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Abstract—In this paper consensus in second-order multi- robust stability analysis with respect to the changes in the
agent systems with a non-periodic sampled-data exchange amg  sampling time is necessary. For interesting contributions
agents is investigated. The sampling is random with bounded this area we address the reader [to [0],] [10],] [11] and the

inter-sampling intervals. It is assumed that each agent has . - .
exact knowledge of its own state at any time instant. The references therein. We also mention the work by Fridman

considered local interaction rule is PD-type. Sufficient coditions €t al. [12] who exploited an approach for time-delay sys-
for stability of the consensus protocol to a time-invariantvalue tems and obtained the sufficient stability conditions based

are derived based on LMIs. Such conditions only require the the Lyapunov-Krasovskii functional method. Seuret! [13H an
knowledge of the connectivity of the graph modeling the netark Fridman [10] proposed methods with better upper bounds to
topology. Numerical simulations are presented to corrobaate the - . .
theoretical results. the maximum allowed s_ampllng. Shen al. [14] studied the.
sampled-data synchronization control problem for dynamic
|. INTRODUCTION networks. Qinet al. [15] and Ren and Cad [16] studied the

. o . consensus problem for networks of double integrators with a
Due to its broad spectrum of applications, in the pas ) .

] constant sampling period. In the latter two papers, eveagho
years, a large attention has been devoted to the CONSeNReSauthors use the sampled-data notation to introduce thei
problem in multi-agent systems (MAS) [11/[21./[3].![4]. Ssar P

networks [5], [6], automated highway systems [2], mobllgove]ty, they suppose that the commun}catl.o-n and the local
X = . : Sensing occur simultaneously and this simplifies the proble

robotics [7], satellite alignment [8] and several more, are . . :

- . . : into a discrete state consensus problem. Xiao and Chen [17]

some of the potential areas in which a consensus problem ; . :

) . : and Yuet al. [18] studied second-order consensus in multi-

is taken into account. Consensus is a state of a networke . ; ..

ar%ent dynamical systems with sampleakition data.

multi-agent system in which all the agents reach agreeme n this paper, we consider the case in which each agent

on a common value by only sharing information locally . ;

. . . : has a perfect knowledge of its own state with almost no
namely with their neighbors. Several algorithms, ofteriechl delav. ie. it knows its own speed and position. Infornmatio
consensus protocqldiave been proposed that lead a MAS tQ Yo 1€, P P ) "2

consensus. In particular, the coordination problem of mobi_exchanges between neighboring agents happen at disenete

robots finds several applications in the manufacturing $trgu Intervals which are possibly non-periodic but strictly fios

. . . and bounded. The network dynamics can thus be modeled as
in the context of automated material handling. The consensu .
. a sampled-data syste8DS), a class of systems extensively

problem in the context of mobile robots consists in the desi vestioated in the literature. Usina PD-like alaorithm -
of local state update rules which allow the network of robots 9 ' 9 9 g

to rendezvous at some point in space or follow a leading rob%r,gtee that all the agents reach consensus. We recentlysaropo

. . ... such a protocol in [19] where we provided a characterizaiion
exploiting only measurements of speeds and relative positi - . o ..
. . he convergence properties exploiting a Lyapunov-Krasovs
between neighboring robots. Robots are hereafter reféore : ; . . .
functional method. In particular in_[19] we provided suféint
as agents. " . -
. . conditions for exponential stability of the consensus @eot
In MAS, heavy computational loads can interrupt the sam- _".. " : )
0 a time-invariant value under the assumption that the-spec

pling period of a certain controller. A scheduled sampling . ; T .
. . : um of the weighted adjacency matrix is known. In this paper
period can be used to deal with this problem. In such a case . ) - .
We relax such assumption and provide sufficient conditions
This work was partly supported by the National Natural SoéeRoundation for consensus under the assumption that the Only informatio

of China under Grant No. 61450110086. on the network topology is its connectivity, i.e., the seton
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largest eigenvalue of the weighted adjacency matrix. Téis instantaneously. This obviously makes sense when the isenso
obviously a significant improvement with respect[tol[19]t nalynamics are fast enough.

only because much less information on the network topolegy i Moreover, we assume that the communication between the
needed, but also because, despite: of [19], the number of LMjeneric agent and its set of neighbots; occurs in stochastic

that have to be computed does not depend on the numbegaipling time instantg,, £ = 0,1, ..., 00, that satisfy the
agents. following conditions:

The paper is organized as follows. In Sectioh Il some
notation and preliminaries are introduced. In Secfioh i t 0<tpr1—tr <TERT

consensus problem for second order multi-agent systenfis wit
non-periodic sampled-data exchange is formalized. In Semd
tion[Vlthe convergence properties of the proposed consensu .
. . . . lim ¢ = oo.
protocol are characterized. In Sectibd V simulation result k—00

are presented to corroborate the theoretical analysigllfin ] )
in Section[Y) concluding remarks and directions for future Under the above assumptions, equatldn (1) can be rewritten

research are discussed. as.
Il. NOTATION AND PRELIMINARIES zi(t) = (),
. . . . ) k kq
In this section we recall some basic notions on graph theoryd ¢;(t) = 6_11) S ien i(te) + 5 Yien vilty) (@)

and introduce the notation used in the paper.

The topology of bidirectional communication channels
among the agents is represented by an undirected gr%gh
G = (V,€) whereV = {1,...,n} is the set of nodes (agents)
and€& C {V x V} is the set of edges. An eddg j) € £ exists [ i(t)

—kpxi (t) — kdvi (t)

alternatively, doing some simple manipulations, as:

if there is a communication channel between ageand j.
Self loops(i,) are not considered. The set of neighbors of

] —(A®1,) [ “Zgg } + (B Wy) [ ffEf/,j? ] 3)

agenti is denoted byN; = {j : (j,%) 6_5§j =1,...,n}. wherez = (1,22, xn], v = [v1,09,...,0,], A =
Let 6; = |Ni| be the degree of agentwhich represents the Diag{é;,ds,...,d,}, A4 is the adjacency matrixy, is the
total number of its neighbors. weighted adjacency matrix, and matricésand B are equal,

The topology of graphG is encoded by the so-calledrespectively, to:
adjacency matrixann x n matrix A; whose(i, j)-th entry
is equal tol if (i,j) € &, 0 otherwise. Obviously in an A { 0 1 } B [ 0 0 } @)
undirected graph matrid, is symmetric. T =k —kq |’ T kp ke |

We denoteA = diag(dq, . . ., §,,) the diagonal matrix whose
non null entries are the degrees of the nodes. Moreoverixnatr A MAS with an undirected communication topology and
Wy = A~1A, is the weighted adjacency matriassociated following equation[(lL), is said to converge t@ansensus state

with G. The following result has been proved [n [19]. if
Lemma 1: If a graphg is connected then the eigenvalues of I ) — (D) =0
the weighted adjacency matri¥;, namely\;, i =1,...,n, 300 fa(8) = 2 (1)

are all located in the intervdl-1, 1], and\; =1 is always a
simple eigenvalue ofV/,. and

Finally, in the rest of this paper we denote withthe tliglolvi(t) —v;(t)| =0.
symmetric elements of symmetric matrices.

In this paper, given the value of the maximum admissible
glii_fference 7 between any two consecutive sampling time
QONS instants, and a communication topology whose connectivity

s known to be smaller than or equal to a given vaNjeve
aim at finding conditions that guarantee consensus to a fixed
Ti(t) = wi(t), point among agents that evolve according to equafibn (3).
B = 2T 0+ R e ) @
. 2i(t) — Equi(t) ' V. CONVERGENCE PROPERTIES
pLi dVi )

IIl. PROBLEM STATEMENT

Consider a second-order multi-agent system with an un
rected communication topology. Consider the PD-type
sus protocol inspired by [20] and [21]:

wheren denotes the number of agents,(¢) and v;(t) are In the following subsection we recall a state variable trans
the position and the velocity of ageftandd; indicates its formation, firstly introduced in [19], to decouple the dyriasm
degree. of modes associated with the eigenvalues of the weighted

We suppose that the local information, i.e., the informaticadjacency matrix. Then, the stability of such modes is aealy
that each agent receives from its own sensors, is measuredetail.



A. Stability analysis
Apply the following change of variables:

z(t) = Tz(t) (5)
to eq. [3). Then, it holds:
(L®T) [ 28 } — (AeT) [ 28 } o
+(B® WaT) { zg:; ]
and eq.[(B) can be rewritten as:
[z’(t)} (A®I)[Z(t)}
Z(t) " 2(t)
() ()

+(B T W,T) [

|

Z(tk)

SinceW, is a symmetrizable matrix, then it is also diagonal-

izable [20], and the transformation matriX can be chosen
such that

A =T 'W,T = diag(\1, A2, ..., \n)

where
A2 A 2>. . 2>,

are the eigenvalues of the weighted adjacency maitfix As
a result, eq.[{[7) can be rewritten as:

2t) ] _ z(t) z(t)
| muem | 0 [r@en 5]

or alternatively, as

BRI IR A
wherei = 1,...,n, and z;(t) is the i-th element of vector
z(t).

Now, if we define
yi(t) = [zi(t) z(@)])" 9)

The following lemma, demonstrated in_[19], characterizes
the dynamics of the UEM. In particular it shows that the UEM
converges asymptotically to a vector whose first entify) is
equal to a constant value and the second e#i(y) is null.

Lemma 2: Consider a system whose dynamics in the time
intervalt € [ty,tr41), K =0,1,..., 00, follows eq. [ID) with
i1 =1 and \; 1. Assumetyy1 — tp > 0 for any k =
0,1,...,00. It holds

lim z(tx) =v, ~v€R. (12)

k—o0

We now provide the main contribution of this paper, i.e.,
we characterize the conditions on the design parameters
kp, ka, 7, A under which the modeg (t), i = 2, ..., n, defined
in eq. [9) are asymptotically stable provided that< \ for
alli=2,...,n.
Theorem 3: Consider the generic modg(¢) defined in
eq. [9) whose dynamics follows ed. {11) wheke is an
uncertain parameter ip-1, \], and obviously\ < 1.

If there exist positive definite matricé® and R and square
matrices); and(@- such that the following inequalities hold:

the i-th mode of the system, we can say that its dynamics

follows equation:
Ui(t) = Ayi(t) + XiByi(ty)-

Moreover, assuming(t) = ¢ — tx, the above equation can
be rewritten as:

9i(t) = Ayi(t) + \iByi(t — (1)),

(10)

(11)

The above SDS is a special case of a time varying delayed

system where the delay(t) is upper bounded by, and its
derivative is7(t) = 1, while the delay switches at times= ¢y,
k=0,1,...,00.

In the rest of this paper we assume that the gi@plescrib-
ing the communication topology isonnected By Lemmall
this implies that its largest eigenvalue }s = 1. We call
unitary eigenvalue mod¢éUEM) the mode associated with
A =1

QT (A-B)+ P—-Qf+
My = (A—B)TQ, (A— B)TQ, “0
* —Q2—QF +7R
(13)
QT (A+ AB)+ P-QT+
M, = (A —+ /\B)TQl (A —+ /\B)TQQ <0
* -Q2—- QY +7R
(14)
My =
QT(A- B)+ P-QT+ _
A-BTQi  (A-BrQ. 4P
‘ @ -qQF i | @O
* * —TR
<0
M, =
QT(A+ AB)+ P—QT+ <
(A+3B)TQr  (A+AB)TQ, ~ @b
* —-Q2— Q7T —-7AQYB
* * —TR
<0
(16)

then the system with dynamids{11) is asymptotically stable



Proof: Consider the Lyapunov function
V(t,yi(t),yi(te)) =yl (6)Pyi(t)

(7 7(1) / 5i7 (3) Ryja(s) ds.

" (17)
It holds:

Vit yilt), yi(te)) = 2yf(f)Pyi(t)
_/t y'iT(s)Ry'i(s)ds—i—
(7 = 7(t) (4" (t)Ryjs (t) — 4is” (tx) Reja(tr)).

(18)

Now define the following matrices:

D 0(Ni) =

QIT, +T7TQ, P-Qf +T7TQ, (24)

* Q2 — Qg + 7R
and
D7 =

QIT;, + T P-QT +1TQ, —-7\QTB

To provide an upper bound t6 (|18) we use Jensen integral

inequality:
t t t
[t R < [i@ask [usds. a9
t
Define () = % / i (s)ds.
We get: ’
[t ©Ries < OF ORGS0 (20)
tr
From the descriptor method [22] we know:
) 01| ot |

((A+ NB)yi(t) — ()& (t) — 9:(t)) =0

Adding this to the right side of the inequality in {(18) andngsi Define ji, =

the inequality [(2D) we obtain:
V < (O)W(r(8), Ao)ma(t) — (7 = 7())g:" (b ) R (tr),

where
n=ly; (t) o (t) & @)

and:
U(r(t), i) =
_ 7 -
Qrrierion UGl —roners
_ _NT
" ( 92— (% T el
* * —7(t)R
i (22)
where

i = (A+ \;B).

r
Notice that(7 — 7(t))y;” (tx)Ryi(ty) is always positive.
Thus: .
V <l (W(r(t), Ai)mi(t),
Hence to prove the stability one needs to prove that(¢), \;)
is negative definite.

(23)

* Q2 —QF —TNQIB

—TR

* *

(25)

Define
mi(t) =i (t) 9 ()"

One can show that:
i () (7 (), \o)mi(t) =

C () iom (1) + (1 — pr)nT (H)@;7mi(t) =
(27)

et (0) (1AM + (1= i) Ma ) (1) +
(1= i) (6 (5 My + (1= i) Ma s (0)

Sinceu, € [0,1] and uy € [0, 1], coefficientsy,, 1 — pr,
ux, and1 — uy are positive. Moreover, by equations13) to
(A86) it follows that ¥(7(t), \;) is negative definite and this
proves the stability of the system. O

B. Consensus among agents

We now prove the consensus of agents to a common
position.

Theorem 4: Consider a MAS evolving according to equa-
tion (@) wheret is such that0 < tp11 —t, < 7 < oo.
Assume that the undirected connected grgpmodeling the
network topology is such that the second largest eigenwflue
its weighted adjacency matrix is smaller than or equal.t¢f
the LMIs defined in eq.[{13) td_(16) are satisfied, then there
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Fig. 1. The stability area in th& — 7 plane. 3% 5 10 15 20 25 30 35 40
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exists ay € R such thatz(¢) asymptotically converges tol
andwu(t) asymptotically converges 0.

Proof: By Theorem[3B, if the LMIs in eq.[{13) to (16)
hold, all modes except the UEM are asymptotically stable,
ie., tlij& y;(t) = 0 and thustling0 zi(t) =0fori=2,...,n.
Furthermore, by Lemmal 2, there exists a positive constant
~v € R such thattlirgo z1(t) = 7.

Now, the first column off" is the eigenvector corresponding ‘ ‘ ‘ ‘ ‘ ‘ ‘
to the unitary eigenvalue df/;, therefore it is equal td = ? T (o
11 ..., 1% Thus, beinge(t) = T[z:1(t) 0 ... 0]T,it
is trivial to show that whert — oo it is z;(t) = x;(t), for all
i,j =1,...,n. The same calculations can be repeated for the
velocities, thus proving that for — oo, it is v;(t) = v;(¢),
i,j=1,...,n. O

Velocities

Fig. 2. Positions and velocities when the proposed protiscishplemented.

V. SIMULATION RESULTS

In this section we present the results of some numerical sim-
ulations that show the effectiveness of the proposed causen
protocol. To this aim we consider a system witlagents and
assumek, = 1 andky = 1.

In Fig.[d the area under the curve shows the stability region
in the \ — 7 plane. Such an area has been computed using the
LMIs (I3) to (I186).

We now consider a graph with adjacency matrix (randomly
generated) equal to:

- - o 5 10 15

Sampled Positions

25 30 35 40

00010001 Time(ses)
001 10000 30
0101 0000
11101001 2o
Ai=1900101 10 (28) < 10
000071010 g
00001100 8 [J
|10 01 0 0 0 0| 510
Fig.[2 shows the positions and velocities of the agents,ewhil -20¢
Fig.[d shows the sampled positions and velocities aperdiglic a0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
transmitted to neighbors by each agent. o s B ey Y B
VI. CONCLUSIONS AND FUTURE WORK Fig. 3. Sampled positions and velocities aperiodicallyngraitted to

In this paper we considered a PD-like consensus algoritH§ghPors by agents when the proposed protocol is implezdent
for a second-order multi-agent system where, at non-pieriod
sampling times, agents transmit to their neighbors infdiona



about their position and velocity, while each agent has eper [19] M. zareh, D. V. Dimarogonas, M. Franceschelli, K. H. dokson,

knowledge of its own state at any time instant. The main
contribution consists in proving consensus to a common fixed
point, based on LMIs verification, under the assumption that
the network topology is not known and the only informatiof?°l

is an upper bound on the connectivity.

Two are the main directions of our future research in thigi]
framework. First, we want to compute analytically an upper
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