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Abstract— Precise control of industrial automation systems
with non-linear kinematics due to joint elasticity, variation
in cable tensioning, or backlash is challenging; especially in
systems that can only be controlled through an interface
with an imprecise internal kinematic model. Cable-driven
Robotic Surgical Assistants (RSAs) are one example of such
an automation system, as they are designed for master-slave
teleoperation. We consider the problem of learning a function
to modify commands to the inaccurate control interface such
that executing the modified command on the system results in
a desired state. To achieve this, we must learn a mapping that
accounts for the non-linearities in the kinematic chain that are
not accounted for by the system’s internal model. Gaussian
Process Regression (GPR) is a data-driven technique that can
estimate this non-linear correction in a task-specific region of
state space, but it is sensitive to corruption of training examples
due to partial occlusion or lighting changes. In this paper, we
extend the use of GPR to learn a non-linear correction for
cable-driven surgical robots by using i) velocity as a feature in
the regression and ii) removing corrupted training observations
based on rotation limits and the magnitude of velocity. We
evaluate this approach on the Raven II Surgical Robot on
the task of grasping foam “damaged tissue” fragments, using
the PhaseSpace LED-based motion capture system to track
the Raven end-effector. Our main result is a reduction in the
norm of the mean position error from 2.6 cm to 0.2 cm and
the norm of the mean angular error from 20.6 degrees to
2.8 degrees when correcting commands for a set of held-out
trajectories. We also use the learned mapping to achieve a
3.8× speedup over past results on the task of autonomous
surgical debridement. Further information on this research,
including data, code, photos, and video, is available at http:
//rll.berkeley.edu/surgical.

I. INTRODUCTION

Almost all industrial automation systems are affected
by actuator imprecision, where the actual motion differs
from desired motion. A variety of factors, such as joint
elasticities, variations in cable tension, backlash, or wear
on geartrains, can lead to imprecision. Compensating for
imprecision is particularly challenging when the system can
only be commanded through a control interface with an
inaccurate internal model, as is common for proprietary sys-
tems. Semi-autonomous surgery with cable-driven Robotic
Surgical Assistants (RSAs), which are designed for master-
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Fig. 1. System Architecture. In the training phase, we collect pairs of
desired states xd, which are left unmodified by the high-level controller, and
observed states after execution xo using the robot’s imprecise kinematics
model and motion capture. In the learning controller, we remove corrupted
data with data cleaning, and then learn F , a mapping that minimizes the
difference between xd and the observed xo after sending command F (xd)
to the robot. We model this function as a composition of a rigid and a non-
linear transformation, which are learned with a constrained least squares
and Gaussian Process Regression respectively. During operation, the user-
operated high-level controller applies this learned function to the desired
state and commands the system’s native controller to go to F (xd). The
precise motion capture system is no longer necessary during this phase of
operation.

slave teleoperation and have non-linearities due to cable
elasticity and tensioning, is one example of a scenario with
these challenges [12].

To achieve precision in this setting, we must learn how
to command the robot such that the resulting state of the
tool after execution matches a desired state. While we may
not have access to the internal system parameters, we often
have access to correlated control inputs and observations of
the state from an external sensor, which we can use to learn
the residual error between commands and observations. Al-
though the space of possible states is very large, for a specific
automation task it may suffice to learn a correction only
over the states relevant to that task. Pastor et al. proposed a
combination of a rigid transformation and Gaussian Process
Regression (GPR) to learn an error correction function in a
task-specific region of state space, demonstrating that this
task-specific correction could be used to control the cable-
driven DARPA ARM with an position accuracy of 2-4 mm
for grasping and manipulation tasks [20]. We extend previous
work on GPR for learning a residual error correction function
for cable-driven surgical robots by i) including velocity as a
feature in GPR, which can influence non-linearities at high
speeds of operation, and ii) studying the effect of removing



corrupted observations from our training data, which can
occur due to occlusions or lighting changes in the workspace.
We call our three step procedure of data cleaning, rigid
transformation, and GPR the “learning controller,” illustrated
in Fig. 1.

In addition to cable-driven surgical robots, this method has
the potential to improve control of other non-linear automa-
tion systems that have complicated non-linear kinematics, an
incomplete kinematics model, or a control interface that uses
an inaccurate kinematics model. Examples of such systems
include the ABB IRB 6600, a low-cost industrial robot with
dynamic coupling effects and flexible joints [31], the Baxter
robot, the Barrett arm, the Ekso Bionix ProStep c©, and cable-
driven 7-DOF humanoid arms [3].

We evaluate our approach on the Raven II Surgical Robot,
an open source hardware platform for research on RSAs [6].
To collect training data for our model, we use PhaseSpace
LED-based motion capture to record the trajectory of the
end-effector using four cameras [1]. The PhaseSpace cameras
can capture at 480 Hz and localize LEDs to within 0.1 mm,
but still result in corrupted observations when the LEDs
become occluded in one or more of the cameras.

We train the learning controller on recorded trajectories of
our two-arm Raven surgical robot system as it autonomously
executes surgical debridement following the setup of Kehoe
et al., where the goal is to find, grasp, and transport “dam-
aged tissue” fragments [12]. Our results show that including
velocity as a feature in GPR reduces the norm of the position
error by 50% and the norm of the angular error by 19% on
these recorded trajectories. Furthermore, the addition of data
cleaning reduces the norm position error by an additional
4% and the norm angular error by an additional 21% over
the best result without any data cleaning. We also evaluate
the accuracy and repeatability of reaching desired states
using our correction method to modify commands sent to
the robots and executing the commands in open-loop. Using
this correction function, we achieve a 3.8× speedup over
previous work on autonomous surgical debridement [12].

II. RELATED WORK

One method to control cable-driven manipulators is to
directly model and estimate the non-linear parameters. Es-
timating the kinematic parameters of serial-link robot ma-
nipulators has been well studied in the calibration literature.
See [9] for an overview. Wernholt et al. learned non-linear
parameters through regression, dividing up the states of the
non-linear model into locally linearly regions and compute
a transfer function for each area. [32]. Chen et al. propose a
two-level self calibration method for a 7-DOF cable-driven
humanoid arm based on iterative linearization and updates
of error in state with respect to kinematic parameters [3]. In
[15], Krause et al. design feed-forward controllers based on
stiffnes models of the cables. Naerum et al. considered both
offline and online parameter estimation using the Unscented
Kalman Filter [19] with an explicit model of a cable-
driven 1-DOF system with motor angle measurements. This
work was extended to the 7-DOF Raven Surgical robot in

simulation, but the accuracy was sensitive to hand-tuned
process noise estimates [24].

Cable-driven robots can also be controlled without explicit
parameterization of non-linearities. Abdholli et al. used a
neural network to learn the dynamics of non-linear systems
and demonstrated the approach on elastic joint systems with
motor angle and velocity measurements [2]. In [33], Williams
et al. develop a slack-free controller by ensuring that cable
tension is positive for all motion, but the authors assume
known constants for cable elasticity. Reiter et al. track the
error between the pose from the forward kinematics and the
pose from keypoint-based visual tracking in an Extended
Kalman Filter to precisely estimate the pose of the cable-
driven Intuitive Surgical da Vinci R© [27]. While this allows
for an incomplete kinematics model, the linearization may
cause divergence when the error dynamics are inaccurate or
approximated poorly. Surgical robot control has also been
improved by using interial measurement units for gravity
compensation [17].

Past work in system identification has studied regression
with a Gaussian Radial Basis Function (RBF) kernel in the
context of controlling nonlinear systems without explicit
kinematic parameterizations [10], [11]. Gaussian Process
Regression has also been used to learn dynamics models
without a precise kinematics model [29], [14], [13]. However,
these works assume that the robot can be commanded in an
accurate reference frame, whereas our work can handle sys-
tems that have an inaccessible native control interface with
an inaccurate kinematics model. Pastor et al. use a two-stage
system consisting of a rigid transformation and Gaussian
Process Regression to model the state-dependent relationship
between robot desired poses and camera-observed poses on
cable-driven robots [20]. In our work, we extend this method
by including velocity as a feature in GPR and using data
cleaning to improve mean accuracy on the Raven II Surgical
Robot to 1 mm.

Our work is also related to prior work in data cleaning
and outlier rejection, which has been shown to improve
accuracy of statistical models; for example, it can reduce
bias in aggregate query processing for large datasets [30].
For general statistical models, Random Sample Consensus
(RANSAC) has been extensively studied to remove high-
magnitude outliers [4]. Various extensions to the RANSAC
model have been proposed to cope with tuning: Least of
Medians [18] and Residual Consensus [22], which leverages
the fact that the test error should have small variance over the
true inlier set. In addition, there are adaptive techniques that
allow for early stopping if a good enough model has been
found [23]. Expectation Propagation (EP) has been proposed
to make Gaussian Process Regression robust to outliers by
using a mixture model posterior for the regressor consist-
ing of separate components for inliers and outliers [16].
This approach requires a Gaussian Process prior on outliers
whereas our approach is free of such a prior. Pearson studied
the effects of outliers in system identification [21], stressing
the importance of data cleaning for proper identification.
Pearson considers impulse responses of single-input single-



output systems, and argues that using a specialized median
filter (called the Hampel Filter) works well empirically
to remove outliers in many datasets. Our model extends
Pearson’s insights on data cleaning to the multi-dimensional
case using a similar median filter (Least of Medians variant
of RANSAC), and additionally basing futher data cleaning
on the physical properties of the system and workspace.

III. PROBLEM DEFINITION

We consider a cable driven robot equipped with a native
controller that uses an imperfect internal kinematics model
and encoder values to convert state commands to physical
voltages on the robot, and a sensor system that observes
the state of the robot, as illustrated in Fig. 1. Our poses are
defined with respect to the frame of the native controller. We
adopt the following variable naming conventions throughout
this paper:
• tx, ty, and tz are the translations in the x, y, and z

directions with respect to the global coordinate frame
• φy, φp, and φr are the rotations about the yaw, pitch,

and roll axes, repectively, with respect to the global
coordinate frame

• p = (tx, ty, tz, φy, φp, φr) is the pose of the robot
• ṗ is the derivative of the pose
• x = (p, ṗ) is the state of the robot, with subscripts

xc,xo, and xd to denote the commanded, observed, and
desired states, repectively

• R(p) ∈ R3×3 is the rotation matrix corresponding to
the yaw, pitch, and roll rotations of p

• t(p) ∈ R3×1 is the translation of p
• T (p) =

(
R(p) t(p)
0 1

)
∈ R4×4 is the rigid transformation

matrix corresponding to p
• T = {x1, ...,xt} denotes a trajectory of length t
• X = {(xc,1,xd,1), ..., (xc,M ,xd,M )} denotes the set of
M pairs of corresponding observed and desired training
states

• Y = {(xc,1,xd,1), ..., (xc,N ,xd,N )} denotes the set of
N pairs of corresponding observed and desired testing
states

Our primary goal is to learn how to command the native
controller such that observed states xo, closely match the
desired states xd. As illustrated in Fig. 1, we augment the
system with a learning controller that learns a function F
to tranform desired states before sending them to the native
controller. We consider a variant of the approach of [20]
to learn the function F . Specifically, we constrain F to be
the composition of two functions: a rigid transformation G
and a non-linear function H , so that F (x) = H(G(x)).
We learn F by minimizing the difference between the
transformed desired state F (xd) and the state command xc

that generated the corresponding observed state xo on the
robot. In summary, our formal goal is to find some function
F : R12 → R12 such that ‖F (xd)− xc‖2 is minimized over
our test data set Y given the constraints on F .

For data cleaning, we model corruption of the training
and test data as sparse noise that is not physically real-
izable by the robot. We estimate the rigid transformation

using orthornormally constrained least squares. Following
the approach of [20], we estimate the non-linear component
using Gaussian Proccess Regression (GPR). We review these
regression methods in Section IV to highlight details specific
to the control setting.

We assume a surjective mapping between the state com-
manded to the robot and the observed states after executing
this command in our analysis. We note that this is not true
for overactuated robots and automation systems, but for these
systems our method can be applied on joint angles instead
of the end-effector pose. We also acknowledge that this
technique will be only as good as the quality of readings
from the external sensors.

IV. METHOD

Given a training set X and a test set Y , our method
for estimating the function F relating observed states xo

to desired states xd consists of three consectutive stages
performed offline:

1) Data Cleaning
2) Estimation of Rigid Transformation
3) Gaussian Process Regression

Our method requires training and test sets of time-
synchronized pairs of commanded and observed robot states.
Details of our specific data collection procedure can be found
in Section V.

A. Data Cleaning and Outlier Rejection

The output from the PhaseSpace motion capture system
can be contaminated by outliers, ie. examples that signifi-
cantly disagree with our model. We found that these outliers
are largely caused by full or partial occlusions of the LED
markers. In some parts of the workspace, the LEDs are
only visible in two or three of the cameras, resulting in
poor conditioning of the localization. “Dirty” data occurs
when the LED markers move into an occluded or unoccluded
region for one or more cameras because the conditioning of
the localization changes and the markers “jump” to a new
location. This results in artificially high velocity estimates.
PhaseSpace does not grant access to the appropriate low-level
information, such as the unfiltered data from each camera,
which would allow us to detect these problems in real-time.

Corruption is not always in the form of outliers, and
sometimes examples that lie close to the mean of the model,
or “inliers”, may actually come from sequences of states that
are physically impossible, such as states outside of the joint
limits of the robot or states in which the velocity is higher
than the maximum possible on the system. Data corruption
can bias our learned model if the corruption is correlated
with one of our features, e.g., some parts of the state-space
are more likely to have outliers. We handle dirty data by
first removing outliers using Least of Medians (LMEDS), a
variant of RANSAC, and then removing potentially corrupted
inliers using thresholds on the rotation, position, and velocity
based on the physical limitations of the robot.

RANSAC has been extensively used for fitting statistical
models in the presence of high magnitude outliers. Classical



RANSAC is often challenging to tune, as it has two hyperpa-
rameters: a distance threshold for classifying inliers and min-
imum number of consensus points. The first hyperparameter
is particularly difficult to select in our setting because the
distance is in an abstract metric space which includes both
translation and rotation. Least of Median Squares (LMEDS)
[18] and Residual Consensus [22] have been proposed as
parameter-free variants of RANSAC, and we found that the
LMEDS method gave us the most accurate final model on
testing data without tuning.

While LMEDS gives us a way to reject outlier training
examples, it does not address inliers that are potentially
corrupted. It also ignores the time-series structure of the
data and processes each training example independently. To
address this problem, we can incorporate additional knowl-
edge about physical process and the workspace. We designed
an additional cleaning method, which runs in conjuction
with LMEDS, that incorporates trajectory and workspace
information to reject sequences of examples that were not
physically realizable by the robot. We analyzed a dataset of
observed robot states from the motion capture system and
set angle based thresholds where the markers would not be
visible. We also set thresholds to reject data points which
corresponded to velocity magnitudes larger than what the
robot could physically execute given the speed of operation.

Finally, we counted the number of rejections within a
trajectory and if more than a threshold P% of its points
were rejected, we rejected the entire trajectory. We found
P = 90% worked well empirically. In our experiments, we
show how our cleaning results in reduced mean absolute test
error and also reduces the standard deviation of these errors.

B. Estimation of Rigid Transformation

To reduce the linear component of the error, we find the
rigid transformation that minimizes the sum of squared errors
for the training set (X ). This transformation serves as a prior
on the source of the kinematic error; we expect that a portion
of this error is due to camera registration error, poor encoder
calibration, etc. A rigid tranformation is composed of an
orthornormal rotation matrix R ∈ R3×3 and a translation
vector t ∈ R3×1. We minimize the error with respect to the
Frobenius norm:

R∗, t∗ = argmin
RTR=I,t

N∑
i=1

‖
(
R t
0 1

)
T (pi,d)− T (pi,c)‖2F .

This objective can be solved in closed form using the Sin-
gular Value Decomposition, the accepted method of solving
the linear transformation between two rigid bodies in the
Computer Vision community [8].

C. Gaussian Process Regression

Gaussian Process Regression (GPR) is a Bayesian non-
linear function learning technique that models a sequence
of observations as generated by a Gaussian process. GPR
predicts a parametric mean and variance for test points
conditioned on the training points, which helps to charac-
terize the quality of calibration for points not encountered

in the training set. The predictive distribution for other non-
parametric learning techniques, such as neural networks, is
not as well-characterized.

We first apply the rigid transformation G(·), and then fit
the transformed observations to a Gaussian process. A key
parameter to the problem is the kernel function, a measure
of similarity between two training examples. We apply GPR
with a kernel (called the Radial Basis Function, or RBF) of
the following form:

k(xi,xj) = σe
−‖xi−xj‖

2
2

2l2

where σ denotes the signal variance and l denotes the
characteristic length scale for the training data. GPR also
typically involves a regularization constant β to model noise
in the output measurements. We note that the RBF kernel
is not necessarily appropriate for rotation angles because
the space of angles is circular rather than Gaussian, but
we find that it works well empirically. We estimate the
parameters of this model using the GPML Toolbox [26]. See
[25] for a comprehensive description of GPR, including how
to estimate these parameters.

GPR learns a map from the input observed states xo to the
output poses of the desired states pd, since we cannot directly
command the velocity of the robot. We directly include the
velocity of xo in the features of GPR. Thus, given the test
set (X) and training set Y we perform kernelized regression
to predict output dimension i:

KX ,Y =
( k(x1,y1) ... k(x1,yM )

...
k(xN ,y1) ... k(xN ,yM )

)
x ∈ X , y ∈ Y

µi = KX ,Y
T (KX ,X + β−1I)−1zi

Σi = KY,Y −KX ,Y
T (KX ,X + β−1I)−1KX ,Y .

where zi = (x
(i)
d,1, ...,x

(i)
d,M )T is the vector of the i-th

component of all training outputs. Also, K is the kernel
matrix, and µi and Σi are the mean and variance of the
prediction for the i-th component, respectively.

From these equations we see that GPR is able to gener-
alize to parts of the workspace that were not observed in
the training set by a non-linear interpolation between the
function values at the training points. This is why corrupted
training points can lead to errors when making predictions
on new data, especially when a test point is “close to” the
erroneous training point with respect to the kernel function.

V. EXPERIMENTS

A. Experimental Setup

We tracked the motion of the Raven II with a four camera
PhaseSpace Impluse X2 motion capture system [1]. The
four cameras were placed in an arc of approximately 120◦

at a distance of approximately 1.5 m to the Raven tool,
oriented towards the instrument. We mounted three LEDs
to the Raven tool to measure the pose and velocity (Fig. 3).
The Raven performed a surgical debridement task, in which
the goal is to find, grasp, and transport “damaged tissue”
fragments [12], and we represented the tissue fragments
with pieces of red foam. The locations of the red foam



Fig. 2. Workspace for autonomous surgical debridement with the Raven II
Surgical robot. The robot jointly grasps and transports the fragments with
two cable-driven arms. Encoders are located only on the motors.

were determined with a stereo camera setup. This setup is
illustrated in Fig. 2.

B. Test Accuracy of Learning Controller

In our first experiment, we evaluated the accuracy of the
learning controller on a set of unseen testing trajectories.
We first ran the Raven with its native controller to collect
data to train the learning controller. We executed different
instances of the debridement task; fragment locations were
chosen uniformly at random over the 8 cm × 8 cm × 2 cm
grid, and for saftey we offset the target states by 1 cm above
the platform on which target tissue fragments are placed.
We collected 303 debridement task trajectories consisting
of over 24,000 pairs of observed states and commanded
states captured at 100 Hz. During the data collection, we
operated the Raven at a speed of 5 cm per second, and each
task trajectory was approximately 1 second long. We treat
the states observed with PhaseSpace motion capture as the
desired goal states in our training objective.

We randomly assigned a subset of 80% of these observed
trajectores to the training set and held out 20% for testing.
Training and testing were performed using the GPML Tool-
box in matlab [26], and velocities were computed using the
five-point stencil method for numerical differentiation. Since
we can accurately observe the grippers at each timestep this
is similar to using Model Predictive Control (MPC) for plan
correction at each timestep. We evaluate accuracy on both
a clean testing set and a dirty testing set. The evaluation
on the clean testing set illustrates the value of data cleaning
at execution time. While it is easy to clean a pre-recorded
dataset, it can be quite complex to discard erroneous states
during a real execution. For example, during execution of
a surgical procedure, if the sensor observes a dirty state,
the robot will need to perform an error recovery procedure
due to the missed observation such as halting. We defer this
question to future work, but our results suggest that cleaning
during execution can lead to more precise control.

1) Testing Accuracy: Results on the test dataset using
our non-linear correction are detailed in Table I below. We

Fig. 3. PhaseSpace setup for tracking the pose and velocity of the Raven
tool. We mount three LEDs: one in the center of the gripper for position
measurements, and two on the fingers for orientation measurements.

evaluate the different components of the learning controller,
and we compare the mean and 1-standard deviation of the
error between commands and corrected desired poses along
each of the pose dimensions tx, ty, tz, φy, φp, and φr for
the test set. The results show that the addition of velocity
significantly improves the accuracy of the learned non-linear
mapping; reducing the norm position error by 50% and
the norm angular error by 19%. This suggests that some
of unparametrized non-linearities are correlated with the
velocity, and including the velocity as a feature makes their
effects easier to learn.

Furthermore, the addition of data cleaning to GPR with
velocity information reduces the norm position error further
by an additional 4% and the norm angular error by an
additional 21%. Data cleaning also reduces the error and
standard deviation of the fixed rigid offset, but the high error
compared to GPR suggests the presence of non-linearities.
We also found that the standard deviation is significantly
reduced when using GPR with the addition of velocity
information and data cleaning. We visualized the results in
the translation dimensions (tx, ty, and tz) for the correction
methods i), ii), and vi) for a sequence of 1,000 poses from
the testing set in Fig. 4.

2) Training Time and Training Set Size: Gaussian Process
Regression involves an O(M3) matrix inversion, where M
is the size of the training set, potentially leading to long
training times. We explored the tradeoff between the size of
the training set and testing error. We randomly subsampled a
fixed percentage of the examples in the training set X to form
a reduced training set, and trained the learning controller on
this smaller set. We then evaluated the accuracy of this model
on the held out testing set (Fig. 5).

We find that after 460 states, or 2.5% of the original
training set, further reductions in absolute mean error from
larger training sets are less than 0.1 mm for position and
0.1◦ for rotation. Training with 2.5% of the set takes only
18.6 seconds, as opposed to 4228.8 seconds for 100% of the
dataset, evaluated on a machine with OS X with a 2.7 GHz
Intel core i7 processor, and 16 GB 1600 MHz memory.



Test Set State
Variable No Correction Fixed Offset

Fixed Offset
and Data
Cleaning

Fixed Offset
and GPR

Fixed Offset,
GPR, and
Velocity

Fixed Offset,
GPR,

Velocity,
and Data Cleaning

Dirty

tx (mm) 17.6 ± 8.3 4.2 ± 10.2 2.6 ± 4.6 4.2 ± 9.9 1.6 ± 3.9 1.6 ± 1.6
ty (mm) 17.5 ± 5.0 6.0 ± 4.7 5.9 ± 3.9 2.6 ± 3.8 1.6 ± 1.9 1.5 ± 1.5
tz (mm) 9.0 ± 7.4 8.3 ± 7.2 8.1 ± 6.4 2.3 ± 5.1 1.5 ± 2.2 1.4 ± 1.6

φyaw (deg) 5.5 ± 10.4 4.9 ± 9.8 4.6 ± 7.8 2.0 ± 7.1 1.8 ± 3.4 1.4 ± 2.3
φpitch (deg) 11.6 ± 9.3 7.7 ± 9.4 6.9 ± 7.0 3.2 ± 7.9 1.9 ± 3.6 1.5 ± 1.8
φroll (deg) 22.3 ± 22.5 7.3 ± 23.6 12.0 ± 21.9 1.7 ± 9.4 2.1 ± 3.4 1.7 ± 3.3

Clean

tx (mm) 17.4 ± 2.6 2.9 ± 2.3 2.6 ± 2.1 3.4 ± 3.2 1.3 ± 1.3 1.4 ± 1.7
ty (mm) 17.1 ± 4.1 5.8 ± 3.5 4.0 ± 4.2 2.2 ± 2.1 1.5 ± 1.6 1.4 ± 1.5
tz (mm) 7.5 ± 4.2 7.8 ± 6.2 7.1 ± 5.3 1.6 ± 1.5 1.3 ± 1.3 1.1 ± 1.2

φyaw (deg) 3.2 ± 2.7 2.8 ± 1.8 2.9 ± 6.2 1.3 ± 1.8 1.5 ± 2.1 1.3 ± 2.0
φpitch (deg) 10.8 ± 6.4 6.0 ± 2.3 5.9 ± 4.2 2.3 ± 2.3 1.7 ± 2.0 1.6 ± 1.9
φroll (deg) 16.6 ± 9.8 6.3 ± 3.2 6.6 ± 9.8 1.7 ± 3.2 2.0 ± 3.4 1.9 ± 3.1

TABLE I
MEAN AND 1-STANDARD DEVIATION OF THE ERROR BETWEEN THE CORRECTED DESIRED STATE AND ROBOT COMMAND ON A TEST DATASET FOR

EACH OF THE 6 DEGREES OF FREEDOM. THE FIRST SET OF ROWS EVALUATE THE ACCURACY OF THE FOLLOWING TECHNIQUES ON A DIRTY TESTING

SET: NO CORRECTION, A FIXED RIGID OFFSET ONLY, A FIXED RIGID OFFSET WITH DATA CLEANING, A FIXED RIGID OFFSET AND GPR WITHOUT

VELOCITY INFORMATION, A FIXED RIGID OFFSET AND GPR WITH VELOCITY INFORMATION, AND OUR PROPOSED SEQUENCE OF A FIXED RIGID

OFFSET, GPR WITH VELOCITY INFORMATION, AND DATA CLEANING. THE SECOND SET OF ROWS EVALUATE THE SAME TECHNIQUES ON A CLEAN

TESTING SET.
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Fig. 4. Robot commands (green) and cleaned pose observations from PhaseSpace motion capture (blue), observations with fixed rigid offset (red), and
observations with fixed rigid offset and GPR, using velocity information and data cleaning (magenta) for three clean test trajectories. The robot commands
are the target of the non-linear mapping. The shape of the error between the fixed rigid offset and commands indicate that non-linearities are present. Our
proposed method clearly reduces these non-linear errors between observation and command.

C. Repeatability of End Effector State When Applying non-
linear Correction

After training the learning controller, we evaluated the
accuracy and repeatability of reaching desired states by
transforming and executing planned debridement task tra-
jectories using our model. While pre-recorded trajectories
provide precise velocity estimates around a given pose at
each timestep, at task execution time the future velocities
must be estimated from planned states. These estimates can
introduce additional error in the final end-effector pose in
addition to drift accumulated over the course of a trajectory.
Therefore, in practice the test error rates could be achieved
using feedback control at the same rate as commands are
sent to the robot, but in practice this is not always possible.

We measured the accuracy and repeatability of reaching a
desired position in the debridement workspace by executing

an open loop trajectory on the left arm of the Raven II
platform (see [7] for details of about this arm). We visit each
unique end-effector pose 10 times, and measure the actual
state of the end-effector using the PhaseSpace motion capture
setup described in Section V-B. We measure accuracy by
computing the average absolute difference over all attempts
between the desired end-effector state xd and the observed
end-effector state xo after executing the a target trajectory T .
We measure the repeatability by computing the variance of
the observed state xo over all attempts. We chose 10 random
foam fragment locations uniformly across the workspace
as in Section V-B, and repeatedly planned and executed
trajectories to reach these locations using trajopt, a motion
planning algorithm based on sequential convex optimiztion
[28].

We compare the accuracy and repeatabilty of the end-
effector position between using no error correction, applying
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Fig. 5. The top graph shows absolute mean position (X, Y, and Z) versus the
number of states used in training and the bottom graph shows rotation (Yaw,
Pitch, and Roll) error versus the number of states used in training. States
were sampled uniformly at random from the full training set of trajectories
without replacement.

the non-linear correction to each step along the trajectory,
and applying the non-linear correction to only the start and
end pose along a trajectory in Table II below. The results
indicate that adding the non-linear correction reduces the
error in end-effector pose by approximately a factor of 10 in
each state dimension. The correction improved repeatability
to less than 1.0 mm using our correction, suggesting that the
drift was systematic. We also get a slight improvement with
endpoint correction.

State
Variable

No
Correction

Full Trajectory
Correction

Endpoint
Correction

tx (mm) 20.3 ± 0.8 1.5 ± 1.1 2.0 ± 0.9
ty (mm) 13.0 ± 2.5 4.9 ± 1.5 3.0 ± 1.0
tz (mm) 22.8 ± 2.9 2.4 ± 1.4 1.0 ± 0.7

TABLE II
MEAN ACCURACY ADN 1-STANDARD DEVIATION OF REACHING

DEBRIDEMENT TASK POSES WITH VARIOUS POLICIES FOR APPLYING

THE NON-LINEAR CORRECTION. WE COMPARE USING NO CORRECTION,
CORRECTING 10 WAYPOINTS ALONG THE DESIRED TRAJECTORY, AND

CORRECTING ONLY THE START AND STOP POSE OF THE TRAJECTORY.

D. Debridement Task Speedup

In our final experiment, we evaulated our controller on the
task of autonomous surgical debridement with foam tissue
fragments. In prior work [12], the robot had to replan its
trajectory at a fixed interval to account for inaccuracies in
the kinematics. We found that the replanning interval was no
longer necessary to complete the task due to our accuracy
of only a few millimeters with open-loop control as reported
in Section V-C. Furthermore, we were able to increase the
speed of the Raven from 1.0 cm per second to 6.0 cm per
second. This resulted in an average task execution time of
15.8 seconds per tissue fragment, 3.8× faster than the fastest
previously reported result, while maintaining the task success
rate [12]. Further information on this research, including

data, code, photos, and video, is available at:
http://rll.berkeley.edu/surgical.

VI. DISCUSSION AND FUTURE WORK

We believe that this technique can generalize well to a
broader class of automation problems involving imprecise
state estimates and non-linear models. In future work, we will
explore running this procedure in an online or bootstrapped
setting, where the learning controller incrementally learns
a better model during task execution from the output of
a previously learned controller. We can futher formulate
this problem as a reinforcement learning problem with a
tradeoff between exploration (executing a variety of states
to learn a better model) and exploitation (completing the
desired task). Recent work by Gotovos et al. using Gaussian
Processes to probe the maxima and level sets of functions
could be extended to probe for residual error maxima in our 6
dimensional pose space [5] and concentrate training on parts
of the state space known to have significant non-linearities.

Also, although we were able to avoid replanning altogether
in the surgical debridement task, for more complex tasks this
may not be possible. We will explore returning a corrected
pose from our learning controller as well as a confidence
interval returned from GPR. This can help us automate re-
planning if we detect that our controller’s corrected command
is of low confidence.

Finally, repeated executions may change the kinematic
parameters of the robot over time. Consequently, we will
further consider modeling the learning controller’s degrada-
tion over time. This is strongly related to models in relia-
bility engineering and mean time between failure (MTBF)
analysis. We can explore the tradeoff between online model
learning and batch re-learing with respect to long-term task
reliability.

VII. CONCLUSION

With the goal of precisely controlling cable-driven surgical
robots, we proposed to use Gaussian Process Regression
augmented with velocity features and to remove corrupted
sensor observations to learn an accurate mapping between
commanded poses and poses observed with a external motion
capture system. We found that our technique led to more
precise executions of surgical debridement tasks on the
Raven II surgical robot. We showed that including velocity as
a feature in GPR reduced the norm of the mean position error
and the norm of the mean angular error on a set of trajectories
recorded with PhaseSpace. The addition of data cleaning
further reduced both the norm of the mean position error
and the norm of the mean angular error over the best result
without cleaning on this dataset. This technique may also
be relevant for other automation systems with unmodeled
non-linearies in their kinematic chains, or systems that can
only be controlled through an interface with an inaccurate
internal model. In future work we will apply this approach
to a retrofitted Intuitive da Vinci R© surgical robot to achieve
precise control in autonomous tasks such as surgical debride-
ment and suture tying, and we will make the code available



online at http://rll.berkeley.edu/surgical so
that others can experiment with it on other systems such as
the Baxter, Barrett Arm, snake robots, or the ABB IRB 6600.
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