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Low-cost coarse airborne particulate matter sensing for indoor
occupancy detection

Kevin Weekly, Donghyun Rim, Lin Zhang,
Alexandre M. Bayen, William W. Nazaroff, and Costas J. Spanos

Abstract— In the energy-efficient smart building, occupancy
detection and localization is an area of increasing interest, as
services, such as lighting and ventilation, could be targeted
towards individual occupants instead of an entire room or floor.
Also, an increasing quantity and diversity of environmental
sensors are being added to smart buildings to ensure the
quality of services provided by the building. The need for
particulate matter (PM) sensors in consumer devices such as
air purifiers, is an example where manufacturing advances
have made the sensors much less expensive than laboratory
equipment. Beyond their original intended use, air quality, they
can also be used for occupancy monitoring. The work presented
in this article proposes to use a low-cost (< 8 USD) PM
sensor to infer the local movement of occupants in a corridor
by sensing the resuspension of coarse (≥ 2.5 µm) particles. To
obtain meaningful values from the inexpensive sensors, we have
calibrated them against a laboratory-grade instrument. After
calibration, we conducted a 7.8 hour experiment measuring
coarse PM within a pedestrian corridor of a heavily-used office
area. Comparing against ground truth data obtained by a
camera, we show that the PM sensor readings are correlated
with human activity, thus enabling statistical methods to infer
one from the other.

I. INTRODUCTION

As the price of global energy rises, an increasing number
of researchers have adopted the challenge of reducing energy
consumption of buildings and improving the comfort of its
occupants. A major component of this effort is monitoring
the building and observing it more comprehensively. For
example, traditionally, an occupant is responsible for turning
off the lights when she leaves a room, however, it would be
more efficient for the building’s control system to do this
automatically by knowing where its occupants are and their
needs. Acceptable indoor air quality is an occupant need and
should be sensed and controlled for. Particulate matter (PM)
sensors measure the particulate concentration, which, at high
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Fig. 1. Particulate matter detected inside office on UC Berkeley campus.
Shaded area represents times between 10:00 PST and 20:00 PST each day.

levels, correlates to health problems [1]. Thus, in this study,
we have deployed several PM sensors in office spaces.

While conducting continuous monitoring of PM concen-
tration for this study, we noticed trends intuitively correlating
to occupant activity. For example, Figure 1 shows a time-
series of PM detected in an office space at the UC Berkeley
campus over two full 24-hour periods. Clearly, there is
a trend of a higher concentration of particles during the
working hours of the day, and we can even see when there
is a surge of activity inside of the workday, as indicated by
the rise in PM. This trend is also consistent with previous
work that showed significant increases of PM concentrations
due to human activity such as walking [2].

To detect individual activity and movement in a building,
the most straightforward methods are light-based, such as
passive infrared (PIR) sensors, which detect movement of
body heat, or emitter-detector pairs which trigger when
a light beam, such as from a laser, is broken. Magnetic
switches can also be added to doors to determine when they
are open or closed. More recently, there has been a host of
indoor positioning systems (IPS) [3] developed to obtain a
person’s location (i.e. x-y coordinates) continuously.

Our hypothesis is that PM concentration is an additional
method that can be used to detect human activity. In the
present study, we focus on the effect within a corridor, allow-
ing us to easily obtain a ground-truth via camera. However,
motivated by results such as those shown in Figure 1, human
occupancy and activity for an entire room could be estimated.
The advantage of using PM readings over installing a light-
based system is that other motivations, such as monitoring
air quality, drive the deployment of PM sensors.



Fig. 2. Custom designed electronic board, which when mounted to the
PPD-20V, provides wireless PM reporting capability.

The rest of the article is organized as follows: In Section II,
we review some of the related studies of indoor PM. Sec-
tion III describes the hardware developments enabling real-
time PM monitoring. Section IV describes the PM sensors we
tested and the test apparatus we built to collect PM readings.
Section V describes how we interpret the raw data and
ultimately, the correlation between human activity and PM
concentration. Finally, we conclude the article in Section VI.

II. RELATED WORK

In the literature, the relevant physical phenomena is termed
resuspension, which is when particles lift off of a surface
and become airborne. Since human activity, such as walking
or vacuuming, is a large contributor to resuspension in an
indoor office space, we reason that it can act as a proxy for
occupancy.

A mass conservation model given by [4] is commonly used
to model the PM concentration of an entire room or building
and includes a term accounting for resuspension. There have
been several studies of experimentally investigating the effect
of human activity on PM concentration in real [5], [6],
[7], [8] and laboratory [9], [2] conditions. Although a mass
conservation model is simple and intuitive, much of the
complexity of an indoor space, such as space geometry and
air mixing characteristics, is hidden in the parameters of
the model, which are difficult to accurately determine. The
model also only tracks a single variable, making it difficult
to integrate sensor readings and locate emission sources,
both which occur at a single point in 3D space. We need
to understand the physics at a much finer spatial granularity
to accomplish these goals. To this end, there has been some
efforts to understand the deposition and resuspension of
particles at a fine level [10], [11], [12], however, although
these models identify more system parameters, it is again
difficult to determine their values in a real setting.

Most studies of indoor air quality rely on expensive equip-
ment such as Optical Particle Counters (OPCs) to obtain
accurate PM readings of fine (< 0.5 µm) particles, however,
inexpensive sensors have been used to allow economical

TABLE I
SENSOR MODELS TESTED.

Model Qty. Tested Cost PM Size detected

DSM501A[17] 5 < 8 USD Two outputs:
≥ {1, 2.5} µm

PPD-20V[18] 3 ∼ 700 USD ≥ 0.5 µm

GT-526S[19] 1
(reference) 2990 USD

Six outputs:
≥ {0.3, 0.5, 1, 2,

5, 10} µm

large-scale deployments [13], [14], [15]. Our hypothesis is
that coarse and less accurate PM readings, such as those
obtained by commodity and mass-produced optical sensors,
can be made useful if their inaccuracies are mitigated through
multiplicity and trend analysis.

III. REAL-TIME MONITORING

To enable long-term experiments, we designed and built
a wireless-enabled PM sensor based on the PPD-20V sen-
sor, shown in Figure 2. The circuit board has the same
dimensions as the PPD-20V sensor and is attached to the
back by two bolts and two sets of header pins. An on-board
ATMega128 microcontroller reads the digital output of the
PM sensor and calculates the PM sensor ratio over 10 min-
utes. Every 10 minutes, the microcontroller uses an 802.15.4
transceiver (Digi XBee series) to send the reading to a sink
node containing an embedded Linux computer (Beaglebone)
and its own 802.15.4 transceiver. Python software commu-
nicates with the transceiver and forwards the raw sensor
packet data to our Internet server for interpretation. Software
running on our Internet server receives and interprets the
data packet, then inserts the data into an sMAP [16] server
instance running on itself. Thus, software for our future
research projects can retrieve the data using the standardized
sMAP protocol. Figure 1 shows one example of data that
was collected with the device in Figure 2 and retrieved using
sMAP. We can also use the sMAP web interface to quickly
visualize the data as it arrives. Given the prohibitive expense
of the PPD-20V sensor, our plan is to adapt the design to
accommodate the DSM501A sensor and deploy many of
these in the office for future coarse PM studies.

IV. PROCEDURE

A. Particulate Matter Sensing

Our experiments consisted of measuring particle concen-
tration using 8 PM sensor modules. The specifications of
the two models tested are given in Table I. Figure 3 shows
the principle of operation of the PPD-20V sensor and the
DSM501A sensors operate using a similar principle. Essen-
tially, the sensor employs a Light-Emitting Diode (LED)
aimed at a small point inside the device. When a particle
of sufficient size passes by this point, a detector picks up
the scattering of the LED light and outputs a digital signal
on the output pin. A feature of the DSM510A device is
that it provides two outputs with different sensitivities. A
resistive heater causes convective airflow which ensures a
small flow of air is passed through the device. We have
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Fig. 3. Operation of low-cost PM sensor measuring scattering of LED
light (Shown: PPD-20V).

Fig. 4. Main corridor of 490 Cory Hall, prior to experiment being started.
Rooms on the left are lab areas and cubicles on the right are occupied work
spaces.

programmed an ATMega168 microcontroller to receive the
13 digital signals from the PPD-20V and DSM501A sensors
and record the data onto a Secure Digital (SD) memory card.
It is programmed to sample every signal at 2.5 kHz to see if
it is 0V (logic 0) or 5V (logic 1). Every 50ms, it logs the
number of samples that were logic 1 during the last period.
This data set can be processed into a ratio of the time that the
signal is 0V within a time window. After calibration against
an accurate sensor, the GT-526S laser particle counter, this
ratio value can be mapped to meaningful units (described in
Section V-C).

B. Physical Configuration

The experiment was carried out in the main corridor
of 490 Cory Hall (also known as the SWARM lab) on
Berkeley campus, which is a heavily used and trafficked
office location. Figure 4 gives a picture of the corridor prior
to the experiment being run.

The camera and PM Sensors were mounted on an alu-
minum structure leaned against one side of the corridor and
visual landmarks were placed on the other side of the corri-

PPD-20V

DSM501A

Camera Visual Landmarks

Fig. 5. Physical Configuration of the sensors and visual landmarks. Dotted
line indicates center of view of camera.

Fig. 6. Physical implementation of the design in Figure 5.

dor. The sensors and landmarks were arranged according to
Figure 5. Figure 6 is a picture of the apparatus we constructed
to achieve this configuration. Although the analysis in this
article does not look into differences in PM readings due to
spatial variations, the apparatus allows us to investigate this
later. The most valuable contribution of the apparatus was
allowing us to run a multiplicity of sensors with all of them
relatively close and in the same orientation, and we found
that averaging the readings from several sensors gave the
smoothest results.

C. Ground Truth Sensing

The goal of the ground truth observation was to determine
when humans or other objects passed in proximity of the
PM sensor. Ground truth data was collected using a Veho
VCC-003-MUVI digital video recorder. After replacing the
stock memory card with a 16GB card, and the battery with
a much larger one, the camcorder was capable of recording
approximately 10 hours of video at a resolution of 640×480
pixels. We placed visual landmarks (bright orange tape strips)
in the field-of-view of the camera, to make post-processing
more straightforward. Examples of the images captured are
shown in Figure 7.



(a) Clear View (b) Obscured View

Fig. 7. Example images showing detection of occupant in corridor from
obscured visual landmarks (orange strips).

To obtain the ground truth, the video was later post-
processed to detect when something obscured the visual
landmarks. We made the determination based on whether
the hue, saturation, and value of the color at the landmark
locations fall outside a specified range. Since the video is also
archived, we can validate the computer vision manually.

V. RESULTS

A. Filtering

Data recorded by the apparatus was taken at a high
sample rate relative to the effects we intended to measure.
By inspection, the individual PM samples are not easy to
interpret as they are mostly either a ratio of 1 or 0. By doing
several filtering steps we are able to extract a meaningful
signal.

The raw data of the experiment comes in the form of a
text file from the PM sensor apparatus as well as a video file
from the digital video recorder. The video file was processed
by a simple computer vision algorithm to give a set of times,
C = {t1, t2, . . . , tn}, when human activity occurred in front
of the camera. There were a total of 312 such occurrences
during the experiment. We calculated a camera occurrence
rate, xi, by the following:

xi =
|{t|t ∈ C ∧ t ≥Ws(i− 0.5) ∧ t < Ws(i+ 0.5)}|

Ws

where Ws is the “sample period” and is set to 10 s for these
results. Thus, xi is a discrete signal representing the number
of camera occurrences per second, evaluated every 10 s.

The PM sensor signals, originally at a sample period of
50ms, are down-sampled to a sample period of Ws (10 s),
by averaging every 200 readings.

We then passed each signal, both PM readings and camera
occurrence rate, through a sliding window average filter with
a window size of 30 samples. Thus, the resulting samples still
have a sample period of 10 s, but each sample represents the
average of 300 s, or 5 min, worth of data.

B. Selection of variables

The text file provides timeseries of 13 variables, 2 per
DSM501A sensor and 1 per PPM-20V sensor, so we sought
to find which signals were relevant. We found that the coarse
outputs correlated most with camera occurrences, an effect
which is also supported by [8], which found that occupancy

TABLE II
PEARSON’S CORRELATION COEFFICIENT FOR DIFFERENT OUTPUTS.

Output r
≥ 0.5 µm from PPD-20V -0.03
≥ 1 µm from DSM501A 0.28
≥ 2.5 µm from DSM501A 0.49

TABLE III
MSE OF LINEARLY CALIBRATED OUTPUTS COMPARED TO OPC

Output MSE
≥ 0.5 µm from PPD-20V 4.7%
≥ 1 µm from DSM501A 19.4%
≥ 2.5 µm from DSM501A 9.5%

is a large factor in supermicron particle concentration, but
an insignificant factor for finer particles. Intuitively, this
is because larger particles are overcome by gravity and
settle faster than finer particles which are kept afloat by
air currents. Sensors which are sensitive to smaller particles
are actually less effective for inferring occupancy since
their readings will ultimately be dominated by submicron
particles (which have a concentration almost 10 times as
large as supermicron particles). To verify, we computed the
Pearson’s correlation coefficient between the camera data and
PM readings, grouped by the size of particles sensed. The
results, presented in Table II, show that the amount of linear
correlation between camera occurrences and PM readings is
the most when the particles are 2.5 µm or larger.

Ultimately, we decided to construct a signal, yi, composed
of the average of all 5 DSM501A ≥ 2.5 µm outputs. That is,

yi =
1

5

(
5∑

k=1

PMk,2.5 µm
i

)
where PMk,2.5 µm

i is the ith reading of the ≥ 2.5 µm output
from the kth DSM501A sensor. This signal, by inspection,
was smoother than any individual PM output and showed
more correlation with the camera data.

C. Calibration

The calibration procedure consisted of a 29.5 hour exper-
iment where data was collected by the test apparatus while
the OPC measured accurate values of PM concentration.
For both the ≥ 0.5 µm and ≥ 1 µm outputs, we used the
corresponding channel from the OPC to compare against.
For the ≥ 2.5 µm output of the DSM501A sensor, we used
the ≥ 2 µm channel of the OPC to compare against.

For each output we performed a linear fit against the
reference data. The scatter plot in Figure 8 illustrates the
data collected and the fitted line for the ≥ 2 µm output. To
determine the accuracy of the linearly fitted model, we also
calculated the relative Mean Squared Error (MSE) of the
modelled concentration against the real concentration, shown
in Table III. Examining the time series, we found that there
was a spike of airborne PM at around 00:00 hours during the
experiment. The spike could be seen mostly in the micron
or lower sized particles and was picked up by the PPD-
20V unit. However, the DSM501A did not pick up the spike
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Fig. 8. Scatter plot of ≥ 2 µm particle concentration from OPC against
≥ 2.5 µm output from the DSM501A.

in PM, perhaps because some characteristic of the particles
such as surface (changing the refraction characteristics) or
composition (causing them to not be caught in the heater
updraft) caused them to not be detected by the DSM501A.
This complicated the calibration results significantly as can
be seen by the ≥ 1 µm results of Table III.

Fortunately, as described in the previous section, we opted
to use the ≥ 2 µm outputs of the DSM501A for correlation
with activity. This output could be calibrated reasonably
accurately and thus we used the following linear model to
map the PM sensor raw units to real-world values:

PM≥2 µm =
(
8.48× 104

)
(PM Sensor Ratio) + 45.7

D. Synchronization of PM sensor and camera data

We also shifted the PM sensor data earlier in time so that
it more closely correlates to the camera data. We calculate
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Fig. 9. Scatter plot of the data shown in Figure 10. Magenta line is the
linear fit to the data.

the shift amount as the peak location of the cross-correlation
of the two signals. For this experiment, the shift amount was
found to be 30 s. Physically, this represents the time it takes
for activities happening in front of the camera to affect the
sensors via air circulation or diffusion. It could also account
for experimental errors in synchronizing the time offset of
the two signals.

E. 490 Cory corridor experimental results

Figure 10 is a plot of the two signals x (Top) and y
(Bottom) after the filtering steps described above. The green
lines are plotted at the times in the set C. Visually, we can
see a clear correlation of the two signals, particularly noting
that many of the sharp increases in PM are correlated with
increase in camera occurrences. There are some cases (e.g. at
5.5 hours) where there is a spike in PM concentration, but no
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Fig. 10. Timeseries of filtered data over 7.8 hr experiment. Top: Green lines mark camera obstruction occurrences and magenta line is the filtered camera
occurrence rate. Bottom: Filtered ≥ 2.5 µm outputs from DSM501A (average of 5).



corresponding spike in camera occurrences. One explanation
is that there were significant resuspension events in the
nearby cubicle without any persons moving in front of the
camera.

The same data, is presented in a scatter plot in Figure 9
and we also plot the linear fit to the data. The linear fit is
given by: yi =

(
2.6× 10−2

)
xi + 4.6× 10−4.

This data could be used to construct the statistical models:
Pr (xi, yi) (i.e. joint probability), Pr (xi|yi) (e.g. for max-
imum likelihood detection), or Pr (yi|xi) (e.g. as a sensor
noise model). In particular, the noise model, Pr (yi|xi), is an
input to Baysian estimation algorithms such as the particle
filter [20], [21].

An example which demonstrates using the correlated data
is a simple binary detector. Consider a detector which outputs
true if the camera occurrence rate is less than once per 100 s,
using the information of whether the ≥ 2 µm concentration
is less than 100 per liter. Used on this data set, the detector
would be correct 66% of the time with a 42% false positive
ratio and 28% false negative ratio. While this alone is far
from ideal, it could be combined in a multiple agent decision
framework containing other sensors such as passive infrared
detectors.

VI. CONCLUSION

We have shown via experimentation that local human
activity, measured visually by a camera, is correlated to
the concentration of coarse particles, particularly those ≥
2.5 µm. These types of particles can be easily sensed with
low-cost PM sensors such as the DSM501A. Furthermore,
if smoother data is needed, more low-cost sensors could be
added, while still being economical.

We have also described the hardware developments which
enable real-time reporting of PM sensor data to a central
server using wireless technology. These hardware modules,
while primarily intended for air quality monitoring, can also
indicate occupancy as we have shown by this article. We
believe it will prove to be yet another piece of valuable
information for smart buildings.

An important next step will be to investigate the causality
of the variables we are measuring. Of particular concern is
describing the hidden variable which is measured by both
the camera and PM sensor. That is, we have not determined
whether how dependent the PM measurement is on the
occupancy of the entire room versus the local occupancy
directly in front of the camera. An experiment which could
disambiguate the two would be to also place several PM sen-
sors away from the test apparatus and measure the PM level
of the entire room. For a permanent deployment, multiple
sensors in the same room will be useful for estimating this
background PM. We would then look at deviations of the
local PM from the background level.

Also, more detailed calibration will be needed if we wish
to compare our results against other published PM results.
For instance, we can calibrate the sensors in varied locations
which may have different average amounts of PM or different
material composition of the PM. We should also fully study

the sensor characteristics of the DSM501A and the amount
of manufacturing variability.
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