set of cargo types

Cport(CPin(SNK)) is compared to the given set of cargo

types from the specification Cspec(SNK), and it results:

• Cspec(SNK) = Cport(CPin(SNK)): no routing errors

found as both sets are the same.

• Cspec(SNK) ⊂ Cport(CPin(SNK)): routing error can-

didate found as there is at least one not expected cargo

type reaching this sink.

• else: routing error found because at least one of the

required cargo types cannot reach this sink.

The reason for the second case can be either a real routing

error or a false negative caused by too weak assumptions

(cf. Section II). Hence, the designer has to review the

intermediate results Cport by further analyses. False negatives

can occur, e.g. if the routing in a subnetwork depends on

specific sequences of cargos provided from the preceding

subnetwork. However, this kind of routing is not common in

practice.

The approach can only prove which cargo types may reach

a sink but not which cargo types will reach it.

E. Implementation

The presented approach has been implemented in the

software tool MHSVer that includes a library of all the

existing MHS elements. As the backend, the model checker

NuSMV [14] has been incorporated using the nusmv-

tools [15]. From a given partitioned MHS network N and

the specified cargo types at all sinks Cspec(SNK), MHSVer

automatically carries out the verification as described in Sec-

tion IV-C.

First, MHSVer reads the partitioned MHS network. In

each of the steps, the NuSMV code for the subnetwork to

be verified is generated. Additionally, the already proven

assumptions are transformed into a NuSMV module (cf. Sec-

tion II) in order to prove the next assumption using NuSMV.

Based on the generated code, NuSMV is called, and the

model checking results are processed by MHSVer.

input : MHS network N and subnetwork SN
output: Possible cargo types at all output connection ports

CP of subnetwork SN
1 foreach CPout ∈ CPout(SN) do
2 Cblock := ∅

3 foreach C ∈ Cglobal(N) do
4 if BlockType(CPout ,C) then
5 Cblock := Cblock ∪ C
6 end
7 end

8 Cport(CPout) := Cglobal (N) \ Cblock

// Propagate cargo types

9 Cport(CPtgt(CNout(CPout))) := Cport (CPout)

10 end
Algorithm 2: ComputeCargoTypes: Computes cargo

types at outgoing connections ports of a subnetwork

V. EXAMPLE

Figure 5 shows the layout of a BHS at an airport. From

the 48 check-in lines A , B and the transfer gate F ,

domestic and international bags enter the BHS. In this BHS,

only international bags have to be screened, and thus, are

considered uncleared. The bags from the check-in block A

are identified by the automatic tag reader (ATR) C , and

then transported to the lower main line E of the BHS,

whereas bags from check-in blocks B , and transfer bags F

are scanned at the ATR D , and thereafter fed into the

upper main line G . In case a tag could not be identified

by the ATR, these bags are routed to the manual encoding

station H , and subsequently fed back into the upper main

line of the BHS.

Owing to the fact that domestic bags bypass checked-

baggage-screening (CBS) M , they are routed to the lower

main line by taking link I ; if this link is too populated,

these bags have to take the link K . With this, domestic

bags take the outer loop and are routed to the inner make-

up carousels N . In contrast, uncleared international bags

are routed to one of the two CBS stations M by using

the two before mentioned links. If the access to the inner

CBS station L is too populated, incoming bags are assigned

to the outer CBS station. However, if a bag could not be

cleared automatically, this bag is transferred to the screening

station P for manual inspection. All cleared international

bags are routed to the outer two make-up carousels O .

From the make-up carousels, the bags are transported to their

departing aircraft.

The overall MHS network consists of 364 MHS elements,

including, amongst others, 233 conveyors, 55 mergers, and

11 pushers. The whole MHS network could not be verified

without partitioning due to state space explosion. However,

with the compositional approach presented in this paper, a

number of safety-critical properties with regard to routing

functionality have been proven automatically using the pro-

posed compositional verification method (cf. Section IV),

e.g. no uncleared international or unidentified bags can

reach a plane; only domestic bags reach the inner make-

up carousels and only international ones the outer make-



Uncleared bags

Domestic bags

International bags

ATR read failure

A B

C

D

E

F

H

G I

K

L

M

N O

P

Fig. 5. Layout of a BHS at an international airport

up carousels; only uncleared bags arrive the CBS stations;

only unidentified bags are manually scanned. Therefore, the

network has been split up into 13 subnetworks. The only

feedback loop that had to be resolved is the outer loop; it has

been cut between F and G . The overall verification took

210 seconds (Intel Core i5-2520M@2.5GHz, 4GB RAM,

Windows 7, NuSMV 2.5.3).

By increasing the number of subnetworks to 83, the

verification time has been further reduced to 15 seconds.

This suggests, at first sight, to split up the MHS network

into as many subnetworks as possible. However, it has to be

taken into account that false negatives can occur if the routing

strategy in a subnetwork depends on MHS elements outside

of this subnetwork. Thus, if possible, all MHS elements

affecting the routing in a subnetwork should be in this

subnetwork.

This case study shows that with the discussed approach,

important properties of the BHS can be proven automatically

in a reasonable amount of time.

VI. CONCLUSION

This paper presented an approach to prove the routing

in MHS by compositional verification. The application of

the approach has been shown using a real-world example.

Experimental results are promising as the approach scales

well with the size of the MHS network. Furthermore, the

approach has advantages over simple routing graph analysis

because complex sequential routing strategies are also taken

into account.

Current research focusses on automatic partitioning of

MHS networks into subnetworks, where the size of the

subnetworks is adjusted dynamically with regard to routing

strategies, and the time and/or memory needed by the model

checker. Additionally, when possible, proofs of subnetworks

should be carried out in parallel. Therefore, topological sort-

ing can be applied. Moreover, the discussed compositional

verification approach will be extended to prove not just

routing but arbitrary properties of MHS.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. The
MIT Press, 1999.

[2] H. Chen, K. Labadi, and L. Amodeo, “Modeling, analysis, and
optimization of logistics systems petri net based approaches,” in Proc.

Int. Conf. Service Systems and Service Management, 2006, pp. 575
–582.

[3] B. Düdder, G. Follert, and M. Roidl, “Model Checking in multia-
gentengesteuerten Materialflusssystemen,” Technical University Dort-
mund, Tech. Rep. 817, 2008.

[4] M. Hirsch and M. Zarbock, “Model-Checking eines Materialflusssys-
tems mittels UPPAAL und SMV,” Bachelor Thesis, University of
Paderborn, 2002.

[5] R. Meolic, T. Kapus, and Z. Brezočnik, “Model checking: A for-
mal method for safety assurance of logistic systems,” in Proc. 2nd

Congress Transport — Traffic — Logistics, 2000, pp. 355–358.
[6] F. de Renesse and A. Aghvami, “Formal verification of ad-hoc

routing protocols using SPIN model checker,” in Proc. 12th IEEE

Mediterranean Electrotechnical Conf., 2004, pp. 1177–1182.
[7] D. Camara, A. Loureiro, and F. Filali, “Methodology for formal

verification of routing protocols for ad hoc wireless networks,” in Proc.

IEEE Global Telecommunications Conf., 2007, pp. 705–709.
[8] T. Klotz, B. Straube, E. Fordran, J. Haufe, F. Schulze, K. Turek, and

T. Schmidt, “Toward verification of material handling systems,” in
Proc. IEEE 9th Int. Conf. Industrial Informatics, 2011, pp. 218–223.

[9] ——, “An approach to the verification of material handling systems,”
in Proc. 16th IEEE Int. Conf. Emerging Technologies and Factory

Automation, 2011.
[10] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory,

languages, and computation. Addison Wesley, 1979.
[11] A. Pnueli, “In transition from global to modular temporal reason-

ing about programs,” in Logics and models of concurrent systems.
Springer-Verlag, 1985, pp. 123–144.

[12] O. Grumberg and D. Long, “Model checking and modular verifica-
tion,” in CONCUR ’91, ser. LNCS, 1991, vol. 527, pp. 250–265.

[13] J. Cobleigh, D. Giannakopoulou, and C. Pasareanu, “Learning assump-
tions for compositional verification,” in Tools and Algorithms for the

Construction and Analysis of Systems, ser. LNCS, 2003, vol. 2619,
pp. 331–346.

[14] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An open-
source tool for symbolic model checking,” in Proc. 14th Int. Conf.

Computer Aided Verif ication, 2002, pp. 359–364.
[15] “nusmv-tools web site,” http://code.google.com/a/eclipselabs.org/p/

nusmv-tools/, visited June 2012.


