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Abstract— This paper presents a novel telerobotic framework
for human-directed dual-arm manipulation. Current telerobotic
systems typically involve a single robot arm commanded by
human through a joystick or a master arm. In contrast, our
system involves a dual-arm robot manipulating a held object
through human gestures without any mechanical coupling. Our
experiment involves an industrial robot consisting of a torso,
two seven degree-of-freedom arms, and two three-finger hands.
We use the existing industrial robot controller, and only modify
the position setpoint in the outer loop. The human interfaces
to the robot using a set of gesture vocabulary. During object
manipulation, the human gesture is interpreted as the desired
configuration of the object. The robot performs autonomous
vision-based target identification and alignment, grasp selection
and force control, to ensure stable and robust object manip-
ulation, with no demand on human for stable grasping. The
heterogeneous components of the system are integrated through
Robot Raconteur, a distributed communication and control
software system. The system interfaces easily to powerful
analysis and visualization tools, facilitating rapid algorithm
development and prototyping. We envision that the integrated
architecture will serve as the foundation for versatile, robust,
and safe human-robot collaboration in increasingly complex
sensing and manipulation tasks.

I. INTRODUCTION

Robots have long been used to extend human reach and
capability, in applications ranging from teleoperation [1],
as in nuclear waste disposal, to shared control [2], as in
surgical robotics, to supervised autonomy [3], as in planetary
exploration. These systems typically involve a single robot
arm equipped with an end effector dedicated to a specific
class of tasks.

Multi-arm telerobots are less common due in part to their
mechanical and system complexity. The synchronization and
stability issues are much more severe in terms of force
reflection, since the human operator needs to regulate both
the force of interaction between the jointly held load and
the environment as well as the internal force within the
load. Even for autonomous operations, tasks for multi-arm
robots are often pre-solved using planning algorithms with
known geometry information [4]–[6] in which the motion
path is computed off-line and then performed in open-loop.
Sensor-based motion planning is possible but due to the
computational complexity is usually reserved for relatively
simple systems [7].

In this paper, we present a novel telerobotic framework for
human-directed manipulation. Our approach is sensor-based,

allowing flexibility in task specification and execution. We
consider robots with multiple kinematically redundant arms
equipped with multi-finger hands. Such robots can tackle a
much broader range of tasks than a single arm, but at the
same time incur increased complexity in terms of potential
collision as well as force of interaction in collaborative tasks.
Instead of mechanical coupling, our approach is to allow the
human to direct robot action through gestures, for a more
natural, less constrained, interface.

We implement our approach on a 15-degree-of-freedom
(dof) dual-arm industrial robot (Motoman SDA10) and a
suite of peripheral sensors and actuators (cameras, Kinect,
force/torque sensors, and multi-finger hands) distributed over
multiple computers. We integrate these subsystems together
in a flexible, seamless manner that allows frequent modifica-
tion and experimentation as well as easy code maintenance.
For the middleware that coordinates the communication over
this distributed system, we chose to use Robot Raconteur
[8], the open source software system developed in our
laboratory, over ROS Industrial [9] due to its true distributed
implementation (no master node), and ease of use.

We use an example scenario to guide the development. A
box is placed arbitrarily in the robot workspace. The robot
detects the location of the box, moves both arms around it
and positions the fingers for a stable grasp. The two arms
then move toward each other to securely grasp the box. The
human then interacts with the robot through the gestural user
interface to manipulate the box and move it to a desired
location without losing grip.

The successful execution of this task scenario requires the
solution of a set of technical issues. Their general solutions
are complex and involve detailed geometric and other model
information of the system and its environment. Instead, we
impose a small set of heuristics and structure on the system
to allow simple but robust solutions.
• Object identification and localization. The robot needs

to identify and locate the box, and determine good
places for grasping. We draw on planar tagging schemes
developed in the artificial reality community, in partic-
ular the VTT ALVAR tags [10].

• Grasping and finger configuration. The finger con-
figurations of the two three-finger hands need to be
chosen to properly and securely hold the box. We use
finger-Jacobian heuristics to allow robust, stable, and



repeatable grasping (together with force control below).
• Force control. To securely hold the box with the robot

arms, the robot must apply a squeeze to result in enough
friction to prevent the box from slipping out of grasp.
We use the well-known integral force control, with a
suitable modification to enhance robustness [11].

• Redundancy Resolution. We exploit kinematic redun-
dancy in our system to avoid collision and enhance
manipulability and grasp stability. We use a simple
damped least square method for redundancy resolution
[12] coupled with repellant potential fields for collision
avoidance [13].

• Human Interface. Our system uses “shared control,” i.e.,
the robot maintains a stable grasp and determines robot
joint motion in response to the human’s commanded
object motion. Instead of the conventional mechanical
coupling, we use the Microsoft Kinect sensor to inter-
pret the user’s gestures. This is versatile, robust, and
more natural for the user as it is not limited by the
motion range limitation or mechanical impedance of a
mechanical interface.

We envision that the human-directed robotic system as
described in this paper, which facilitates integration, proto-
typing, and human interaction, will serve as the foundation
for more complex human-robot collaborative sensing and
manipulation in the future.

II. PROBLEM FORMULATION

We use a box manipulation example to guide our research.
The system involves a dual-arm robot equipped with cam-
eras, force/torque sensors and grippers, and a box payload as
shown in Figure 1. A coordinate frame of a rigid body con-
sists of a reference point, O, and a right-handed orthonormal
frame, E . The homogeneous transform between two frames,

say b relative to a, is given by Hab =

[
Rab pab
0 1

]
where

Rab is Eb represented in Ea, and pab is the vector from Oa
to Ob, represented in Ea. The world frame is denoted by
the subscript O. The sensor, camera and gripper frames are
denoted by the subscripts SL/R, CL/R, GL/R, respectively,
with L and R specifying the left or right arm.

The box localization function combines the camera-based
measurement of the box, HCT , and camera location in the
world frame, HOC , to determine the box location, HOT . The
visual servoing function uses HOT to generate target gripper
locations, and to move the robot joints to drive HOG to the
target. Since the arms are coupled at the torso, which can
rotate, the kinematics of the entire robot must be considered
for the alignment of both grippers. Our target load, the box,
is relatively large and cannot be held between the fingers
of the gripper. The force control function commands the
two grippers to apply a squeezing force between them for a
secure grasp. In our implementation, the operator provides
input using the Kinect; such a non-contact gesture-based
interface is particularly attractive since the user is unfettered
by mechanical constraints.

Fig. 1: The different frames of reference for the inertial frame O
and task frame T along with the sensors S, grippers G, and cameras
C on each arm.

III. SYSTEM DESCRIPTION

Our platform centers around the Yaskawa Motoman
SDA10 robot, a dual-arm 15-dof industrial robot with two
7-dof arms and a 1-dof torso. The robot has a built-in joint
controller and allows external interface through Motoman’s
High Speed Controller (HSC). The HSC interface provides
joint angle read and incremental commanded joint angle
write at a 2ms rate, with a significant delay-time (more than
100ms) from internal trajectory generation.

A Sony XCD-X710CR camera is mounted on the wrist of
each arm, angled towards the gripper. Each arm is equipped
with a Robotiq three-finger gripper and an ATI Mini45
force/torque transducer (between the robot wrist and the
gripper). The robot with the sensors and grippers is shown
in Figure 2.

Fig. 2: The industrial robot and its peripherals

The components of the overall system are coordinated
using our home-grown distributed control system, called
Robot Raconteur [8]. The system architecture is illustrated
in Figure 3. Separate Robot Raconteur services are written
(in C#) for the Motoman HSC interface, Robotiq gripper,
ATI force/torque sensor, cameras, image processing, and
Kinect interface, residing on three separate computers linked
together in a local area network via Ethernet and TCP/IP. The
overall coordination is conducted by a MATLAB script that
connects to these services as a client.

IV. CONTROL MODES

The operation of the box manipulation example is repre-
sented as a finite state machine shown in Figure 5, containing
the three major components: visual servoing, stable grasping,
and human-commanded motion. The transition between the
states is either through motion or force control to specified
locations or thresholds, or by detecting user gestures. After
localizing the box, positioning the grippers, and securely



Fig. 3: Overall distributed control system architecture using the
RobotRaconteur middleware

Fig. 4: The 15 axes of revolution for the Motoman robot

grasping the box, the robot moves the box to the specified
home position. Then the start gesture (left leg kick) initiates
the human-directed motion using the Kinect interface. The
pause gesture (hands together) stops the human interface and
waits in place. The home gesture (hands far apart) returns the
system to the home configuration. The exit gesture (left leg
kick) terminates the operation. The release gesture (hands
far apart) releases the box.
A. Task-Space-Based Motion Control

The input to the Motoman HSC is a vector of 15 joint
corrections which then passes through a trajectory generator.
With tight motor servo loops, we can ignore the dynamics
and reasonably approximate the robot response with a first-
order-plus-dead-time plant (the dead-time is configuration
dependent, varying between 100-150ms). Because the sensor
provides task space information, we apply a task space
control law. Let J be the 12× 15 Jacobian matrix that maps
the joint velocity to the spatial velocities (angular and linear
velocities) of both grippers:

[ωGL
, vGL

, ωGR
, vGR

]
>
= Jq̇ (1)

where (ωGL/R
, vGL/R

) denotes the angular and linear veloc-
ities of the left and right grippers, and q is the stacked vector
of qT , qL, and qR, the torso, left arm, and right arm joint
angles. The coordinate-free form for the ith column of J ,
Ji, is given by

Ji =



[
~hi ~hi × ~piGL

~hi ~hi × ~piGR

]>
i = 1[

~hi ~hi × ~piGL
0 0

]>
i = 2, . . . , 8[

0 0 ~hi ~hi × ~piGR

]>
i = 9, . . . , 15

where the axes of revolution, ~hi, are shown in Figure 4.
For computation, we represent Ji in the base frame (i.e., all
vectors in Ji are represented in the base frame). Since we
use the industrial controller in the inner loop, we consider q̇
as the command input (to be sent to the HSC).

Given the desired position and pose of the gripper,
(pdOG, R

d
OG), we set the position and orientation errors as

ep = pOG − pdOG, eR = σ(RdOGR
>
OG)

where σ is a 3-parameter representation of rotation. We
choose σ to be the vector quaternion, but any other represen-
tation may be used. Let Jσ be the representation Jacobian,
i.e., σ̇ = Jσω. Define

Ja = diag(JσL
, I, JσR

, I)J. (2)

Then the following proportional damped least-square task
space feedback controller [12] would drive the position and
orientation error to zero:

q̇ = − J>a (JaJ
>
a + βI)−1︸ ︷︷ ︸
:=J†

a

Ke (3)

where e is the stacked error vector (eRL
, epL , eRR

, epR), J
†
a

is the approximate pseudo-inverse with βI added to avoid
singularity, and K is the feedback gain matrix. Note that a
choice of specific units for linear and angular velocities im-
plicitly means a relative weighting has been applied between
linear and rotational motion.

For collision and joint limit avoidance, we use the standard
artificial potential field approach [13]. For a task space
constraint pOG ∈ P , where P is the feasible region for
the gripper position, we construct a smooth external penalty
function, ρp(pOG), that is zero in the feasible region and
positive in the infeasible region with no local minima. For
a joint space constraint q ∈ Q, where Q is the feasible
region for the joint angles, we similarly construct an external
penalty function, ρq(q). Let P be the projection of the spatial
velocity to linear velocity; then ṗOG = PJaq̇. The task space
controller may now be modified as:

q̇ = −J†a
(
Ke+ γpρpP

>(∇ρp(pOG))> + γqρqJ
†
a

>
(∇ρq)>

)
(4)

where γp and γq are weightings for the repelling potential
functions.

B. Visual Servoing

To facilitate box detection and localization, we mark the
grasping point with 2D ALVAR tags [10]. The ALVAR
library determines the pose of each tag by mapping the
homography between the known position of points in the
tag frame to the measured pixels in the image frame. It is
straightforward to use the estimated homography to recover
the homogeneous transform HCG given an image of a planar
tag [14]. However, it is well documented [15] that a reflection
ambiguity about the plane perpendicular to the optical axis
creates two local minima for the orientation. To resolve this
ambiguity, we include a set of “support tags” around the
target tag and ascertain the plane’s orientation by majority



Fig. 5: Finite State Machine demonstrating modes of operation and the state changes causing one to shift to another. Loop break commands
involve an inability to find the object or the measured forces detecting a slipped grasp or a crushing force.

poll. Experimentally, this has proven much more reliable than
trying to resolve the pose ambiguity of a single tag.

Once we have an estimated position and orientation of
the target, we can use the task space controller to drive the
grippers to the corresponding targets.

The controller needs a set of world space potential func-
tions based on virtual walls both to prevent the end effector
from colliding into the object and to prevent the tag from
leaving the camera’s field of view. We define each virtual
wall by its center point pOC and inward normal n. We
define the corresponding potential function by the projection
of pOG − pOC onto n. If the projection is negative, then ρ
is zero, otherwise, ρ is increasing. The controller (4) may
now be applied to drive the grippers to their targets while
avoiding task space obstacles and joint limits.

C. Grasping
Before we can make contact, the grippers need to be in

a desirable pose. The Robotiq grippers have 3 fingers with
underactuated joints, such that during a grasp at the palm, the
fingers will conform to the surface of the object. However,
this also means that each joint can have a large amount of
flexibility based on the pose of the finger.

We found experimentally that in a fully open pose, the
contact plane created by the three fingers would not neces-
sarily be perpendicular to the force/torque sensor’s normal.
This results in an undesirable moment applied to the box.
To avoid this undesirable joint motion, we set the gripper in
a singular position, i.e. all finger links are collinear. In this
singular configuration, the fingers can best resist flexing and
give a more predictable and reliable contact plane.

Before moving on to the tele-operation stage, a brief step
is included to align the grippers with respect to each other,
instead of to the target box. Since we did not guarantee the
tag normals to be collinear, this gives an added assurance for
a stable, moment-less grasp.

D. Load Motion Command with Squeeze Force Control
For the force control, we apply the generalized damper

approach that converts the force error to a velocity. The force
error is direction-dependent since a higher squeeze force is
more desirable (tighter grip) than lower squeeze force (which
could cause a slipped grasp). As recommended in [11] for
robust force control of a single arm, we use a direction-
dependent gain (damping coefficient):

ṗOG = −βKfef

β =

{
1 ef < 0 (push in)
βf ef ≥ 0 (back away)

(5)

where Kf is a diagonal matrix containing the reciprocals of
damping coefficients (equivalently, integral force feedback
gains, set to 0 if no force control is desired) and βf is a
constant between 0 and 1 (we chose 0.3).

The force error is projected along the vector connecting
the center of the arm force/torque sensors to ensure that
the motion intended to apply a squeeze force does not
inadvertently apply an external moment on the box. A dead
zone is also applied to the force error to prevent small errors
from winding up the controller and generating unwanted
oscillations or instability.

The damper equation (5) modifies the position set point,
resulting in the following hybrid position/force control law:

q̇ = −J†a
(
Ke+ β

∫
Kfef+γpρpP

>(∇ρp(p0G))>

+γqρqJ
†
a

>
(∇ρq)>

) (6)

The task error is now specified in terms of the box configu-
ration:

e = G>
[
−JσRdOTR>OTσ

(
RdOTR

>
OT

)
pOT − pdOT

]
O

. (7)

where G is the grasp matrix mapping the spatial force on
the box to the contact spatial force, and Jσ is the Jacobian
mapping σ

(
RdOTR

>
OT

)
to ωT . The position error is saturated

to a maximum value to prevent excessive initial jerk and
possible instability.

V. RESULTS

The control systems are implemented in MATLAB, run-
ning on an Intel Core i7 running the Windows 7 operating
system. This system is not real-time, but the performance is
adequate with sampling time at ∼7Hz during visual servoing
(due to the demand of image processing) and ∼30 Hz during
external command. The sampling times for these two modes
of operations are shown in Figure 6.

Fig. 6: (a) Visual servoing and (b) teleoperation loop times.



Fig. 7: A single frame from the Kinect-based external command
loop. The user’s pose is interpreted as a “skeleton.” A virtual box is
calculated between the skeleton’s hands and this desired box pose
is used to drive the robot.

(a) Left Arm (b) Right Arm

Fig. 8: Convergence of the visual servoing algorithm.

During the load motion command mode, we use a Mi-
crosoft Kinect not mounted on the robot as the human control
interface to provide the user with an intuitive command over
the desired box pose. The desired box position is calculated
as the center of the ray connecting the two detected hand
positions and the orientation is aligned such that the grasped
planes are orthogonal to that ray. This controller could
potentially be used for long distance teleoperation. There
are no stability issues, since there is no force reflection.
Figure 7 illustrates the operation and the relationship between
the box configuration and the operator hand pose. While
this command method is more natural to the user, it has
a disadvantage of having only 5 degrees of freedom for
control since the Kinect cannot detect the operator’s wrist
orientations.

A. Visual Servoing

Our visual servoing algorithm is convergent as long as the
cameras are able to see the tags. For our experiment, we place
the arms into a configuration such that both the position and
rotation displacement from desired pose is significant. Figure
8 shows how the control system is convergent even starting
from a significant orientation error. There are minor jumps
around t = 12s on the right arm where the image-based
potential functions adjust the camera’s position to have the
tag further from the image boundary.

B. External Load Motion Command under Squeeze Control

Before human interaction, we first tested the external load
motion command on several test signals. This mode is very
sensitive to time delay in the system, and since our plant
has a significant delay (∼100ms) between joint command

and joint actuation, we needed to be careful during our gain
tuning. There is a narrow window between our gains not
impacting our controller from too low control signals and
instability. Our recommendation is to first tune the force
feedback gain before attempting to tune the motion gain.

We first considered a simple sinusoid with amplitude 0.1m
and frequency 0.2Hz along a single direction. Figures 9a-9c
show how the robot drove the box to follow the reference
signal, with a phase delay of approximately 0.5s and an error
of approximately 0.1 between peaks. The grasp oscillated
about the target 10N squeeze grasp, but as designed by (5),
the overshoot never resulted in lost grasp.

For a more challenging case, we considered a reference
signal simultaneously translating along one axis and rotating
about another. Figures 9d-9f present the results of this case.
As before, the grasp has significant overshoot only in the
positive squeeze direction, and has a similar phase delay
as in the 1-D case of approximately 0.5s. However, the
translational error and rotational error at their peaks differ by
a significant margin, despite both receiving a 0.1 amplitude
reference signal. We found experimentally that the rotational
error vector needed approximately double the gain of its
translational counterpart in order to get similar performance
in reference tracking.

The results from running the control algorithm with a
human operator and a Microsoft Kinect are illustrated in
Figures 9g-9i (please also refer to the supplementary video).
The error reduces linearly during points of large displace-
ment, due to our clamping of the error magnitude. By
saturating the position error to a maximum value, the error
velocity becomes a constant equal to Ke. We found it was
very important to clamp the position error magnitude to a
maximum value in order to prevent excessive jerk and force
control instability; however, this causes a linear convergence
rate during large displacements. We believe this to be a fair
tradeoff to maintain stability over performance, since the
grasp will often be lost or too excessive during the initial
motion jerk otherwise.

VI. FUTURE WORK

One limitation of the current process is the lack of contact
detection by the gripper fingertips. We plan to detect contacts
based on the measured the finger joint torques. There is also
a significant and dynamic delay between joint command and
joint action due to internal trajectory generation by the HSC.
Future work will include methods to model this delay and
compensate for it in order to improve force-feedback control.

Longer-term goals for this project include manipulation of
awkwardly loaded objects and flexible materials, extending
to a teach-by-demonstration robotic learning system, and
long-distance teleoperation of robotic platforms.
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