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Abstract—In this paper consensus in second-order multi-
agent systems with a non-periodic sampled-data exchange among
agents is investigated. The sampling is random with bounded
inter-sampling intervals. It is assumed that each agent has
exact knowledge of its own state at any time instant. The
considered local interaction rule is PD-type. Sufficient conditions
for stability of the consensus protocol to a time-invariantvalue
are derived based on LMIs. Such conditions only require the
knowledge of the connectivity of the graph modeling the network
topology. Numerical simulations are presented to corroborate the
theoretical results.

I. I NTRODUCTION

Due to its broad spectrum of applications, in the past
years, a large attention has been devoted to the consensus
problem in multi-agent systems (MAS) [1], [2], [3], [4]. Sensor
networks [5], [6], automated highway systems [2], mobile
robotics [7], satellite alignment [8] and several more, are
some of the potential areas in which a consensus problem
is taken into account. Consensus is a state of a networked
multi-agent system in which all the agents reach agreement
on a common value by only sharing information locally,
namely with their neighbors. Several algorithms, often called
consensus protocols, have been proposed that lead a MAS to
consensus. In particular, the coordination problem of mobile
robots finds several applications in the manufacturing industry
in the context of automated material handling. The consensus
problem in the context of mobile robots consists in the design
of local state update rules which allow the network of robots
to rendezvous at some point in space or follow a leading robot
exploiting only measurements of speeds and relative positions
between neighboring robots. Robots are hereafter referredto
as agents.

In MAS, heavy computational loads can interrupt the sam-
pling period of a certain controller. A scheduled sampling
period can be used to deal with this problem. In such a case
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robust stability analysis with respect to the changes in the
sampling time is necessary. For interesting contributionsin
this area we address the reader to [9], [10], [11] and the
references therein. We also mention the work by Fridman
et al. [12] who exploited an approach for time-delay sys-
tems and obtained the sufficient stability conditions basedon
the Lyapunov-Krasovskii functional method. Seuret [13] and
Fridman [10] proposed methods with better upper bounds to
the maximum allowed sampling. Shenet al. [14] studied the
sampled-data synchronization control problem for dynamical
networks. Qinet al. [15] and Ren and Cao [16] studied the
consensus problem for networks of double integrators with a
constant sampling period. In the latter two papers, even though
the authors use the sampled-data notation to introduce their
novelty, they suppose that the communication and the local
sensing occur simultaneously and this simplifies the problem
into a discrete state consensus problem. Xiao and Chen [17]
and Yu et al. [18] studied second-order consensus in multi-
agent dynamical systems with sampledpositiondata.

In this paper, we consider the case in which each agent
has a perfect knowledge of its own state with almost no
delay, i.e., it knows its own speed and position. Information
exchanges between neighboring agents happen at discrete time
intervals which are possibly non-periodic but strictly positive
and bounded. The network dynamics can thus be modeled as
a sampled-data system(SDS), a class of systems extensively
investigated in the literature. Using PD-like algorithm weguar-
antee that all the agents reach consensus. We recently proposed
such a protocol in [19] where we provided a characterizationof
the convergence properties exploiting a Lyapunov-Krasovskii
functional method. In particular in [19] we provided sufficient
conditions for exponential stability of the consensus protocol
to a time-invariant value under the assumption that the spec-
trum of the weighted adjacency matrix is known. In this paper
we relax such assumption and provide sufficient conditions
for consensus under the assumption that the only information
on the network topology is its connectivity, i.e., the second
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largest eigenvalue of the weighted adjacency matrix. This is
obviously a significant improvement with respect to [19], not
only because much less information on the network topology is
needed, but also because, despite of [19], the number of LMIs
that have to be computed does not depend on the number of
agents.

The paper is organized as follows. In Section II some
notation and preliminaries are introduced. In Section III the
consensus problem for second order multi-agent systems with
non-periodic sampled-data exchange is formalized. In Sec-
tion IV the convergence properties of the proposed consensus
protocol are characterized. In Section V simulation results
are presented to corroborate the theoretical analysis. Finally,
in Section VI concluding remarks and directions for future
research are discussed.

II. N OTATION AND PRELIMINARIES

In this section we recall some basic notions on graph theory
and introduce the notation used in the paper.

The topology of bidirectional communication channels
among the agents is represented by an undirected graph
G = (V , E) whereV = {1, . . . , n} is the set of nodes (agents)
andE ⊆ {V×V} is the set of edges. An edge(i, j) ∈ E exists
if there is a communication channel between agenti and j.
Self loops(i, i) are not considered. The set of neighbors of
agenti is denoted byNi = {j : (j, i) ∈ E ; j = 1, . . . , n}.
Let δi = |Ni| be the degree of agenti which represents the
total number of its neighbors.

The topology of graphG is encoded by the so-called
adjacency matrix, an n × n matrix Ad whose(i, j)-th entry
is equal to1 if (i, j) ∈ E , 0 otherwise. Obviously in an
undirected graph matrixAd is symmetric.

We denote∆ = diag(δ1, . . . , δn) the diagonal matrix whose
non null entries are the degrees of the nodes. Moreover, matrix
Wd = ∆−1Ad is the weighted adjacency matrixassociated
with G. The following result has been proved in [19].

Lemma 1: If a graphG is connected then the eigenvalues of
the weighted adjacency matrixWd, namelyλi, i = 1, . . . , n,
are all located in the interval[−1, 1], andλ1 = 1 is always a
simple eigenvalue ofWd.

Finally, in the rest of this paper we denote with∗ the
symmetric elements of symmetric matrices.

III. PROBLEM STATEMENT

Consider a second-order multi-agent system with an undi-
rected communication topology. Consider the PD-type consen-
sus protocol inspired by [20] and [21]:











ẋi(t) = vi(t),

v̇i(t) =
kp

δi

∑

j∈Ni
xj(t) +

kd

δi

∑

j∈Ni
vj(t)

−kpxi(t)− kdvi(t),

(1)

wheren denotes the number of agents,xi(t) and vi(t) are
the position and the velocity of agenti, and δi indicates its
degree.

We suppose that the local information, i.e., the information
that each agent receives from its own sensors, is measured

instantaneously. This obviously makes sense when the sensor
dynamics are fast enough.

Moreover, we assume that the communication between the
generic agenti and its set of neighborsNi occurs in stochastic
sampling time instantstk, k = 0, 1, . . . ,∞, that satisfy the
following conditions:

0 < tk+1 − tk ≤ τ̄ ∈ R
+

and

lim
k→∞

tk = ∞.

Under the above assumptions, equation (1) can be rewritten
as:










ẋi(t) = vi(t),

v̇i(t) =
kp

δi

∑

j∈Ni
xj(tk) +

kd

δi

∑

j∈Ni
vj(tk)

−kpxi(t)− kdvi(t)

(2)

or, alternatively, doing some simple manipulations, as:

[

ẋ(t)
v̇(t)

]

= (A⊗ In)

[

x(t)
v(t)

]

+ (B ⊗Wd)

[

x(tk)
v(tk)

]

(3)

where x = [x1, x2, . . . , xn], v = [v1, v2, . . . , vn], ∆ =
Diag{δ1, δ2, . . . , δn}, Ad is the adjacency matrix,Wd is the
weighted adjacency matrix, and matricesA andB are equal,
respectively, to:

A =

[

0 1
−kp −kd

]

, B =

[

0 0
kp kd

]

. (4)

A MAS with an undirected communication topology and
following equation (1), is said to converge to aconsensus state
if

lim
t→∞

|xi(t)− xj(t)| = 0

and

lim
t→∞

|vi(t)− vj(t)| = 0.

In this paper, given the value of the maximum admissible
difference τ̄ between any two consecutive sampling time
instants, and a communication topology whose connectivity
is known to be smaller than or equal to a given valueλ̄, we
aim at finding conditions that guarantee consensus to a fixed
point among agents that evolve according to equation (3).

IV. CONVERGENCE PROPERTIES

In the following subsection we recall a state variable trans-
formation, firstly introduced in [19], to decouple the dynamics
of modes associated with the eigenvalues of the weighted
adjacency matrix. Then, the stability of such modes is analyzed
in detail.



A. Stability analysis

Apply the following change of variables:

x(t) = Tz(t) (5)

to eq. (3). Then, it holds:

(I2 ⊗ T )

[

ż(t)
z̈(t)

]

= (A⊗ T )

[

z(t)
ż(t)

]

+(B ⊗WdT )

[

z(tk)
ż(tk)

] (6)

and eq. (3) can be rewritten as:
[

ż(t)
z̈(t)

]

= (A⊗ In)

[

z(t)
ż(t)

]

+(B ⊗ T−1WdT )

[

z(tk)
ż(tk)

]

.

(7)

SinceWd is a symmetrizable matrix, then it is also diagonal-
izable [20], and the transformation matrixT can be chosen
such that

Λ = T−1WdT = diag(λ1, λ2, . . . , λn)

where
λ1 ≥ λ2 ≥ . . . ≥ λn

are the eigenvalues of the weighted adjacency matrixWd. As
a result, eq. (7) can be rewritten as:

[

ż(t)
z̈(t)

]

= (A⊗ In)

[

z(t)
ż(t)

]

+ (B ⊗ Λ)

[

z(tk)
ż(tk)

]

,

or alternatively, as
[

żi(t)
z̈i(t)

]

= A

[

zi(t)
żi(t)

]

+ λiB

[

zi(tk)
żi(tk)

]

(8)

where i = 1, . . . , n, and zi(t) is the i-th element of vector
z(t).

Now, if we define

yi(t) = [zi(t) żi(t)]
T (9)

the i-th mode of the system, we can say that its dynamics
follows equation:

ẏi(t) = Ayi(t) + λiByi(tk). (10)

Moreover, assumingτ(t) = t− tk, the above equation can
be rewritten as:

ẏi(t) = Ayi(t) + λiByi(t− τ(t)). (11)

The above SDS is a special case of a time varying delayed
system where the delayτ(t) is upper bounded bȳτ , and its
derivative isτ̇ (t) = 1, while the delay switches at timest = tk,
k = 0, 1, . . . ,∞.

In the rest of this paper we assume that the graphG describ-
ing the communication topology isconnected. By Lemma 1
this implies that its largest eigenvalue isλ1 = 1. We call
unitary eigenvalue mode(UEM) the mode associated with
λ1 = 1.

The following lemma, demonstrated in [19], characterizes
the dynamics of the UEM. In particular it shows that the UEM
converges asymptotically to a vector whose first entryz1(t) is
equal to a constant value and the second entryż1(t) is null.

Lemma 2: Consider a system whose dynamics in the time
interval t ∈ [tk, tk+1), k = 0, 1, . . . ,∞, follows eq. (10) with
i = 1 and λi = 1. Assumetk+1 − tk > 0 for any k =
0, 1, . . . ,∞. It holds

lim
k→∞

z1(tk) = γ, γ ∈ R. (12)

We now provide the main contribution of this paper, i.e.,
we characterize the conditions on the design parameters
kp, kd, τ̄ , λ̄ under which the modesyi(t), i = 2, . . . , n, defined
in eq. (9) are asymptotically stable provided thatλi ≤ λ̄ for
all i = 2, . . . , n.

Theorem 3: Consider the generic modeyi(t) defined in
eq. (9) whose dynamics follows eq. (11) whereλi is an
uncertain parameter in[−1, λ̄], and obviouslȳλ < 1.

If there exist positive definite matricesP andR and square
matricesQ1 andQ2 such that the following inequalities hold:

M1 =









QT
1 (A−B)+

(A−B)TQ1

P −QT
1 +

(A−B)TQ2

∗ −Q2 −QT
2 + τ̄R









< 0

(13)

M2 =









QT
1 (A+ λ̄B)+

(A+ λ̄B)TQ1

P −QT
1 +

(A+ λ̄B)TQ2

∗ −Q2 −QT
2 + τ̄R









< 0

(14)

M3 =

















QT
1 (A−B)+

(A−B)TQ1

P −QT
1 +

(A− B)TQ2

τ̄QT
1 B

∗ −Q2 −QT
2 τ̄QT

2 B

∗ ∗ −τ̄R

















< 0

(15)

M4 =

















QT
1 (A+ λ̄B)+

(A+ λ̄B)TQ1

P −QT
1 +

(A+ λ̄B)TQ2

−τ̄ λ̄QT
1 B

∗ −Q2 −QT
2 −τ̄ λ̄QT

2 B

∗ ∗ −τ̄R

















< 0
(16)

then the system with dynamics (11) is asymptotically stable.



Proof: Consider the Lyapunov function

V (t, yi(t), yi(tk)) = yTi (t)Pyi(t)

+ (τ̄ − τ(t))

∫ t

tk

ẏi
T (s)Rẏi(s)ds.

(17)
It holds:

V̇ (t, yi(t), yi(tk)) = 2ẏTi (t)Pyi(t)

−

∫ t

tk

ẏi
T (s)Rẏi(s)ds+

(τ̄ − τ(t))
(

ẏi
T (t)Rẏi(t)− ẏi

T (tk)Rẏi(tk)
)

.

(18)

To provide an upper bound to (18) we use Jensen integral
inequality:

t
∫

tk

ẏTi (s)Rẏi(s)ds ≤

t
∫

tk

ẏTi (s)dsR

t
∫

tk

ẏi(s)ds. (19)

Defineξi(t) =
1

τ(t)

t
∫

tk

ẏi(s)ds.

We get:

t
∫

tk

ẏTi (s)Rẏi(s)ds ≤ τ(t)ξTi (t)Rξi(t) (20)

From the descriptor method [22] we know:

[yi(t) ẏi(t)]

[

Q1

Q2

]

·

·((A+ λiB)yi(t)− τ(t)ξi(t)− ẏi(t)) = 0
(21)

Adding this to the right side of the inequality in (18) and using
the inequality (20) we obtain:

V̇ ≤ ηTi (t)Ψ(τ(t), λi)ηi(t)− (τ̄ − τ(t))ẏi
T (tk)Rẏi(tk),

where
η=[y

T
i (t) ẏTi (t) ξTi (t)]

T

and:

Ψ(τ(t), λi) =





















QT
1 Γi + ΓT

i Q1

P −QT
1

+ΓT
i Q2

−τ(t)λiQ
T
1 B

∗
−Q2 −QT

2 +
(τ̄ − τ(t))R

−τ(t)λiQ
T
2 B

∗ ∗ −τ(t)R





















(22)
where

Γi = (A+ λiB).

Notice that (τ̄ − τ(t))ẏi
T (tk)Rẏi(tk) is always positive.

Thus:
V̇ ≤ ηTi (t)Ψ(τ(t), λi)ηi(t), (23)

Hence to prove the stability one needs to prove thatΨ(τ(t), λi)
is negative definite.

Now define the following matrices:

Φi,0(λi) =





QT
1 Γi + ΓT

i Q1 P −QT
1 + ΓT

i Q2

∗ Q2 −QT
2 + τ̄R



 .

(24)

and

Φi,τ̄ =













QT
1 Γi + ΓT

i Q1 P −QT
1 + ΓT

i Q2 −τ̄λiQ
T
1 B

∗ Q2 −QT
2 −τ̄λiQ

T
2 B

∗ ∗ −τ̄R













(25)
Define

η′i(t) = [yTi (t) ẏTi (t)]
T .

One can show that:

ηTi (t)Ψ(τ(t), λi)ηi(t) =

τ̄ − τ(t)

τ̄
η′

T

i (t)Φi,0η
′
i(t) +

τ(t)

τ̄
ηTi (t)Φi,τ̄ηi(t) =

τ̄ − τ(t)

τ̄
η′

T

i (t)
( λ̄− λi

λ̄+ 1
M1 +

λi

λ̄+ 1
M2

)

η′i(t)+

τ(t)

τ̄
ηTi (t)

( λ̄− λi

λ̄+ 1
M3 +

λi

λ̄+ 1
M4

)

ηi(t)

(26)

Defineµτ =
τ̄ − τ(t)

τ̄
andµλ =

λ̄− λi

λ̄+ 1
.

Then
τ(t)

τ̄
= 1− µτ ,

λi

λ̄+ 1
= 1− µλ and

ηTi (t)Ψ(τ(t), λi)ηi(t) =

µτη
′
T

i (t)Φi,0η
′
i(t) + (1− µτ )η

T
i (t)Φi,τ̄ηi(t) =

µτη
′
T

i (t)
(

µλM1 + (1 − µλ)M2

)

η′i(t)+

(1 − µτ )η
T
i (t)

(

µλM3 + (1− µλ)M4

)

ηi(t).

(27)

Sinceµτ ∈ [0, 1] andµλ ∈ [0, 1], coefficientsµτ , 1 − µτ ,
µλ, and1 − µλ are positive. Moreover, by equations (13) to
(16) it follows thatΨ(τ(t), λi) is negative definite and this
proves the stability of the system. �

B. Consensus among agents

We now prove the consensus of agents to a common
position.

Theorem 4: Consider a MAS evolving according to equa-
tion (2) where τ̄ is such that0 < tk+1 − tk < τ̄ < ∞.
Assume that the undirected connected graphG modeling the
network topology is such that the second largest eigenvalueof
its weighted adjacency matrix is smaller than or equal toλ̄. If
the LMIs defined in eq. (13) to (16) are satisfied, then there
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Fig. 1. The stability area in thēλ− τ̄ plane.

exists aγ ∈ R such thatx(t) asymptotically converges toγ~1
andv(t) asymptotically converges to~0.

Proof: By Theorem 3, if the LMIs in eq. (13) to (16)
hold, all modes except the UEM are asymptotically stable,
i.e., lim

t→∞
yi(t) = 0 and thus lim

t→∞
zi(t) = 0 for i = 2, . . . , n.

Furthermore, by Lemma 2, there exists a positive constant
γ ∈ R such that lim

t→∞
z1(t) = γ.

Now, the first column ofT is the eigenvector corresponding
to the unitary eigenvalue ofWd, therefore it is equal to~1 =
[1 1 . . . , 1]T . Thus, beingx(t) = T [z1(t) 0 . . . 0]T , it
is trivial to show that whent → ∞ it is xi(t) = xj(t), for all
i, j = 1, . . . , n. The same calculations can be repeated for the
velocities, thus proving that fort → ∞, it is vi(t) = vj(t),
i, j = 1, . . . , n. �

V. SIMULATION RESULTS

In this section we present the results of some numerical sim-
ulations that show the effectiveness of the proposed consensus
protocol. To this aim we consider a system with8 agents and
assumekp = 1 andkd = 1.

In Fig. 1 the area under the curve shows the stability region
in the λ̄− τ̄ plane. Such an area has been computed using the
LMIs (13) to (16).

We now consider a graph with adjacency matrix (randomly
generated) equal to:

Ad =

























0 0 0 1 0 0 0 1
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
1 1 1 0 1 0 0 1
0 0 0 1 0 1 1 0
0 0 0 0 1 0 1 0
0 0 0 0 1 1 0 0
1 0 0 1 0 0 0 0

























. (28)

Fig. 2 shows the positions and velocities of the agents, while
Fig. 3 shows the sampled positions and velocities aperiodically
transmitted to neighbors by each agent.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we considered a PD-like consensus algorithm
for a second-order multi-agent system where, at non-periodic
sampling times, agents transmit to their neighbors information
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Fig. 2. Positions and velocities when the proposed protocolis implemented.
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Fig. 3. Sampled positions and velocities aperiodically transmitted to
neighbors by agents when the proposed protocol is implemented.



about their position and velocity, while each agent has a perfect
knowledge of its own state at any time instant. The main
contribution consists in proving consensus to a common fixed
point, based on LMIs verification, under the assumption that
the network topology is not known and the only information
is an upper bound on the connectivity.

Two are the main directions of our future research in this
framework. First, we want to compute analytically an upper
bound on the value of the second largest eigenvalue of the
weighted adjacency matrix that guarantees consensus, as a
function of the other design parameters. Second, we plan to
study the case where agents do not have a perfect knowledge
of their own state.
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