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Abstract— We explore setting bounds on part tolerances
based on an adaptive Cloud-based algorithm to estimate lower
bounds on achieving force closure during grasping. We consider
the most common robot gripper: a pair of thin parallel jaws,
and a conservative class of push-grasps allowing slip that can
enhance part alignment for parts that can be modeled as
extruded polygons. The grasp analysis algorithm takes as input
a set of candidate grasps and perturbations of a nominal part
shape. We define a grasp quality metric based on a lower
bound on the probability of achieving force closure. We present
two extensions to our previous highly-parallelizable algorithm
that adaptively reduce the number of grasp evaluations and
improve the lower bound by including slip. We develop a
procedure for finding the effect of increasing tolerance in
vertices on grasp quality, which allows part tolerances to be
bounded to ensure minimum grasp quality levels. We find that
including slip improves grasp quality estimates by 16%, and our
adaptive extension reduces grasp evaluations by 91.5% while
maintaining 92.6% of grasp quality.

I. INTRODUCTION

One of the primary focuses of automation is ensuring qual-
ity and reliability through structured environments. Even in a
structured environment, there are errors and tolerances. This
paper describes a method for finding bounds on tolerances
using a Monte Carlo method to analyze the effect of part
tolerances on grasps generated by an adaptive grasp planning
algorithm.

Once the effect of a given tolerance on grasping is
computed, the process can be reversed to find the highest
tolerance that can provide acceptable results. Computing
tolerances based on sampling can be time-consuming, and
in manufacturing, computations may be required to execute
within a fixed time interval. A grasp algorithm can only be
used in this situation if it works within that limit, and will
perform better if it can balance the evaluation of more grasps
against the detail of the grasp candidate analysis.

Cloud Computing is a powerful new paradigm that ex-
pands on networked robotics [1] for massively parallel com-
putation and real-time sharing of vast data resources. The
parallel aspect of the Cloud can be used to facilitate grasping
parts with shape tolerances. A fundamental challenge, even
with perfect recognition, is variation in part shape, because of
manufacturing constraints, and mechanics, because of limits
on sensing during grasping.
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Fig. 1. Part tolerance model. On the left, circles with a radius of one
standard deviation of a circular Gaussian distribution are drawn around each
vertex and the center of mass. On the right, the nominal part is plotted over
100 sampled perturbations (shown in gray).

This paper describes new work building on [21] that intro-
duced a method that leverages Cloud Computing to analyze
grasps with part tolerances. We take a conservative approach:
we use a statistical sample of part shape perturbations to
find the value of a quality metric that estimates a lower
bound on the probability of force closure for a class of
grasps called conservative-slip push grasps, which can be
rapidly evaluated without simulation. In [21], we restricted
the class of grasps to zero-slip push grasps. In this paper, we
extend that class to include a slip model. We then combine
the results of the retained candidate grasps, weighting their
success on a given part perturbation by the probability of that
perturbation, to estimate a lower bound on the probability of
achieving force closure.

We improve upon the grasp planning in [21] by adaptively
reducing the candidate grasp set after testing a small number
of part perturbations, reducing the overall number of grasp
evaluations. Taking the best grasp from this method, we
increase the tolerance on the part to find how the quality
of the grasp decreases. Tolerance bounds are found where
the quality falls below a threshold.

We analyze our extensions from previous work, finding
that conserve-slip push grasps generate more robust and more
intuitive results than zero-slip push grasps, with an average
quality 16% higher, and that adaptive sampling can reduce
the number of grasp evaluations performed by 71.5% without
reducing grasp quality, or reduce grasp evaluation by 91.5%
while maintaining 92.6% of grasp quality.

II. RELATED WORK

In “Algorithmic Automation” [16], abstractions can allow
the functionality of automation to be designed indepen-
dent of the underlying implementation and can provide the
foundation for formal specification and analysis, algorithmic
design, consistency checking and optimization. Algorithmic
Automation thus facilitates integrity, reliability, interoperabil-
ity, and maintainability and upgrading of automation.



Several studies use contact sensors to improve grasp
quality in the presence of uncertain part geometry [14] [19].
However, many robotic grippers do not have contact sensing
capability. Sensing is often implicitly assumed to be present,
such as when pinch grasps are required, since the part must
not be moved by contact with the gripper [9] [22] [34] [35].

Studies have explored properties of polygonal parts for
grasping [7] [8] [12], but focus on point grasps, which
ignores the complex interaction created by a gripper of
nonzero width, as is the case with parallel-jaw grippers.

Push manipulation of parts has been extensively investi-
gated by Mason [25] and others [2] [24]. Performing pushing
operations with a gripper to reduce pose uncertainty has been
demonstrated by Dogar and Srinivasa [13]. However, these
methods, again, do not take into account part shape tolerance.

Similarly, many recent studies in robotic grasping focus on
improving grasps on known parts [31] [32] [33] that do not
take into account tolerances. The work in robotic grasping
that addresses tolerance largely focuses on part pose [4] [13]
[29]. Methods for sensorless part orientation [5] [17] [37] can
also be used in the presence of uncertain part pose. However,
these methods do not take into account tolerances for the
geometry of the part.

While networked automation has a long history, only
recently has research focused on networked robots sharing
information to accomplish tasks widely separated in time and
space [26] [36]. The introduction of Cloud Computing can
allow computation to be offloaded from robots [3], as well as
development of databases that allow robots to reuse previous
computations in later tasks [11]. Grasping could benefit from
this effort, since grasps computed for a part can be applied
to similar parts encountered later [10] [15] [18]. This allows
the construction of grasp databases that can be shared and
referenced by multiple robots [18] [23].

An explicit part tolerance model for grasping was pro-
posed by Christopoulos and Schrater [9] that approximates
the part boundary with splines but does not account for
motion induced by contact from the gripper. Models exist
for tolerance [6] [20] that use worst-case bounds rather
than probability distributions. Other work defines topological
tolerance models but does not apply it to grasping [30].

III. PROBLEM STATEMENT

We consider a parallel-jaw gripper, gripping a part from
above. We assume that we have a conservative estimate of
the coefficient of friction between the gripper and the part,
denoted µ.

We assume that the part can be modeled as an extruded
polygon to be gripped on its edges, resting on a planar work
surface, and that the part has an estimated nominal center
of mass, which may not be at the centroid. The gripper–part
interaction is assumed to be quasistatic, such that the inertia
of the part is negligible [28].

A. Part Tolerance Model

Part shape tolerances are modeled as independent, Gaus-
sian distributions on each vertex and center of mass, centered

Fig. 2. Snapshots of the execution of a conservative-slip push grasp. The
green jaw makes the first contact, and once a stable push is established in
frame 3, the red jaw closes. After making contact in frame 5, the part rotates
into slip closure in frame 6.

on their nominal values, as shown in Figure 1. The variance
of the distributions is an input, which may be dictated by
manufacturing constraints. One advantage of using probabil-
ity distributions is that we can use a Monte Carlo approach to
evaluate the effect of higher tolerances on candidate grasps.

B. Conservative-Slip Push Grasps with Force Closure

We consider a class of push grasps that enhance part
alignment, conservative-slip push grasps with force closure.
We define this as grasps in which the gripper pushes the
part without slipping until it rotates into alignment with the
first gripper jaw (a zero-slip push), or slips but is guaranteed
to align with the edge (a conservative-slip push) and then
completes force closure with the second gripper jaw, as seen
in Figure 2. Under this conservative definition, we include
slip of the second gripper jaw under limited conditions
described in Section IV-A.3.

The input to the algorithm is a list of edges defining a
non-intersecting polygon, denoted S0, and the variance of the
Gaussian tolerance distributions for the vertices and center
of mass.

C. Quality Measure

We define a quality measure Q(g, S, θ) as a lower bound
on the probability that grasp g on part S will result in
force closure based on parameter vector θ. The output of
the algorithm is Q = {Q(g, S, θ) | g ∈ G(S)}, where G(S)
is the set of candidate grasps for part S. The best grasp and
Q-value are:

g∗ = arg max
g∈G

Q(g, S, θ)

Q∗(S, θ) = Q(g∗, S, θ)

The adaptive version of our algorithm may reduce the
value of Q∗ relative to the non-adaptive version. The value of
Q∗ as found by the non-adaptive algorithm is denoted Q∗max,
and the normalized value of Q∗ for the adaptive version is
Q̂∗ = Q∗/Q∗max.



D. Candidate Grasp Configuration Space

The configuration space is defined by a starting position
and orientation of the first gripper jaw, and a direction of
motion from this position. We assume that orientation of the
gripper jaw face is perpendicular to the direction of motion.

We reduce the configuration space from three dimensions
to two using nominal contact points to eliminate some of
the redundancies in grasp configurations. Candidate grasps
(denoted gij) are defined as the ordered pair (p̂i, φj), where
p̂i is a nominal contact point and φj is an approach angle.
A nominal contact point is the point on the boundary of
the nominal part that contact by the first gripper jaw would
occur. The set of nominal contact points is denoted P̂ . An
approach angle is an angle from the normal direction of the
part boundary (pointing into the part) at p̂i. The approach
line is the line through p̂i along φj .

The actual initial contact point for a candidate grasp gij on
a perturbed part may not be near the nominal contact point p̂i,
as some part of the first gripper jaw may contact a different
point on the part first. The actual contact configuration
corresponding to candidate grasp gij on part S is cij,S =
(p, ψ), where p is the position of the gripper and ψ is the
direction of the jaw relative to the x-axis. Different candidate
grasps may have similar contact configurations; for example,
if they approach the same edge of the part. Configurations
are grouped into sets of similar configurations denoted Cq,ψ,
where ψ is the same for all configurations in a set and q is
a position that describes the set, e.g., one of the p values in
the set. The set of similar configuration sets is denoted C.

IV. GRASP ANALYSIS AND PLANNING ALGORITHMS

Our grasp analysis algorithm, shown in Algorithm 1,
calculates the quality metric for a set of grasps and part per-
turbations. For each part perturbation, the candidate grasps
are evaluated to estimate if they result in conservative-slip
pushes (see Section IV-A.1). The successful conservative-
slip pushes are grouped into sets of similar configurations
(see Section IV-A.2), and conservative conditions for force
closure are evaluated. Finally, the overall probability of
achieving force closure for each candidate grasp is estimated.

Our grasp planning algorithm, shown in Algorithm 2,
uses the analysis algorithm on a part using a Monte Carlo
method: it generates a set of candidate grasps, and creates
part perturbations drawn from the distribution. These grasps
and perturbations are passed to the analysis algorithm.

The analysis algorithm uses a single parameter, the grasp
elimination criterion R, which is used in adaptively reducing
the candidate grasp set. The planning algorithm also uses
several additional parameters, denoted as the vector θ =
[dC , ρ,Φ,M, R]. The part tolerances for the vertices and
center of mass described in Section III-A are also parame-
ters. Three parameters are used for generation of candidate
grasps. A filtering parameter dC and a configuration density
parameter ρ are used to determine the set of candidate
grasp positions, and the set of candidate grasp orientations
is a third parameter, denoted Φ. The algorithm iteratively
tests part perturbations; the number of iterations and part

Algorithm 1: Grasp Analysis Algorithm. Highlighted
line numbers indicate parallelizable steps.

Input: candidate grasp set G1, part perturbations
S1, S2, . . . , SM ;

1 for Part perturbation set Sm = S1,S2, . . . ,SM do
2 for Part Sk = S1, S2, . . . , Sl ∈ Sm do
3 for Candidate grasp gij ∈ Gm do
4 Estimate if gij results in conservative-slip

push of Sk;
end

5 Collect similar push configurations C;
6 for Similar configuration set Cq,ψ ∈ C do
7 Estimate regions of force closure success on

Sk;
8 for Contact configuration cij,Sk

∈ Cq,ψ do
9 Predict force closure success

sijk ∈ {0, 1} of gij for Sk;
end

end
end

10 Produce grasp set Gm+1 by removing low-quality
grasps from Gm according to parameter R;

end
11 for Candidate grasp gij ∈ G1 do
12 Compute grasp quality Q(gij , S0, θ);

end

Algorithm 2: Grasp Planning Algorithm. Highlighted
line numbers indicate parallelizable steps.

1 Filter S0 into SC ;
2 Determine nominal contact points P̂ on S0 using SC ;
3 Create candidate grasp set G1 from P̂ and Φ;
4 Create part perturbations S1, S2, . . . , SN of S0;
5 Compute quality of candidate grasps Q using

Algorithm 1;

perturbations in each iteration is set by the parameter M,
where M = |M| is the number of iterations, and Mi is
the number of perturbations tested in iteration i. The total
number of part perturbations is N =

∑
iMi. The final

parameter is the grasp elimination criterion for the grasp
analysis. We describe these parameters and each step of our
algorithms below.

A. Evaluating Part Perturbations

For each part perturbation in a part perturbation set, the
candidate grasps are evaluated to estimate whether they
achieve conservative-slip push grasps with force closure.

1) Conservative-Slip Push Conditions: The algorithm
uses geometric properties of the part to determine all candi-
date grasps resulting in conservative-slip pushes aligned with
a part edge for a given gripper width.

The conditions for success of a zero-slip push are as
follows: the part purely rotates about the contact point
without slipping, the part rotates towards stability with the



gripper jaw (that is, the edge rotates toward alignment with
the gripper), and once the gripper has two points of contact,
the center of mass must be between these points.

For a conservative-slip push, the gripper must be guar-
anteed to align with the initially-contacted edge. As shown
by Mason [25], the motion of a part pushed at a given
contact point is determined by the friction cone and the
direction of pushing. The resulting constraint on candidate
grasps is shown in Figure 3. In the conservative-slip regions,
the motion of the gripper is guaranteed to be towards a 0
angle and the center point along the edge. Therefore, the
configuration of the gripper as it slips must stay in the
region or enter the zero-slip region, in which case a zero-slip
push occurs. If the gripper becomes aligned without entering
the zero-slip region, the gripper is guaranteed to cover the
center of mass, so a successful push occurs. Because the slip
analysis does not predict the exact aligned position of the
gripper, the force closure tests for a slip push must succeed
over all possible aligned positions of the gripper.

2) Collecting Similar Conservative-Slip Push Configu-
rations: Before evaluating force closure on the candi-
date grasps that result in conservative-slip pushes, the
conservative-slip push configurations for those candidate
grasps are collected into sets of similar configurations. A
similar configuration set often contains all the conservative-
slip pushes for some edge of the part. Because our esti-
mation of force closure for all positions on an edge can
be determined analytically, the estimated closure success of
all elements of a similar configuration set can be evaluated
simultaneously, as shown in Section IV-A.3.

3) Conditions for Force Closure: Force closure on a part
is achieved when the line between the contact points on each
side lies inside the friction cones of both contact points [27].
If there are multiple contact points on a side, there need be
only one successful contact point for force closure.

In our algorithm, force closure is considered to be achieved
under three conditions. First, if the second gripper jaw
contacts an edge and the contact direction is within the
friction cone, the gripper completes force closure. Second,
if the second gripper jaw contacts a convex vertex, and
this convex vertex is opposite a section of the first gripper
jaw that contacts the part, force closure is successful. The
third condition involves slip of the second gripper jaw. If
the second gripper jaw can slip along the edge it contacts
and come into contact with an adjacent edge, and this
configuration produces valid force closure, the gripper is
considered successful. While this condition is restrictive,
it can be determined for ranges of gripper contact points,
whereas more general slip conditions require each grasp to
be tested individually. This allows our conservative-slip push
test, which returns a range of possible aligned positions, to
have force closure estimated efficiently for the entire range.

B. Lower Bound on Probability of Achieving Force Closure

Once the candidate grasp conditions have been evaluated
for all part perturbations, the lower bound on the probability
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Fig. 3. Configuration space for fast analysis. The upper half of the
figure shows a gripper of width w contacting the part at position d with
(negative) contact angle φ = 30◦, inverse friction cone bounds b1 and b2
and perpendicular distance r from the center of mass. Contact with this edge
of the part results in the configuration space shown below it; the shaded
area is the region where a conservative-slip push occurs. The red lines in the
lower region show the configuration-space path for a zero-slip push (A) and
possible paths for two conservative-slip pushes (B and C) from initial contact
at the points shown. Conservative-slip paths are not predicted specifically,
but cannot increase in contact angle or move away from the center of mass.
If the path intersects the zero-slip region, it follows a zero-slip path, as
displayed by path B.

of achieving force closure for that candidate grasp is es-
timated using a weighted percentage, where the estimated
success or failure on a part perturbation is weighted by the
probability of that situation occurring.

C. Adaptive Candidate Grasp Removal

Adaptive grasp candidate removal was added to the al-
gorithm after the observation that the best grasps were
already part of the top candidate grasps after only a few
part perturbations had been tested, although their final Q-
values were not predictable from their Q-values earlier in the
analysis. Therefore, the adaptive procedure was developed to
remove unpromising grasps, while still testing the promising
grasps to refine their Q-values.

After all the part perturbations in a part perturbation set
are tested, candidate grasps with low Q-values are removed
from further testing. The criterion for removing a grasp
is the parameter R. The number of grasps eliminated at
step m is R |Gm|, giving the total grasp evaluations as
η =

∑M
m=1 |Gm|Mm where |Gm| = R |Gm−1| for m =

2, . . . ,M . The algorithm checks the minimum Q-value of the
top (1−R) |Gm| candidate grasps, Qmin. If the set of can-
didate grasps {g |Qg ≥ Qmin} is bigger than (1−R) |Gm|,
ties between the lowest-Q grasps are broken randomly. The
elimination criterion balances maximizing grasp elimination
for faster execution with preventing the elimination of grasps
that may eventually prove to have high Q-values. Other
elimination criteria are possible; ties could be included rather
than broken randomly, or all grippers above a certain fraction



of the current best Q-value could be retained. However, these
criteria do not guarantee a fixed number of grasp evaluations.
We denote the number of grasp evaluations in the adaptive
algorithm normalized to the number of evaluations in the
non-adaptive algorithm as η̂ = η

N |G1| .

D. Grasp Planning

The grasp planning algorithm shown in Algorithm 2
uses two additional steps to generate candidate grasps and
part perturbations, which are then analyzed using our grasp
analysis algorithm.

1) Generating Candidate Grasps: The grasp planning
algorithm generates an initial candidate grasp set G1 =
{gij = (p̂i, φj) | p̂i ∈ P̂ , φj ∈ Φ}. While each (p̂, φ) pair
could be independently generated, we use a fixed set of φ
values as a parameter, and apply them to a generated set of p̂
values, using the method in [21], which takes as parameters
a configuration density ρ, a set of approach angles Φ, and a
filtering parameter dC .

2) Sampling Part Perturbations: Before testing the candi-
date grasps, part perturbations are created by sampling from
the distributions of each vertex and the center of mass. The
number N of part perturbations is determined by a parameter
to the algorithm, M. The part perturbations are collected
into part perturbation sets S1, . . . ,SM , where |Si| = Mi.
In previous work [21], we determined that using 100 part
perturbations provides reliable results. We explore values of
M in Section V-B.2.

V. RESULTS

To test the algorithm in simulation, a set of images of
parts were found on Google Image Search, and manually
contoured by tracing a polygon over the image, as used in
[21]. We tested the effectiveness of our algorithm for esti-
mating part tolerance bounds by demonstrating a procedure
to find these bounds. We also evaluated the new aspects of
the algorithm relative to our previous work.

Except for where noted, tests used vertex variance of
20% of the maximum part radius, a center of mass variance
of 70% of this radius (measured from the centroid to the
vertices), a gripper width 25% of the maximum distance
between vertices, and a coefficient of friction of 0.7. The
tests were run on a Lenovo T420s laptop with a 2.70 GHz
processor and 8 GB of RAM, using MATLAB R2011a.

A. Tolerancing

To test the effectiveness of our algorithm for estimating
part tolerance bounds, we developed a procedure to find
tolerance limits that allow a grasp to stay above a given
Q threshold. Because the variance of different aspects of
the part may affect a grasp to a greater or lesser degree,
the variances for the parts were split into two groups: the
variance of the vertices for the initial contact edge, and the
variance of the remaining vertices. The vertices for the initial
contact edge along with the center of mass determine the
success of the stable push, while other vertices determine
the success of closure.

Fig. 4. Tolerancing results for selected parts. The best grasps on the high-
lighted edge were found with small tolerances shown as the smaller circles
around the vertices with radius two standard deviations (95% confidence
interval). The gripper width used for all parts is shown next to Part C. Tests
were performed as described in Section V-A using dC = 0, ρ = 4, and
|Φ| = 5, and for the indicated tests from that section, the tolerance for
each vertex and center of mass is shown along with 100 perturbations of
each part. Parts A and B are shown with tolerances that give comparable
Q̂∗ (64.5 and 66.9, respectively), and suggest that friction closure is more
sensitive to increased tolerances. Part D suggests that, relative to Part A,
narrow parts have greater sensitivity to near-edge tolerances.

Fig. 5. Effect of increasing tolerances on quality. Tolerance is shown as
vertex variance normalized to the initial variance. Each set of three lines
show the results for Parts A, B, and C. The solid lines show the average Q̂∗

for increasing near-edge vertex variance, keeping other variance constant.
The dashed lines show the average Q̂∗ for increasing values of the non-
near-edge vertex variance, keeping the near-edge variance constant.

To test this tolerance bounding procedure and the effect
of variance on closure, three simple parts were created with
different features. These parts are shown in Figure 4. Part
A, a simple rectangle, tested closure on a flat edge. Part
B introduced a single convex vertex instead of a flat edge,
to test closure against a vertex. Part C used a set of three
vertices to test the effect of complex edges on closure. A
fourth part, Part D, was created to test the effect of variance
on the initial push. It is a thin rectangle, with the edge to be
tested close to the center of mass, creating a smaller valid
region more sensitive to higher tolerances. The best grasp on
the highlighted edge shown in Figure 4 was found, and this
grasp was tested under increasing variance for the near-edge



vertices and the other vertices. The center of mass was fixed
to the centroid of each perturbation.

The results for Parts A, B, and C suggest that Q-values are
significantly more sensitive to near-edge variance. As shown
in Figure 5, as the variance of near-edge vertices increases
while the remaining variances are kept constant, the value
of Q∗ reduces significantly. Keeping the near-edge variance
constant while increasing the others had a smaller effect on
Q∗, staying within 14% of its initial value.

While the response of these parts was similar when
considering the relative change of Q∗, the absolute value
showed differences between the parts. The minimum Q∗ for
Part A was 28.2, for Part B, 46.3, and for Part C, 43.9. Part
A had lower Q∗-values because it used only friction closure.
Large movements of the vertices can cause the angle between
the near edge and the far edge to exceed frictional limits.
Closure against a convex vertex is more robust to variance,
since such closure does not depend on an angle with the
gripper, and if it becomes concave, slip closure may allow
force closure.

Part D retained Q∗ = 100 for tests with high tolerances in
the opposite vertices and center of mass, but low tolerances
in the adjacent vertices.

We found that the initial contact edge vertices required
lower variances, suggesting that success of the stable push
was the component of the grasp most sensitive to higher
tolerances. In designing a part, tolerance specifications could
be defined using the results of this maximum allowable
variance test.

B. Comparison with Previous Results

The two main enhancements over our previous work,
namely allowing slip and adaptive sampling, contributed to
a 16% gain in Q-value and a 71.5% reduction in number of
grasp evaluations, respectively.

1) Comparison With Excluding Slip: We compared our
results to results generated with a previous version of the
algorithm that did not permit slip. On average, the value
of Q∗ was 16% higher when slip was included. Overall,
the calculated quality for a given grasp tended to be more
intuitive. In Figure 6, the effects of allowing slip are apparent.
While the overall best gripper does not change, many of the
candidate grasps have significantly higher quality, especially
on the most intuitive locations, the long horizontal edges.
In particular, the best grasp on the lower horizontal edge
without slip has a Q-value of 43.6. With slip allowed, the
Q-value of this grasp increases to 91.7.

In earlier work, the algorithm usually did not choose
edges close to the center of mass. When limited to zero-
slip pushes, edges close to the center of mass are less robust
[21]. In our current version of the algorithm, this effect is
less pronounced. Although the best grasp on the part shown
in Figure 6 was found far away from the center of mass with
a Q-value of 92.3, the lower horizontal edge has a grasp with
a Q-value of 91.7. Without slip, the best grasp on that edge
has a Q-value of 43.6.

Fig. 6. Improvement of Q-values with slip over excluding slip. The line
segments indicate approach lines for the tested nominal contact points, with
the length indicating the Q-value relative to other segments. For grasps that
have a non-zero Q-value when slip is prohibited, a dot indicates the length
of the line segment for that zero-slip-only Q-value. The figure shows the
effect of allowing slip was highest on grasps close to the center of mass.
The test used dC = 0, ρ = 1.5, and |Φ| = 5.

Fig. 7. Candidate grasps eliminated by the adaptive candidate grasp
removal. Eliminated grasps are marked in red. The parameters for this test
were dC = 0, ρ = 1.5, and |Φ| = 5, R = 0.9, and M1 = 19.

Including slip results in a higher execution time; the
increased complexity of the push and closure tests require a
more line intersection checks. The tests we performed took
an average of 7% longer when slip was included.

2) Adaptive Sampling: The adaptive removal procedure
introduced two new parameters, so we tested these parame-
ters to determine their effect on the algorithm’s performance.

The adaptive grasp candidate removal step involves a
tradeoff between low execution time and high-quality grasps.
In particular, if a fixed number of grasp evaluations are
allowed, then the larger the initial part perturbation set, the
more aggressive the grasp candidate removal step must be. To
explore this tradeoff, we tested the adaptive grasp candidate
removal step by varying the parameters for both initial part
perturbation set size and the grasp elimination criterion. We
used a single grasp reduction step (that is, |M| = 2) to do
initial testing; our tests using more steps are described at the
end of this section.

First, we ran the non-adaptive algorithm (i.e., |M| = 1)
on the dataset of parts from [21]; each of the twelve parts
was tested using twenty separately generated perturbation
sets (given a total of 120 part/perturbation set combinations),
using dC = 0.06, ρ = 6, and |Φ| = 5, and N = 70.
The value of Q∗ for each test was thus the maximum



Fig. 8. Tradeoff between execution time and grasp quality, showing Q̂∗ vs.
percent of grasp candidate evaluations performed (100× η̂) for multiple test
parts and adaptive parameters. The graph is truncated at 10% on the x axis
because all per-part expected and worst-case values after this have a Q̂∗

of 1. A value of 1 on the y axis indicates the overall best gripper was still
found by the adaptive algorithm. The Pareto curve of average expected Q̂∗

over all parts tested is shown as a solid magenta line, and the Pareto curve
of worst case is shown as a dashed black line. The red and blue lines show
the lower bound of the Pareto curves for per-part expected and worst-case
values, respectively.

Q∗ that could be found by the adaptive algorithm (i.e.,
it was Q∗max). Then, for each initial perturbation set size
M1 = 1, . . . , 70 all possible distinct values of the adaptive
elimination threshold were found. For each test, the unique
Q-values at the M1-th iteration were found, and the values
of the elimination threshold that would select those Q-values
were found. Then, for each initial perturbation set size, all
of the distinct values of the adaptive elimination threshold
R from all of the tests were combined into a set, and for
each threshold value (which was determined from a single
part/perturbation set), the outcome of the adaptive algorithm
on all of the 120 part/perturbation sets using that threshold
value was analyzed.

To analyze the outcome of the adaptive algorithm on
a part/perturbation set, we used data from the already-run
non-adaptive test. At the given M1-th iteration, the grasp
reduction step was simulated from the Q-values calculated
previously. However, because the grasp elimination criterion
randomly breaks ties, it couldn’t be used directly. Instead, the
worst-case and expected values were found. The worst value
was found by retaining the tied candidate grasps with the
lowest final Q-values. The expected value was calculated as
the sum over all combinations of the maximum final Q-value
in that combination weighted by the likelihood of occurrence
of the combination.

The result of this analysis is shown in Figure 8. The
adaptive sampling was able to aggressively reduce the
candidate grasp set without reducing Q̂∗. Considering the
best parameter values for each part individually, the results
suggest a very low number of perturbations must be tested to
find high quality grasps. Above η̂ = 0.031 (that is, 3.1% of
the possible grasp evaluations are performed), the expected
value of Q∗ was within 10% of the maximum, and the worst
case values reached the maximum by η̂ = 0.08. Averaging

Fig. 9. Tradeoff in worst-case quality (color) and execution time (lines)
over parameter combinations. The color of each dot indicates the average
worst-case Q̂∗ for the parameter values. For example, the point in the upper
left represents M1 = 1 and 99.85% of grasps eliminated (i.e., R = 0.0015),
meaning after one part perturbation is tested, one grasp is selected from the
successful grasps on that perturbation, and tested on the remainder of the
perturbations. This point has a Q̂∗ of 0.577. Contours of η̂ between 0.05
and 0.25 are shown. The parameter values at any point along a contour
require the same number of grasp evaluations.

Q̂∗ across all parts for each parameter combination, the
performance reduces slightly: the expected value of Q̂∗ does
not reach the maximum until η̂ = 0.277, and the worst
case did not reach maximum until η̂ = 0.285. However, for
η̂ ≥ 0.08 (when the per-part worst case Q̂∗ reaches 1), the
best expected value of Q̂∗ averaged over all parts was 0.978,
and the worst case was 0.926.

This analysis would allow a designer to choose the best
adaptive parameters satisfying design constraints, either re-
ducing the number of evaluations given a minimum worst
case or expected value, or maximizing worst case or expected
value given a maximum number of evaluations.

Figure 8 does not indicate what parameter values produce
the displayed Pareto curves. Figure 9 shows the average
worst-case value of Q̂∗ over all tests for parameter ranges
M1 ∈ [1, 10] and R ∈ [0.85, 1]. The contours of η̂ are shown
for several values between 0.05 and 0.25. Given a low limit
on grasp evaluations, this analysis allows the best parameter
combination satisfying the constraint to be found.

Good grasps are identified after testing a small number of
part perturbations, as shown in our previous work. This al-
lows the adaptive grasp elimination step to cull unpromising
grasp candidates, and use the remaining part perturbations
to refine the Q-value of the good grasp candidates. We
experimented with using more than one iteration of grasp
candidate removal, but the extra reduction in number of grasp
candidates was of minimal benefit.

VI. DISCUSSION AND FUTURE WORK

We have presented an approach for quickly analyzing
conservative-slip push grasps on planar parts by finding the
value of a quality metric that estimates a lower bound on



the probability of force closure. We improved our previous
algorithm by allowing slip and using an adaptive candidate
grasp elimination step. Allowing slip improves Q∗ by an
average of 16%. The adaptive elimination step reduces grasp
evaluations by 91.5% while maintaining 92.6% of grasp
quality. In future work, we will expand the adaptive sampling
to eliminate bad grasps faster, resample near good grasps to
allow coarser initial grasp candidate sets, and separate force
closure tests into multiple subtests to enable more flexible
evaluation of grasps in a search-like manner.

In addition to the algorithmic improvements listed above,
we developed a procedure to find part tolerance bounds.
In future work, we will use the analysis of the effect of
tolerances on grasp quality to iterate on the design of features
to improve grasp quality under the given tolerances.
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