
  

  

Abstract— Reducing potentially preventable readmissions 
has been identified as an important issue for decreasing 
Medicare costs and improving quality of care provided by 
hospitals. Based on previous research by medical professionals, 
preventable readmissions are caused by such factors as flawed 
patient discharging process, inadequate follow-ups after 
discharging, and noncompliance of patients on discharging and 
follow up instructions. It is also found that the risk of 
preventable readmission also may relate to some patient’s 
characteristics, such as age, health condition, diagnosis, and 
even treatment specialty. In this study, using both general 
demographic information and individual past history of 
readmission records, we develop a risk prediction model based 
on hierarchical nonlinear mixed effect framework to extract 
significant prognostic factors associated with patient risk of 30-
day readmission. The effectiveness of our proposed approach is 
validated based on a real dataset from four VA facilities in the 
State of Michigan. Simultaneously explaining both patient and 
population based variations of readmission process, such an 
accurate model can be used to recognize patients with high 
likelihood of discharging non-compliances, and then targeted 
post-care actions can be designed to reduce further 
rehospitalization. 

 

I. INTRODUCTION 

Hospital readmission rates have been identified as a main 
measure of quality of care received by patients [1] since they 
are happened due to such factors as premature discharging 
process or inadequate access to care. More importantly, it is 
found that rehospitalization causes an unfitting share of costs 
for inpatient hospital cares. In 2009, [2] reported that 19.6% 
of Medicare fee-for-service patients discharged from a 
hospital were readmitted within 30 days, 34.0% within 90 
days, and more than half (56.1%) within one year of 
discharge, collectively accounting for $15 billion of Medicare 
spending. And recently, based on Obama Care Rule (known 
as Patient Protection and Affordable Care Act or PPACA), 
about two-thirds (or 2,211) of U.S. hospitals have been 
penalized a cumulative $280 million (1%) in Medicare funds 
because of excess readmissions starting Oct. 1, 2012. This cut 
will grow to maximum of 2% for the 2014 program year and 
3% for 2015 [3]. In this paper, we propose a risk prediction 
model based on hierarchical nonlinear mixed effect 
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framework to extract significant prognostic factors associated 
with patient readmissions that mainly caused by patient non-
compliance to the medication instructions. The novelty of our 
method is to directly incorporating patients’ history of 
readmissions, along with other patient characteristics, into the 
modeling framework thus enabling one to explain both patient 
and population based variations of readmission process at the 
same time.   

The rest of this paper is arranged as follows. The research 
methodology with detailed inference and optimization is 
outlined in section 2. Section 3 explains the data structure and 
steps to implement the proposed algorithm. Conclusions and 
future research directions are presented in section 4. 

 

II. METHODOLOGY 

A. Preliminaries 
      We define T as a random point in time that a patient is 
readmitted to the hospital, or is censored from the study by 
any reason, where 0 < T < 30. In this study we focus only on 
readmissions caused by patient non-compliance to the 
medication instructions. Such data frame was obtained after 
careful screening done by VA Center for Applied Systems 
Engineering to narrow the possible causes of re-admission to 
immature post-care practices. The study begins whenever a 
patient is discharged from a facility and ends at the 30th day, 
setting 𝜎 = 1 if the patient was readmitted at either of VA 
hospitals within the interval and 𝜎 = 0 otherwise. In case of 
no rehospitalization during the 30-day interval, the event 
indicator  𝜎	  becomes zero and the readmission time random 
variable T gets 31. Such observations are called right-
censored, which form the only type of censoring in our study. 
We assume that censoring is non-informative due to the fact 
that the censoring random variable U is the arranged end of 
the study and does not have any information about the 
distribution of T.	  
      At this point, two different modeling approaches with 
distinct objectives may be applied. The first one is a set of 
linear (non-linear) classification methods, which focus on re-
admission indicator 𝜎 and try to predict it with inputted 
attributes like naïve Bayes classifiers and logistic regression. 
The second one consists of event history analytical models, 
which focus on random readmission time T and try to study 
the stochastic behavior therein. In the current study, we 
decide to go with the second approaches due to the facts that 
classification-based models (1) mostly cannot be able to 
predict multiple readmission times of a patient with taking 
into account the inter-dependencies among them; (2) cannot 
deal with censoring times and their effects on risk of 
readmission; and (3) cannot handle time-dependent attributes 
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whose values might change during follow-up period after 
patient discharge.           	  
     One suitable way to describe a readmission distribution is 
through hazard function, which can be defined as an 
instantaneous risk at which events (readmissions) occur, 
given no previous events, i.e.  
 

h(t) = lim
Δt→∞

pr t <T ≤ t +Δt |T ≥ t( )
Δt

(1)  

 
      In interpreting the hazard function, it is worth to note that 
the hazard can only be thought as a characteristic of patients 
not of populations or samples, that is each patient may have a 
totally different hazard comparing to another patient. There 
have been lots of applications for different hazard functions, 
which can incorporate increasing, decreasing, or bathtub 
shapes in such situations as survival after ER surgery and age-
specific mortality studies [4]. The simplest form occurs when 
the hazard is constant over time, i.e., ℎ 𝑡 = 𝜆, or 
equivalently,    log ℎ 𝑡 = 𝜇, which implies an exponential 
distribution for the time till an event takes place, such as 
survival of patients with advanced chronic disease. All of 
these models can readily be extended to allow for the effects 
of covariates with fixed or varying measurements over time. 
For developing a predictive model in which the risk of an 
event depends on (fixed or time-dependent) covariates, there 
are two broad classes of regression models in the literature, 
namely, Proportional Hazard (PH) models and Accelerated 
Failure Time (AFT) models. In PH models the hazard is 
governed by ℎ 𝑡; Ζ = ℎ! 𝑡 𝑒𝛃𝚭, where h! t  is the baseline 
hazard function illustrating how the risk of an event changes 
over time at the baseline levels of covariates (Z=0) whilst β  
is the coefficient set of prognostic factors illustrating the 
influences of covariates on hazard variations. The main 
assumption here is that the ratio of hazards for any two 
individuals is unchanged over time so we can estimate the 
parameters without having to make any assumptions about 
the form of ℎ! 𝑡 . In AFT models, in contrast, the effect of a 
covariate is expressed by multiplication of event time, not 
hazard, by some constant. This type of modeling can be 
framed as parametric linear models for the natural logarithm 
of 𝑇 , i.e., log 𝑇 = 𝜇 + βΖ + σ𝜀  where   ε  is a random error 
term with some parametric distributional assumptions and σ  
is the variance of disturbance [5]. 
 
     Although the semi-parametric PH models along with 
multivariate logistic regression, have been used by some 
authors for studying the readmission process [6], a few 
support the significance of patients’ history of readmission on 
predicting the future risk of readmission. Besides, they have 
not directly incorporated this effect into their modeling 
framework to control the variations of repeated 
rehospitalization and its marginal influence on each patient’s 
admission/discharge profile [7,8]. To overcome this 
shortcoming, in the next part, we explain our proposed 
approach, which also allows additional clinical and 
demographic covariates being included into modeling 
structure. 

 

B. Modeling Framework 
      Generally there are two conventional approaches dealing 
with repeated event studies. One is to perform a separate 
analysis for each successive event (readmission) and then 
make an overall interpretation of effect contributions, which 
may be tedious and leads to lots of ambiguities for event-to-
event variations. The other is to pooling all the events 
together, treating each as a distinct observation, and estimate 
a single model, which introduces the problem of having 
dependencies among multiple events and consequently 
attenuates the estimates of covariate effects. Therefore, an 
approach is of interest to explicitly control for dependencies 
among successive readmissions and at the same time, correct 
for biases in estimates and test statistics [9]. Such models are 
often called as subject-specific in survival analysis.  
 
Letting 𝜆!" 𝑡  be the risk of 𝑗!! readmission for patient i 
(j = 1, 2,…    , n!) at time 𝑡 , we may propose  
 

λij t( ) = λ0 t( )e
βij t( )+γi (2)  

 
where 𝜆! 𝑡  is an arbitrary baseline hazard rate, Ζ!" is the 
collected vector of (fixed-effect) associated risk factors, β  is 
the vector of unknown coefficients, and 𝛾! is the random 
effect for patient profile 𝑖 . It should be noted that the random 
components 𝛾! is subscripted by 𝑖 but not by j, declaring that 
the random (unobserved) term is constant from one 
readmission to the next. Additionally, they are assumed to be 
independent and identically distributed with an unknown but 
fixed dispersion parameter, and the distribution of 𝛾! is 
independent of Ζ!". Here, we describe some specifications 
that make our method versatile for addressing the hospital 
readmission process. Firstly, the response (readmission time) 
evolves over time within patients from a cohort of interest. 
Secondly, there is a continuous mechanism that underlies 
patient profiles of repeated measurements of the response to 
vary in the patient population. Thirdly, inter- and intra-
patient variability of readmission process has to 
simultaneously be elucidated [10]. Lastly, there should be 
some space for incorporation of both fixed and random 
patient effects without any pre-specified form.    
 

C. Optimization              
     Generally, implementing HNLM models involves 
iterative numerical optimizations, which is a potentially high 
dimensional and computationally expensive thanks to 
intractable integrations and analytical approximations and 
heuristics methods [11,12]. Different approaches, by the 
way, have been proposed and applied in the literature that 
may be classified into three main groups. The first two, 
First-order methods and First-order conditional methods, 
employ Taylor series (or Laplace’s) approximation of 𝑦!(or 
conditional expectation   E(y!|u!) about a moment of random 
effect and solves a set of generalized estimating equation 
(GEE) based on those marginal moments. The last approach, 



  

which we take on in this study, is “Exact likelihood method” 
that directly uses deterministic (or stochastic) approximation 
to the integrals. Particularly, we use adaptive Gauss-Hermite 
quadrature (deterministic) as described in [13] which centers 
the integral at the empirical Bayes estimate of 𝑢! =
𝑎𝑟𝑔𝑚𝑖𝑛 −𝑙𝑜𝑔 𝑝 𝑦!|𝑍! ,𝜑, 𝑢! 𝑞 𝑢!|𝜉  with 𝜑  and 𝜉  set 
equal to their current estimates. In a nutshell the proposed 
algorithm selects the number of quadrature points adaptively 
by evaluating the log-likelihood function at the initial values 
of the unknown parameters until two successive iterations 
have a relative difference less than 1E-4. To carry out the 
minimization problem of 𝑓 𝜃 , a number of nonlinear 
optimization techniques have been suggested by some 
authors and put into practice in various circumstances 
[14,15]. Also due to the fact that no single algorithm exists 
that always reaches the global optimum (in a reasonable 
amount of time), no superiority is realized among them. Yet 
some schemes call for less time and memory since they only 
compute, in each iteration, the function value (optimization 
criterion) and the gradient vector, but not the Hessian matrix. 
To mention a few, the double-dogleg method, conjugate 
gradient methods, and quasi-Newton methods are popular 
examples of this type. In this paper, the dual quasi-Newton 
method is chosen since it demonstrates more balance and 
stability comparing to its competitors and requires only the 
gradient to update an approximate Hessian matrix (based on 
finite-difference approximate of derivatives), which would 
be promising and time-saving for medium to moderately 
large optimization problems [16]. We, in addition, set the 
convergence criterion based on maximum absolute gradient 
max! g! θ ! ≤1E-8 where 𝜃 !  refers to the (unknown) 
parameter vector at the 𝑘!! iteration and vector 𝑔(𝜃) refers 
to the gradient vector ∇f(θ). In summary, in each iteration 𝑘 , 
the dual quasi-Newton method performs some iterative line-
search algorithms seeking to optimize a linear approximation 
of nonlinear objective 𝑓(𝜃) along a feasible descent direction 
l(!),  

θ (K+1) =θ (K ) +η (k )ℓ(k ) (3)  
 
by computing a nearly optimal scalar  𝜂(!).   
 

III. DATA AND ANALYSIS 

We are given a dataset consisted of four VA medical 
center (VAMC) facilities, namely, Ann Arbor, Battle Creek, 
Detroit, and Saginaw in the state of Michigan during first 
halves of 2008 up to 2012. There are 6685 randomly selected 
records corresponding to 5180 different admitted inpatients 
along with 37 covariates. During this period of time, patients 
may be moved to different wards within a hospital for 
receiving different cares and thus create various 
admit/discharge profiles. All patient factors, except date of 
birth, admission date, and discharge date, are measured in 
nominal scale. To achieve a better picture of data 
environment, we tentatively arrange attributes into five 
categories: demographic (marital status, race, etc.), financial 
(insurance status, employment status, etc.), war-connected 
(prisoner-of-war status, radiation status, etc.), admission-
connected (ward, enrollment priority), and healthcare-

connected (diagnosis-related group, ICD-9, etc.). In next 
parts we take practical steps to analyze the data with our 
proposed approach. 

A.  Application to VAMC patients 
    To appropriately apply our proposed approach, we first 
need to select a candidate set of fixed-effect covariate 𝑍  (the 
random-effect is taken care with feature “id”) and set the 
starting values of parameter estimates 𝜃 ! . Then the dual 
quasi-Newton technique discussed in part (2.4) is called to 
iteratively optimize the vector of estimates until the 
convergence criterion is met. This is done by package 
‘optimx’ in R as described in [17]. Since values of 𝜃 !  can 
considerably affect the convergence and the computation 
time of the algorithm, we decide to set fixed-effects estimates 
to zero (but intercept to one), scale parameter 𝜔 to zero 
(corresponding to exponential baseline hazard), and 𝜎!! to 
one. Alternatively, one can obtain good initial coefficient 
estimates from fitting general Cox PH model. For choosing 
the candidate vectors of 𝑍, we investigate within- and 
between-group correlations of attributes to realize the 
structure of dependencies and avoid for problems of 
multicollinearity and over-specification. As an instance, the 
variables “Vietnam Status” and “Radiation Status” from war-
connected category are highly correlated and, at the same 
time, “Employment Status” from financial category is 
correlated with “Admission Eligibility” from admission-
connected category. In addition, following reference cell 
coding scheme, several dummy variables are generated for 
preparing a non-singular design matrix of categorical 
attributes.         
     As another important point to be considered, we 
effectively explore the appropriate functional forms of the 
features to be included in regression relation by plotting the 
(function of) response against the (function of) feature. For 
example, LOS is appeared to have a logarithmic relation with 
log response (i.e., 𝑙𝑜𝑔𝜆!" 𝑡 ). Ultimately, stepwise selection 
procedure (with P-Value to enter and remove of 0.1 and 0.15, 
respectively) is applied while considering different types of 
effects, such as interaction or nested effects. The selected 
effects are (I) admission source with 2 levels VA hospital 
and NHCU (Nursing Home Care Unit) as the reference level 
(II) patient sequence (III) patient LOS (IV) marriage status 
with 3 levels ‘married’, ‘previously married’, and ‘never 
married’ as the reference category (V) user enrollment status 
with 2 levels ‘YES’ and ‘NO’ as the reference class. We also 
examined Schwarz’s criterion (also known as BIC) to the 
dataset and found that the model, which minimizes this 
criterion, again contain the above features [18, 19].  

The converged coefficient estimates and is summarized in 
Table 1. In these tables “b0” is the intercept, “badm” stands 
for admission source coefficient, “bseqadm” is the coefficient 
for {sequence*admission source} interaction, “bseqloglos” 
denotes coefficient for {sequence*log (LOS)} interaction, 
“b1maruser” is the coefficient for {marriage status*user 
enrollment status} for those who were married and enrolled 
(in VAMC) for the following fiscal year, “b2maruser” is the 
same as “b1maruser” but for those who were previously 
married and enrolled for the following fiscal year, “sd” 



  

denotes the standard error of the random effect, and “omega” 
is the Weibull scale parameter. 

Table 1: Parameter Estimates 

Parameter Estimate St. Error P-Value 95% 
Confidence 

Interval 
b0 -8.7573 0.4963 <.0001 (-9.7304, -

7.7841) 
badm 4.7175 0.4359 <.0001 (3.8628, 

5.5723) 
bseqadm -1.1979 0.1176 <.0001 (-1.4284, -

0.9673) 
bseqloglos -0.1795 0.0533 0.0008 (-0.284, -

0.0750) 
b1maruser -0.1581 0.1464 0.2805 (-0.4452, 

0.1291) 
b2maruser 0.3321 0.1229 0.0069 (0.0911, 

0.5730) 
sd 2.7614 0.1794 <.0001 (2.4096, 

3.1132) 
omega 0.0003 0.1488 <.0001 (0.0000, 

0.0005) 
 

     The key results are highlighted here. The random-effect 
standard error is large and highly significant which verifies 
that there is certainly unobserved heterogeneity (dispersion) 
across patients (or there is dependence among the repeated 
readmissions) and (ii) the scale parameter greatly turns out to 
be zero which corresponds to exponential baseline hazard. 
Except “b1maruser” all other features are significantly 
contributed to the patient risk of readmission. An example of 
coefficient interpretation may be expressed like: ‘the hazard 
of readmission, controlling for other covariates, for those 
admitted in hospital is near 4.72% of the hazard for those 
admitted in NHCU’. 

For measuring the goodness of fit of our model, we 
calculate the generalized 𝑅! as   

R2 =1− L(0)
L(θ̂ )

"

#
$

%

&
'

2/n

(4)  

which ends up to be 79.68% in our study. In other words, 
near 80% of all variation in patient readmission risk can be 
explained by our method. In the above relation, 𝐿(0)  is the 
likelihood of the model with only the intercept, 𝐿(𝜃) is the 
likelihood of the estimated model, and 𝑛  is the sample size.  
Also one may be interested in testing the overall contribution 
of {marriage status*user enrollment status} interaction cause, 
according to Table 1, “b1maruser” is not statistically 
significant with respect to 0.05 type I error rate. To come up 
with this, an approximate 𝐹  test using the delta method is 
applied to test that both “b1maruser” and “b2maruser” are 
simultaneously equal zero. The corresponding P-Value is 
found to be 0.016, which proves the significance of overall 
contribution marriage and user-enrollment interaction. 

Although our approach works well in terms of prediction 
precision and detection of significantly contributing patient 
factors, further improvements can be made in some practical 
aspects. The most interesting one as discussed by VA health 
professional is to include some healthcare-connected 
variables like ICD, treating specialty, or principal diagnosis 
into the final regression equation [20]. Because it is natural to 

think that, no matter in which city the patient was admitted, 
the risk of being readmitted is dissimilar for different disease 
types. To address this issue, we analyze the data set more 
carefully and find that the number of levels (or classes) under 
such features is rather big so putting them into the model can 
cause it to be over-specified with ambiguous statistical test 
results [21]. This happens since the required degrees of 
freedom to fully estimate say ICD is near 85, which means 
that there should be at least 850-1275 failures (readmissions) 
existed in the dataset. But the total number of readmissions in 
the data is only 467. Possible solutions here are to collapse 
the categories in a meaningful way with some clinical inputs 
and/or collect more data records in which we are currently 
working. 

B. Predicting risk of readmission 
     In this part, we present a method to actually predict the 
risk of patient readmission when patient characteristics are 
inputted. This can enable health providers identify the 
patients with high chances of non-compliance with 
discharging instructions, thus targeted post-care strategies 
such as timely reminders may be developed to effectively 
reduce further rehospitalization [22]. Assume that 
readmission risk for 𝑖!!  patient is of interest given patient 
factors 𝚭!. A natural point prediction of (2) is obtained by 
𝜆(𝛽, 𝛾!) where 𝛽 is the maximum likelihood estimate of   β  
(Table 1) and 𝛾! (equivalently 𝑢!) is the empirical Bayes 
estimate of 𝑢! = 𝑎𝑟𝑔𝑚𝑖𝑛 −𝑙𝑜𝑔 𝑝 𝑦!|𝑍! ,𝜑, 𝑢! 𝑞 𝑢!|𝜉  
with 𝜑 = [𝛽,𝜔] and 𝜉 = 𝜎!! set equal to their optimal 
estimates. Also an approximate prediction variance matrix 
for (𝛽, 𝛾!)  is given by 
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where 𝜃 = [𝜑, 𝜉] i is the vector of unknown parameters, 𝐻  
is the approximate Hessian matrix pulled out from 
optimization for 𝜃, Γ  is the approximate Hessian matrix 
from the optimization for 𝑢!, and (𝜕𝑢!/𝜕𝜃) is the derivative 
of 𝑢! with respect to 𝜃, evaluated at (θ, u!) [23]. The 
approximate variance matrix for 𝜃 is the inverse Hessian 
matrix evaluated at θ, and that for 𝑢!  is an approximation to 
the conditional mean squared error of prediction described in 
[24]. Based on this approach, we also compute empirical 
Bayes estimate of the baseline readmission hazard, pdf of 
readmission time, and survivor function for all patients but 
for sake of brevity these are not presented here.  
Following the above approach, the predicted readmission 
risk and other related statistics for the patient cohort are 
summarized in Table 2. Note that in the table, ‘Pctl’ stands 
for percentile.  
 

Table 2: Summarized Statistics for Predicted Risk of Readmission  
 

Min Max Med Me
an 

Std 
Dev 

1st 
Pctl 

5th 
Pctl 

90th 
Pctl 

95th 
Pctl 

99th 
Pctl 



  

2.9 
E-6 

8.0 .06 .12 0.38 3.43 
E-6 

.90 
6E-4 

.181 0.48 2.3 

As depicted, the distribution of predicted hazard has 
relatively few high values and very right skewed. This 
happens since the total number of readmissions in the data 
set is only 467 (or equivalently 9.02%). Also may be of 
interest to see that the hazards, unlike pdf and survivor 
function, can be greater than 1.0 with no upper bound but it 
cannot be less than zero. One principal advantage of 
providing readmission risk predictions is for health providers 
in a way that enable them to classify patients to “high” and 
“low” risk groups based on hazard estimates in above table. 
And then lots of follow-up interventions can be advised to 
improve rate of unnecessary readmissions. 
We finish by reminding the fact that this study, unlike 
classification-based methods such as logistic regression, 
centers on timing of events and develops a risk prediction 
model for hazard rate of readmission in case of repeated-
measured responses and random effect covariates. So we feel 
that doing comparisons between our proposal and those 
classifiers is although possible but, because of the three main 
reasons mentioned in section 2.1, may not very precise. 

IV. CONCLUSION 
     In this paper, we formulate an analytical approach based 
on hierarchical mixed-effect models to systematically reduce 
the number of avoidable readmissions mainly caused by 
patient non-compliances to medication instruction. Our 
proposal has the capability of capturing both patient and 
population based variations of hospital readmissions. The 
novelty of our method is to directly incorporating patients’ 
history of readmissions into modeling framework along with 
other demographic and clinical characteristics. We also 
verify the effectiveness of the proposed approach based on 
real dataset from four facilities in the State of Michigan. 
Some contributions made in this paper are (i) applying 
stepwise variable selection in mixed-effect framework and 
(ii) extending the (normal) random frailty model for Weibull 
hazard function with patient factors incorporated. We are 
also working on ways to allow the healthcare-connected 
features, such as principal diagnosis, be included in the final 
regression equation in the way to improve the practical 
aspects of our approach [25,26].   

    Some research directions can be sought by testing 
different variable selection techniques such as LASSO or 
Nonnegative Garrote in mixed-effects models for better 
subset regressions. Also in presence of high right censored 
data, it is interesting to consider some health care cost 
measures from which it may be possible to statistically 
estimate the mean population cost instead of mean survival 
times.        
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