N

N

Comparing detailed and abstract timed models of
automated discrete manufacturing systems

Matthieu Perin, Jean-Marc Faure

» To cite this version:

Matthieu Perin, Jean-Marc Faure. Comparing detailed and abstract timed models of automated
discrete manufacturing systems. 9th annual IEEE International Conference on Automation Science
and Engineering (CASE 2013), Aug 2013, Madison (WTI), United States. pp.TuBT5.2. hal-00865616

HAL Id: hal-00865616
https://hal.science/hal-00865616

Submitted on 24 Sep 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00865616
https://hal.archives-ouvertes.fr

Comparing detailed and abstract timed models of automated
discrete manufacturing systems

Matthieu Perin' and Jean-Marc Faurel:

Abstract—This paper proposes an equivalence relation that
permits to compare the external behaviors of two models
of the same component of an automated discrete system: a
detailed model suitable to design the control of this component
and a more abstract model where only the order and the
durations of the operations performed by this component are
considered. A first definition of the relation is given assuming
that both models are deterministic; then a second definition that
integrates tolerances on values and time is proposed when this
assumption is no more true. These definitions are exemplified
on a simple case study.

I. INTRODUCTION

A component of a discrete automated manufacturing
system, e.g. a conveyor, machine, robot, may be modeled
in a detailed fashion as a closed-loop system where a
controller is connected to plant elements. This modeling
is helpful when designing the controller, for instance to
check whether a specific control algorithm ensures liveness
and safety; it is then very suitable for control engineers.
However, a more abstract model of the same component
may be built by considering that this component performs
some operations on a discrete flow of parts without focusing
on the details of these operations - the internal behavior of
the closed loop does not matter- but only on the time they
require and their start/end events. This modeling is relevant
when focus is put on time performance evaluation of the
whole automated system; therefore it is more appropriate
for production engineering and management concerns. These
models must be timed because time is a significant concern
for both control and performance evaluation and are built
separately in practice.

Several works have addressed previously the construction
of detailed models of the controller ([1], [2]), plant elements
([3], [4]) or the complete closed-loop ([5]) with different
classes of DES -Discrete Event Systems- formalisms. How-
ever, few results on the comparison of detailed and abstract
models have been published, to the best of our knowledge.
Consistency of the models of a component is a crucial
concern, however, to avoid for instance that the duration
of an operation in an abstract model be different of that
obtained from the analysis of the corresponding detailed
model. Moreover, the analysis of the internal behavior of a
component requires obviously its detailed model but very
often abstract models of the components that send and
receive parts to/from this component or communicate with
1t.

1LURPA, Ecole Normale Supérieure de Cachan, F-94200 Cachan,
{perin, faure} at lurpa.ens-cachan.fr

2Institut Supérieur de Mécanique de Paris, F-93400 Saint-Ouen, faure
at supmeca.fr

2

The aim of this work (Figure 1) is to contribute to bridge
the gap between these two points of view. More precisely,
an equivalence relation to compare the external behaviors of
the detailed and abstract models of the same component will
be defined. Two cases will be considered: the two models
are fully deterministic or the models (or at least one of
them) include non-determinism on time or values of some
variables, e.g. the duration of an operation is not constant
but stands between a lower and upper bound.

This paper is structured as follows. The formalism that
has been selected to build the detailed and abstract models
is presented in the next section. Section III focuses on the
definition of an equivalence relation to compare these models
assuming that they are deterministic; this definition and
comparison methods which are based on it are illustrated
in section IV. The case of non-deterministic models is
addressed in section V and concluding remarks as well as
prospects for further work are given in the last section.

Real closed
loop system

Actuators, @T
Motors,

Sensors, ... Ifl Ifl Ifl

Production engineering
point of view

Control engineering
point of view

Abstract model

Detailed model

Fig. 1. Aim of the work

II. FORMALISM USED

The models used in this paper will be described by
using the formalism of Timed Automata with Discrete Data
(TADD) fully described in [6]. This formalism is an exten-
sion of the timed automata formalism presented in [7] and is
particularly suitable to model urgency and discrete variables
evolutions in time. As detailed in [4] and [5] indeed, building
meaningful timed models of plants or closed-loop systems
requires to select a formalism that is able to model urgency.

Only the elements of the semantics of TADD that have
been used in this work are described below for room saving.

A network of TADD is a set of automata AMPP =
(L;,19,V,C,E;, I;) with @ € 1,...,n,n € N*; the sets
of clocks (C') and variables (V' = Vg U V) -composed
of Boolean variables (V) and integer variables (Vz)- are
shared by all automata. The network thus is { A™PP} =
(L,I°,V,C, E,I) with the following definitions:

L= (Ly x Ly--- x Ly,) is the set of locations,

I=(l,l,...
P —@.0,...
V is a set of common discrete variables; let v € V
be a variable, v is the variable value at a given time
-either 0 € {true, false} if v € Vp or 0 € Z if
v € Vz- and V is the set of all the variables values,

, 1) is the active locations vector,

,19) is the initial locations vector,

C' is a set of common clocks, let ¢ € C be a clock,
¢ € [0,400) is the clock value at a given time and
C' is the set of all the clocks values,

E =, E; is the set of the edges of the network.
Each edge e = (I, g,t,u,a,2%,1') is going from a
source location [€ L; to a target location I’ € L;,
with a guard g as a Boolean expression over the set
of variables V', a timed constraint ¢ over the set of
clocks C, and an action « setting the new values of
the variables of V. The term 2¢ is introduced for
the reset of clocks: each clock may be reset or not.
r C C is defined as the set of the clocks to be reset
in a specific edge. u € {true, false} is the urgent
attribute that defines the edge as an urgent edge; no
time constraint is allowed (i.e. t = true, the always
satisfied time constraint) when the urgent attribute
is true,

I(l) = \; 1;(I;) is defined as the common invariant
function over the set of clocks C. An invariant may
indeed be associated to every location.

A network of TADD may evolve according to two
concurrent semantics:

The edge firing semantics is possible for each edge
if the source location is active, the guard is True
(i.e. the variables values of V' satisfy the guard), the
time constraint is satisfied (i.e. C satisfies the time
constraint) and the invariant of the target location
is satisfied by the new clocks values C” including
the clocks resets of the edge. The firing changes
the active location from the source location to the
target one, the set V/ of the new variables values is
deduced from the assignment action a of the edge.
Clocks values remain unchanged except for clocks
that belong to 7.

With the time evolution semantics, only the value
of every clock is increased by the same amount. The
active location of every automaton of the network
is unchanged and C becomes C' iff:
o The values C and C" satisfy the invariant of
the current active locations,
o No urgent edge may be fired from the current
active locations.

Fig. 2.

true &&

A Network of Timed Automata with Discrete Data (TADD)

These two semantics are exemplified on the network of
TADD given in figure 2. This figure depicts a network of
two TADD using one clock T, one Boolean variable a, one
integer variable X, and composed of:

Locations ({A, B,C} x {0,1,2}), which are repre-
sented by circles, location names being in bold font.

The initial locations (here, locations A and 0), which
are represented with a source edge with the initial-
ization of variables (clocks are always initialized to
Z€ero).

Locations invariants (T <= 2 for location 0O in this
example), in bold font.

Edges, which are represented by arrows, the urgent
ones using double line arrows (like from location A
to B).

Guards and time constraints, in normal font. The
guard and time constraint of an edge may be
combined by a disjunction or conjunction operator,
respectively noted || and && (true && T >= 2, for

example). The Boolean operator NOT will be noted
.

Actions on variables, which will be represented by
the assignment operator := in bold font; actions
are separated by comas when several actions are
associated to an edge. Clock resets will follow the
same pattern, the assignment being limited to reset
(assignment to zero), like in the edge from location
0 to location 1.

From the initial state (locations A and O are active,
variables and clocks have their initial values), two evolutions
are possible:

(A,0) — (B,0), as the source locations vector is ac-
tive and the guard (true) is always satisfied. The next
active locations vector will be (B,0), and the values
of both variables and clocks remain unchanged (no
assignment and no clock reset on this edge),

(A, 0) — (C,0), as the source locations vector is
active and the guard is satisfied. The next active
locations vector will be (C,0), and the values of X
and T remain unchanged but the Boolean variable
a will become true.

No evolution of the right model is possible because the
guard of the edge 0 — 2 is not satisfied and the time
constraint of the edge 0 — 1 cannot be satisfied as the edge

A — B may be fired and is urgent (thus preventing any
evolution based on the time semantics).

If the edge A — C is fired, two other evolutions are thus
possible:

e (C,00 — (C,1), by using the time evolution se-
mantics to increase the value of the clock T from
0 to 2, then by firing the edge 0 — 1. The next
active locations vector will be (C,1) and the value
of Boolean variable a remains unchanged (true), the
variable X is set to 4 and the clock T is reset,

o (C,0) — (C,2), as a is true and the guard is hence
satisfied. The new active locations vector will be
(C,2) and all the values remain unchanged (neither
variable assignment nor clock reset on the fired
edge).

In the remainder of this paper, neither the guards and
time constraints which are always true, nor the initialization
of variables to false or 0 will be represented for readability
reasons.

Last, a sequence -or run- of a TADD is defined in [6].
This definition may be extended to a network of TADD
(L,I°,V,C,E,I) as:

do 51 d2 03
Seq =89 —> 81 — 82 —+ 83 —> 84...5; €))]

with :

o s;=(;V;,C;) € S=LxVxCis a state of
the network of TADD defined by the active location
vector and the values of the variables and clocks.

e For each sequence index j € N, §; is a change of
state that may be:
o Either e; € E, the evolution through the
edge e;,
o Ord; €~N*, clock~ increase of duration d;
such as Cj41) = Cj + dj.

Figure 3 represents a sequence of the example network
of figure 2.

A C C C i
0 0 0 1 J
Seq=F =281 2, 7T 23T G
0 0 0 4 X,
0 0 2 0 T;
Fig. 3. Example of sequence

III. EQUIVALENCE RELATION DEFINITION
A. Choice of the equivalence

Numerous equivalence relations that can be used to
compare two formal models have been previously defined; a
good synthesis of these works is presented in [8]. Globally,

these relations can be put in two categories: relations based
on the languages recognized or marked by a model, like bi-
simulation, weak simulation, ready simulation and relations
based on the responses of a model to input sequences,
which are often named trace equivalences. The equivalence
relations of the first category cannot be selected for this study
whose objective is to compare a detailed and an abstract
model of a same physical device because the detailed model
includes usually many more states and transitions than the
abstract one then the languages of the two models are surely
far different. At the opposite, an equivalence relation based
on the input/output traces may permit the comparison.

It matters first to define what are the input and output
variables of a TADD:

e The input variables, Vi C V, of a given TADD
are the variables which are used in the guards of its
edges and are assigned in another model; an input
sequence represents the evolutions of the values of
these variables during time,

e The output variables, V, C V, of a given TADD
are the variables which are assigned in the guards of
these edges and read then used by another model;
an output sequence represents the evolutions of the
values of these variables during time.

The sets of input and output variables of the detailed and
corresponding abstract models are generally not identical.
Hence, comparison of the behaviors of the two models will
require first to find the sets of common variables then to
check whether the following trace equivalence relation holds
or not:

For each input trace built on the common input variables
set, the output trace on the common output variables set
produced by the two models is identical.

It must be noted that this definition of an equivalence
relation assumes that the two models are deterministic
because any model must be trace equivalent to itself. This
assumption will be kept in this section and the next one but
removed in section V.

B. Building a timed trace for TADD comparison

The selected equivalence relation implies that traces be
built from the formal models to compare. The aim of this
subsection is to show how a fimed trace can be built from
a sequence then to propose a formal definition of the trace
that will be used to compare two TADD.

Figure 5 is an example of sequence built from the TADD
of Figure 4. For each state of this sequence, the active
location, the values of the output variables a, b, c, X, Yy,
z and the clock are respectively given.

In this sequence:

e The values of all output variables are pointed out in
each state,

e The clock may be reset between two states, as this
is the case for the change L3 — L3 from the 6"to
the 7Mstate in Figure 5.

b := true, c :=false,
2:=42 c:=true, a:=la b := false, z:=X,
x:=1, X :=2X, c:=a Temp :=0
y:=4, y:=-5 X :=2X,
Temp :=0 z:=3 y:=8
P »(12) > cllb
Temp ==5 u Temp == 13
Temp <=5 Temp <= 13 X:=0
X)
Ic&& bl y:=24
Temp <= 13
Temp == 13
N

Fig. 4. TADD example with Boolean variables a,b and c, discrete variables
x,y and z and a clock Temp.

L0 L1 L1 L2 L2
F F F T T
F T T T T
Seq = F L0 L1 T N T Li=p2 T 8, T
0 1 1 2 2
0 4 4 5 -5
42 42 42 3 3
0 0 5 5 13
L3 L3 L4 L4 l;
T T T T a;
F F F F b
L2513 T L3213 F L3—14 F 13 F Cj
4 4 0 0 7
8 8 24 24 7
3 8 8 8 Z
13 0 0 B Temp,
Fig. 5. Example of sequence for the TADD of figure 4

To permit that two TADD be compared, only the values
of the output variables which belong to the set W of the
output variables common to the two TADD (W C V) must
be kept and a unique clock, reset only at the initialization
must be introduced, as proposed by [7].

A timed trace over the subset of variables W can then
be defined for the automaton (L, o, V,C, E,I) by:

Tra(W) =(Wo,0) =% (Wi, t1) —5 (Wa, ta) —2
(Wa,t3) =% (Wi, ta) ... (Wi, t) 2

with :

e t;, absolute date (value of the unique clock reset
only at the initialization of the trace)

° Wj, values of variables from the variable subset
W C V at absolute date ¢;

e For each trace index j € N, «; is a change of the
trace:
o Either ¢;, an action on variables such that
W; AN W(jJrl) and L) = 1.
o Ord; €N, a time consumption such that
iy =1t + d; and W(j+1) =W;.

The timed trace obtained from the sequence of Figure 5
is given at Figure 6, by assuming that W = {a, b, z,y}. It
must be underlined that the last value for each trace index
is the value of the absolute date and not of the clock Temp.

F F F T T
F T T T T
Tra(W)= 0 "2 1 25 1 #1282 9 8, 9
0 4 4 —5 —5
0 0 5 5 13

T T T a4

taopst rasga £oas L b;

—74 == 0 0 ... %

8 24 24

13 3 26

Fig. 6. Timed trace obtained from the sequence of figure 5

C. Trace equivalence definition

Let two TADD (LAl VA CA EATY) and
(LB,18, VB CB EB,IB) to be compared according to
a timed trace equivalence relation.

Some additional notations are to be introduced to define
formally this equivalence relation:

e VA (VB)is the set of input variables of TADD A
(TADD B),

o V. = ViA N V;B is the subset of input variables
common to TADD A and B,

e VA (VB)is the set of output variables of TADD A
(TADD B),

e V, =VANVPE is the subset of output variables
common to TADD A and B.

Output timed traces Tra”(V,) and Tra®(V,)) can be
defined for the two TADD as stated by 2. These traces are
obtained when a timed input trace Tra(V;) is sent to both
models. This trace specifies the values of the common inputs
for different values of the absolute clock; an example of such
a trace for two common inputs: IN1 (Boolean variable) and
IN2 (discrete variable) is given at Figure 7.

T T s T F . T
Tra(Vi)= 0 2% 4 25 4 20 2 4 2
0 0 5 5 8
T T IN1;
0 - —5 2% —5 ... IN2,
8 g 10 7
Fig. 7. Example of input timed trace

The set of all output traces obtained from the model
A (respectively B), for a set Traces(V;) of input traces
Tra(V;) will be noted Traces*(V,) (resp. Traces®(V,)).

With these notations, the trace equivalence relation be-
tween two TADD A and B is:

B=A=

3

The definition 3 means that two timed models A and B
are said trace equivalent iff:

e Whatever the input trace applied to the two models
and for each index of this trace (first line),

e For every couple of elements of the output traces of
A and B (second line),

e The values of the common output variables and the
time stamp which compose these two elements are
equal (last line).

IV. ILLUSTRATION
A. Presentation of the example

The example used in this paper is a pneumatic manipu-
lator of a testing station depicted at Figure 8. The plant is
composed of two pneumatic actuators and their associated
sensors (2 for the vertical cylinder and 3 for the horizontal
cylinder) and one suction cup linked to a vacuum pump.
This plant is controlled by a logic controller which is not
represented on this figure where only its inputs and outputs
are listed. The testing station includes also a testing device
which checks the correctness of mechanical parts.

i Controller
i €@ Inputs
i €= Outputs

H_G_IN
H_G_OuT

!

H_OUT H_MID H_IN

V_G_OUT —>

V_G_IN =—>
V_IN €—¢

V_OUT €<—¢

Testing START
device

TEST_OK
TEST_KO

TEST

Fig. 8. Testing station layout
The expected behavior of this manipulator is the follow-
ing:

1) When the START button is pushed, the READY
variable -true when the manipulator is available,
false otherwise- is reset, the suction cup goes down
and picks a part (it is assumed that a part is present

at the picking place -rightmost position- when the
START button is pushed).

2) The part is lifted, moved to the middle position
of the horizontal axis then lowered to the testing
device.

3) This device checks the part and sends to the
controller the result of the test (TEST_OK or
TEST_KO).

4) If the test was passed, the suction is stopped
and the part is transferred to another station by a
conveyor which is not considered in this example.
The suction cup comes back to its initial position
(move up, then move to the right) and READY
variable is set. If the test failed, the part is brought
to the leftmost position (move up, then move to
the left) and is released into a bin of non-conform
parts. Then the suction cup comes back to its initial
position and READY variable is set.

B. Detailed model of the manipulator

This model describes the internal behavior of the closed-
loop system composed of the plant elements and the con-
troller. Therefore, a network of five TADD, two (H_act and
V_act) for the actuators, two (H_sen and V_sen) for the sets
of sensors of the horizontal and vertical axes and one for the
controller has been built.

V_G_IN , N
T \V |
V_G_OUT V_act > Vsen |1y our
1
1
1
H_G_IN 1 : H_IN
H H 1 H_MID
H_G_OUT H_act Hsen Pr=oor
T a
Ve .
Plant model
Controller
i Controll
i rontrotler Plant model internal TEST_koe— I
: Inputs discrete variables == TEST_OK START
i Outputs €— TEST €<—— READY

Fig. 9. Structure of the detailed model of the example with controller
Inputs/Ouputs and internal variables of the plant model (H: length of rod
out of the horizontal cylinder, V: same for the vertical cylinder)

The structure of this network is depicted at Figure 9 and
examples of actuator model and sensors model are given on
Figure 10. As the aim of this paper is not to discuss the
construction of these models, no further explanation will be
given on this topic; the interested reader is referred to [5]
for an accurate presentation.

C. Abstract model of the manipulator

This model (Figure 11) does not consider the internal
states of the closed-loop elements (positions of the rods
of the cylinders, states of the sensors, values of the in-
puts/outputs of the controller) but describes the external
behavior of the manipulator. When START is pushed, the
part is transferred to the testing device in 15 time units then a
new part can be tested after 17 (test passed) or 25 (test failed)

H_G_IN && t==1 && H-2<=0

H_G_OUT && H< 20
H_G_IN &&
t==18&&
H-2>0

t<=1
H_G_OUT &&
t==18&
H+2<20
t:=0,
H:i=H+2

t:=0,
H:i=H-2

H_G_IN && H>0

H_G_OUT && t==1 && H+2>=20

(a) Model of the horizontal pneumatic cylinder

H<=18 H<11 H<=9 H<2
o s e e S o S e S
H>18 X>=11 H>9 H>=2

(b) Model of the associated sensors

Fig. 10. Models associated to the horizontal movement of the manipulator
(actuator and sensors)

time units; hence, the cycle time of this manipulator is 32
or 40 time units. This abstract model is well appropriate to
evaluate time performances, a crucial concern for production
management.

Last, it must be clearly underlined that this abstract
model is fully deterministic because:

e the time constraint of the edge L1 — L2 (resp. L3
— LO and L4 — LO) is equal to the upper bound
of the invariant of the location source of this edge;
therefore, an evolution from this location is only
possible when this bound is met.

e the guards of the two edges that start from L2 are
exclusive.

The duration of one cycle is equal to 32 time units if the
test is passed (TEST_OK true and TEST_KO false) or 40
time units if the test failed (TEST_KO true).

READY :=true Temp ==25

TEST :=false
Temp :=0

TEST_KO

READY :=false,
Temp :=0

TEST :=true

START Temp == 15 TEST_OK &&
Temp <= 15 ITEST_KO

READY :=true TEST :=false

Temp :=0

READY :=true Temp ==17

Fig. 11.

Abstract model of the manipulator

D. Verification of the equivalence between the two models

To verify whether the two models are trace equivalent,
according to 3, the set of common input and output variables
must be defined. In the case of this example, these sets
are respectively V; = {START,TEST_OK,TEST_KO}
and V, = {TEST,READY }.

Verification of the equivalence relation with these defini-
tions of V; and V,, must be tool-supported. The well-known
and efficient tool UPPAAL ([9], [10]) has been selected for

this study. Hence, the TADD models are to be translated into
UPPAAL models according three simple translation rules
that guarantee that the semantics is preserved:

e the locations are directly translated, with their in-
variants.

e a guard of a UPPAAL edge is the conjunction of
the guard and time constraint of the corresponding
TADD edge.

e an urgent UPPAAL communication channel is de-
fined for the whole model; every urgent edge is
synchronized with this channel, what is not the case
for the non-urgent edges ([10]).

Once the UPPAAL models obtained, two solutions can
be considered to verify the trace equivalence of the two
models:

e by using the simulation capabilities of the tool. The
same input trace is sent to the two models and the
output traces that they produce are compared. This
simulation is repeated for a set of representative
input traces.

e by model-checking, a formal verification technique.
In that case, a formal property constructed from (3)
is checked whatever the input trace could be.

The first solution permits to verify the equivalence for
typical cases but does not guarantee the completeness of the
analysis. The second one is more general but requires that
an observer be built to express correctly the formal property;
construction of this observer is out of the scope of this paper
but a complete presentation of this topic can be found in

[11].

The two solutions have been implemented for the models
of the manipulator and have given consistent results; the
detailed and abstract models are trace equivalent.

V. TRACE EQUIVALENCE WITH TOLERANCES

The trace equivalence relation (3) can be applied only
when the two models to compare are fully deterministic
because it relies on a strict equality on the output values
for every date of the trace. When one of the models, or
both, includes non-determinism on time or values of some
variables, new equivalence relations with tolerances on time
or values are to be built. This issue will be illustrated on
the model of Figure 12 where the sets of common input
and output variables are the same than those of Figure 11,
the duration of one cycle is always equal to 32 or 40 time
units but depends no more on the test result but on a non-
deterministic choice when firing the edge from L3 to LO.
This modeling is more abstract than that of Figure 11 but
can be helpful when focus is put only on evaluation of the
bounds, and not the distribution, of time performances.

To permit comparison of two models with non-
determinism on time, a tolerance on time AT must be first
defined:

READY := true

READY := false,
Temp :=0

START

TEST :=true,
Temp :=0

TEST_OK ||
TEST_KO

TEST :=false
Temp :=0

Temp <= 25

Temp == 15
Temp <= 15

READY :=true Temp ==17 || Temp == 25

Fig. 12. Non-deterministic abstract model of the manipulator

AT = [ATinf; ATeup]a (4)
with ATy, ¢, ATgyp € Z and ATy < ATy,

With this definition, a trace equivalence relation with
tolerance on time can be defined from (3):

B ZAT A=
VTra(V;),Vj € N,
V(VA) € Tra®(V,) and V(VE,#7) € Tra®(V,), (5)
tJA — tJB € AT and

(7B _ 1/A
=y

It must be underlined that the tolerance on time is defined
on the global clock. On the other side, automated manu-
facturing systems are composed of numerous components
whose behavior is cyclic. For this kind of components, this
tolerance may become very large if the non-deterministic
behavior of one model increases the time shift between the
two models to compare at every cycle. A solution to this
issue is to consider the two traces for only one cycle, i.e. to
reset the global clock at the beginning of each cycle by using
the value of the variable READY in the example for instance.
Then, two trace equivalence relations with tolerance on time
can be defined: one global where the clock is reset only at
the initialization and one cyclic where the clock is reset at
the beginning of each cycle.

If AT =0, 8], the new abstract model and the detailed
model of the manipulator are trace equivalent for a cyclic
trace equivalence relation, because the variable READY is
set 32 or 40 time units after it has been reset.

In a similar manner, tolerances on the values of the
output variables v € V,, may be introduced. These tolerances
can be defined only for the discrete variables because
introducing a tolerance on the value on a Boolean variable
does not make sense or with other words means that this
variable does not matter.

Yo € V,, AV(v) = [AVY AV

sup

with AV, AVY € Z and AV, < AV

sup inf = sup

(6

With this definition, a trace equivalence relation with
tolerance on the values of the output variables can be defined
from (3):

B =ay A=
vTra(V;),vj € N,
V(VA) € Tra(V,) and V(VE,£7) € Tra®(V,), (7)
tjA = tJB and
Vv € Vo, 0 — 3 € AV (v)

With ﬁjA the value of variable v of automaton A at trace
index j and f)jB the same for automaton B.

By combining (5) and (7), a general equivalence relation
with tolerances (8) can be set up:

B=avar A=
vTra(V;),vj € N,
A LA A ~B B B
V(VA,) € Tra™(Vo) and V(Vi,17) € Tra”(Vo), (8)
tjA — tJB € AT and
Vv € Vo, o — 0 € AV (v)

This relation states that two models are trace equivalent
iff, whatever the input trace, the values of the clock and the
output variables that they deliver stand in a given interval,
for each trace index.

VI. CONCLUSION

This paper has shown that two timed models of the same
component of an automated discrete manufacturing system
that have been built with different objectives, a detailed
model developed to design the control of this component
and a more abstract model for production management
purposes, can be compared on the basis of an equivalence
relation defined on the input/output traces that they produce.
Comparison of the models is then possible by using a tool
for formal analysis of timed discrete models. The equiva-
lence relation has been afterwards extended by introducing
tolerances on time and values of the output variables so as
to deal with models that may include non-determinism on
time and values.

On-going work focuses on improvement of the appli-
cability of the approach by developing a method to con-
struct automatically observers and formal properties from
the equivalence relations that have been proposed.

REFERENCES

[1] M. Lindahl, P. Pettersson, and W. Yi, “Formal design and analysis
of a gear controller: an industrial case study using uppaal,” LNCS,
Proc. of the 4™ International Workshop on Tools and Algorithms for
the Construction and Analysis of Systems, vol. 1384, pp. 281-297,
1998.

[2] V. Vyatkin and H.-M. Hanisch, “Practice of modeling and verification
of distributed controllers using signal net systems,” in Proc. of Inter-
national Workshop on Concurrency, Specification and Programming
(CS&P), Berlin, Germany, October 2000.

[3] B. Rohée, B. Riera, V. Carré-Ménétrier, and J.-M. Roussel, “A
methodology to design and check a plant model,” in Proc. of the
3" JFAC Workshop on Discrete-Event System Design (DESDes’06),
Rydzyna, Pologne, Jun. 2006, pp. 246-250.

(4]

(5]

(6]

(7]

M. Perin and J.-M. Faure, “Building meaningful timed plant models
for verification purposes,” in Proc. of the 13™ IFAC Symposium on in-
formation control problems in manufacturing, INCOM’09, Moscow,
Russia, 2009, pp. 970-975.

——, “Building meaningful timed models of closed-loop DES for
verification purposes,” Control Engineering Practice”, emphpending
for publication with doi: 10.1016/j.conengprac.2012.05.002.

A. Janowska and P. Janowski, “Slicing of timed automata with
discrete data,” Fundamenta Informaticae, vol. 72, no. 1-3, pp. 181—
195, 2006.

R. Alur, “A theory of timed automata,” Theoretical Computer Sci-
ence, vol. 126, pp. 183-235, 1994.

(8]

91
[10]

[11]

R. van Glabbeek, “The linear time-branching time spectrum i - the
semantics of concrete, sequential processes,” in Handbook of Process
Algebra, chapter 1, 2001, pp. 3-99.

UPPAAL website, “http://www.uppaal.com,” 2011.

G. Behrmann, R. David, and K. Larsen, “A tutorial on UPPAAL,”
LNCS, Formal Methods for the Design of Real-Time Systems, vol.
3185, pp. 200-236, 2004.

B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
and P. Schnoebelen, Systems and Software Verification. Model-
Checking Techniques and Tools. Springer, 2001.

