2019 6th International Conference on Control, Decision and

Information Technologies (CoDIT’19) | Paris, France / April 23-26, 2019

The Multi-Armed Bandit Problem under Delayed Rewards Conditions
in Digital Campaign Management

M. Martin!, A. Jiménez-Martin!, A. Mateos!

Abstract—1In this paper, we account for a digital marketing
content recommendation system, called campaign management,
used by marketers to create specific digital content that can
be issued or configured for viewing by certain population
segments according to a series of business variables, user profile
or behavior. We analyze the most representative allocation
strategies to deal with the multi-armed bandit problem in a
context with delayed rewards by means of a numerical study
based on a discrete event simulation. Both batch mode and
online update architectures are considered for feedback from
the different contents displayed to users.

I. INTRODUCTION

There are a wide variety of services in digital marketing
used to offer personalized content to customers using the
web, smartphones, social networks or email, such as rargeted
advertisement, content recommendation, campaign manage-
ment, and A/B test.

Campaign management solutions help marketers to create
specific content (web content, banners, emails, content on
social networks) that can be issued or configured to be
viewed by certain segments configured according to a series
of business variables, user profile or behavior.

However, a customer may set up and run several cam-
paigns at once. Therefore, conflict management must also be
configured in a similar manner to rule production in expert
systems. There are several configuration modes depending
on the manufacturer or the system in question: the oldest
campaign, the most restrictive, apply all campaigns, prioritize
all campaigns, etc.

There are not many systems that apply online learning
in these circumstances to identify the optimal configuration
conflicts between two or more campaigns. This is a scenario
where algorithms reported in the literature to solve the multi-
armed bandit (MAB) problem are clearly applicable.

The name bandit stems from the image of a gambler
playing with K slot machines. The gambler can pull the
arm of any of the machines, which produces a reward payoff.
Since the reward distributions are initially unknown, the gam-
bler must use exploratory actions to learn the utility of the
individual arms. However, exploration has to be controlled
since excessive exploration may lead to unnecessary losses.

A gambler learning the distributions of arm rewards can
use all past information to decide about his next action.
Therefore, a policy or allocation strategy is an algorithm
that chooses the next arm to play based on the sequence

IDepartamento de Inteligencia Artificial, Universidad Politécnica de
Madrid, Campus de Montegancedo S/N, Boadilla del Monte, 28660, Spain
miguel .martin@alumnos.upm.es,{antonio. jimenez,
alfonso.mateos}@upm.es

978-1-7281-0521-5/19/$31.00 ©2019 European Union

of previous plays and resulting rewards. The goal is to
maximize the sum of the rewards received or equivalently
to minimize regret.

There are two families of bandit settings [7]. In the first,
the distribution of X;; is assumed to belong to a family of
probability distributions, whereas, in the second, the rewards
are assumed to be bounded, and policies rely directly on the
estimates of the expected rewards for each arm.

Almost all the policies or allocation strategies in the
literature focus on the first family, and they can be sep-
arated into two distinct approaches [10]: the frequentist
view and the Bayesian approach. In the frequentist view,
the expected mean rewards for all arms are considered as
unknown deterministic quantities and the goal of the algo-
rithm is to reach the best parameter-dependent performance,
whereas the parameter is drawn from a prior distribution
instead of considering a deterministic unknown quantity
in the Bayesian perspective. Bayesian performance is then
defined as the average performance over all possible problem
instances weighted by the prior on the parameters.

Another family of algorithms for solving bandit problems
is so-called Thompson sampling (TS) [13], consisting of
randomly drawing each arm according to its probability of
being optimal.

A review of the most important allocation strategies be-
longing to the above bandit settings can be found in [11],
and a numerical study on the basis of five complex and
representative scenarios was performed in [12] to compare
their performances.

Table I shows the allocation strategies, together with
information about their type, references in which they were
introduced and whether or not they perform stochastic arm
selection.

The allocation strategies analyzed in [12] do not account
for delayed rewards. However, the reward for choosing one
or the other action in real situations, such as Internet mar-
keting advertising, clinical trials or content recommenders,
is usually received with a delay after the time at which the
action was executed, giving the algorithm the chance to work
in this period and pick the actions to be taken in subsequent
iterations without having to update its strategy.

There are two main types of campaign management ar-
chitectures when dealing with how to update the feedback
of the different contents displayed to users: batch mode and
online update architectures.

The effect of delayed feedback in the MAB problem
has been studied in the literature within different online
learning scenarios and different delay configurations, for both

-952-

CoDIT'19 is technical sponsored by: IEEE Systems, Man, and Cybernetics Society

TABLE I
ALLOCATION STRATEGY FEATURES

[Method] Type [Reference [Ts Stochastic arm selection performed?]
UCB Upper confidence bounds Agrawal (1995) [1], Auer et al. (2002) [3] No
DMED Kullback-Leibler-based algorithms Honda & Takemura (2010) [8] No
KL-UCB Kullback-Leibler-based algorithms Garivier & Cappé (2011) [7] No
KL-UCB+ | Kullback-Leibler-based algorithms Garivier & Cappé (2011) [7] No
BESA Non-parametric algorithm Baransi et al. (2014) [4] Yes
TS Thompson sampling Thompson (1933) [13] Yes
PRI Possibilistic reward Martin et al. (2016) [11] Yes
PR3 Possibilistic reward Martin et al. (2018) [12] Yes

adversarial ([2]) and stochastic feedback. A concise summary
including the (expected) regret in the delayed settings is
given in [9].

Considering a fixed and known delay, Dudik et al. [6]
showed an additive penalty in the regret for the stochastic
setting (with side information). The problem of delayed
feedback has also been studied for Gaussian process bandit
optimization [5].

Joulani et al. [9] provide black-box algorithms for delayed
feedback in both the adversarial and the finite stochastic
settings, assuming that there is a base allocation strategy
(BASE) for solving the prediction problem without delay.
The queued partial monitoring with delayed feedback (QPM-
D) algorithm is proposed in [9] to deal with partial monitor-
ing rather than bandit feedback for a finite stochastic setting.

In this paper, we conduct a numerical analysis to analyze
the performance of the most important allocation strategies
in the literature for the MAB problem in a scenario with
delayed rewards in digital campaign management. To do
this, we implement discrete event simulation to account for
both an adaptation of the QPM-D algorithm proposed in [9]
for the MAB problem and for the original MAB allocation
strategies. We consider different reward distributions and
stochastic delays, representing different digital campaign
management scenarios within online and batch mode update
architectures.

The paper is structured as follows. Section 2 introduces
the proposed discrete event simulation to account for delayed
rewards. Section 3 describes the numerical analysis carried
out and the results. Finally, some conclusions are outlined in
Section 4.

II. DISCRETE EVENT SIMULATION

In this paper, we propose applying discrete event simula-
tion to both an adaptation of the QPM-D algorithm for the
MAB problem and the original MAB allocation strategies.

We consider two types of events in the discrete event sim-
ulation: the reception of a delayed reward and the selection
of an arm based on the base allocation strategy (BASE).

We use a list L whose elements represent pending events
to be treated at specified future time instants. Each element in
this list is represented by a tuple (t_event, t, reward, arm),
where the possible event types are r (reward) and a (action),
t is the time instant at which the event will happen, reward
is the delayed reward value and arm is the selected/pulled

CoDIT’19 | Paris, France - April 23-26, 2019

arm that produced the above reward. Note that, in the case
of an action event, reward = arm = 0.

A FIFO buffer Q; for each arm 4,7 = {1,..., K} is used
to store delayed rewards; ay,,,, is a global variable with
the last executed arm; blackbox denotes whether or not the
adaptation of the QPM-D algorithm for the MAB problem
proposed in [9] is considered; and the reward_scenario and
delay_scenario identify the reward distribution and delay
type, respectively, both described in detail for the different
campaign management scenarios analyzed in Section 4.

The system state consists of both the rewards stored
in buffers @); and the base allocation strategy (BASE) in
use. The system state remains unchanged until one of the
following events occurs: the reception of a delayed reward,
which is stored in the corresponding buffer ();, and the arm
selection based on BASE, which involves a BASE update
and leads to the emptying of buffers Q.

We consider a non-homogeneous Poisson process with
intensity function A(t) to generate the time instants in which
arms have to be selected/pulled and the respective delayed
reward is generated.

In the main simulation routine, see Algorithm 1, we
first create an empty FIFO buffer); for each arm i,i =
{1, ..., K'}, generate the time instant at which an arm has to
be pulled for the first time and select the arm to be pulled
on the basis of BASE.

Next, we call the Arm_event function to treat this first
event. Then, while the event list L is not empty, we check the
event that will take place next and call the respective event
function to process the event. The simulation ends when L
is empty.

The argument in the Arm_event function is the time at
which the event to be handled occurs, ¢, (see Algorithm 2).

First, the number of trials (an arm is selected) is in-
cremented. Applying the blackbor adaptation of the base
allocation strategy, we update BASE with the feedback from
@y, including delayed rewards associated with the arm ag,
select a new arm aj by the updated BASE and repeat the
process until Q; = ().

Applying the original allocation strategy, we just select
the arm to be pulled on the basis of BASE. In this case, the
current ay, corresponds to the arm selected at time instant ¢,,.
Thus, ay,,., = ar. The corresponding reward r;_ is derived
from the reward distribution taking into account the selected
arm, and the delay 7 is generated.

-953-

CoDIT'19 is technical sponsored by: IEEE Systems, Man, and Cybernetics Society

Algorithm 1 Main simulation routine

Data: (I" = max. number of trials; KX = no. of arms;
ar= arm k,k = {1,..,K}, a,.: last selected arm;
blackboz: whether or not the blackbox adaptation is used;
BASE: base allocation strategy; update_architecture: the
update architecture, reward_scenario: reward distribution;
delay_scenario: delay scenario)

Ngrials = 0
forG=1to K)Q;, =10
tfirst.arm ~ NH — Poisson(A(t),0)
ar,,., <+ BASE
Arm—event(tfirst,arm)
while (L # 0) do
Let L,,in = (t-eventin, tmin, rewardpin, AT M)
be
the next event in L
if (t_event,,;, =="“r") then
Reward_event(reward, i, armmn)
else
Arm_event(t,,:r,)
end if
end while
end

Finally, we store the future events in L. On the one hand,
we store the event corresponding to the time instant at which
the generated delayed reward will be received. Additionally,
we have to store the event corresponding to the time instant
at which a new arm selection is required. The new arm
selection event will be stored in L only if the number of
already executed trials (arm selections) is lower than 7'

The arguments in the Reward_event function are the
delayed reward value r and the respective pulled arm k.
Applying the blackbox option, we add the delayed reward r
to the buffer Q). Otherwise, we update the base allocation
strategy with the delayed reward value 7.

The getDelay(to) function in Algorithm 2 can be used
to account for different delay scenarios. In some cases, it
outputs a fixed value C' throughout the algorithm iterations.
However, this delay behaves stochastically in most real
situations and has a different value for each time instant at
which an arm is executed.

The allocation strategies shown in Table I will be used as
BASE allocation strategies in the discrete event simulation
algorithm to deal with delayed rewards. Their blackbox
adaptations will be denoted by BB-strategy_name.

IIT. NUMERICAL ANALYSIS

In this section, a numerical analysis will be carried out in
campaign management scenarios with both batch mode and
online update architectures. The arms to be selected/executed
correspond to the different campaigns that can be offered to
the customers.

We analyze the MAB algorithms in Table I together
with the adaptation of the QPM-D algorithm for the MAB
problem which are used as the BASE algorithm.

CoDIT’19 | Paris, France - April 23-26, 2019

Algorithm 2 Arm_event(t,)
Data: (¢, = time instant at which the event occurs)

N¢rials T+
Ak = kg

Next arm selection:
if (blackbox ==TRUE) then
while (Q, # 0) do
BASE « Q&
ar <+ BASE
end while
else
ap <+ BASE
end if
Ukiaee = Ok
T, ~ getReward(ag,,,,)
7 ~ getDelay(ty)

Store future events:
L+ (“r"to+7,11,,08,.,)
tneat.arm ~ NH — Poisson(\(t), to)
if (n4rias < T) then
L« (“a”) to + tnext,army 0; 0)
end if
end

In our digital campaign management scenario, we consider
connections to a company homepage. The intensity functions
shown in Fig. 1 represent a low (A1(t)) a high (A2(t)) and
a very high (A\s3(t)) traffic situation, respectively, regarding
the non-homogeneous Poisson process used to generate the
time instants at which arms have to be executed, i.e. the
time instants at which the customer accesses to the company
homepage.

The three functions have a standard shape to account
for web connections, including two time periods (in the
morning and the afternoon) where most are concentrated.
The intensity functions are measured in connections per
second.

low traffic
0.010 4
z
<
0.005 : . .
0 6 12 18 24
high traffic
o 051
<
0.0 : . .
0 6 12 18 24
very high traffic
5
<
0
0 6 12 18 24
Fig. 1. Intensity functions for the web connections.

-954-

CoDIT'19 is technical sponsored by: IEEE Systems, Man, and Cybernetics Society

We account for two possible reward scenarios for each
update architecture in the campaign management problem: a
Bernoulli distribution with medium expected rewards, and a
variant with rewards associated with the delays.

In the first reward scenario, the parameters are now very
similar across the 10 campaigns and close to 0.5. We assume
that success conditions are the same as in the first case, but
customers are now well segmented enabling quite a targeted
campaign. It is unreal to simulate success rates greater than
0.5, since even in a fine tune segmented campaign is very
strange to find such high success rates are highly unlikely
even in a campaign with very finely tuned segmentation.

We now use the following parameter vector for the ten
arms/campaigns: parameter = [0.5,0.45,0.45,0.45,0.45,
0.45,0.45,0.45,0.45, 0.45].

Then, we simulate a scenario in the second reward sce-
nario where the campaign content consists of a piece of news
or information that should be carefully read by the user. The
time that the user spends reading the news/information is a
way of measuring the attention he/she pays to the content.
Thus, the reward can be derived as follows:

e First, a Bernoulli distribution is used to model the
success of clicking on the news. To do this, we again
consider the parameter vector, parameter.

o If the user clicks on the news, the reward is then
proportional to the time spent reading the item. A
[0,480] secs. truncated exponential distribution is used
to generate the reading durations. The reward will be
equal to 1 if the user spends 480 seconds reading the
news. Otherwise, the reward is normalized taking into
account the respective amount of time. The parameter
A in the truncated exponential distribution is equal to
1/150, i.e., the average reading time is 150 seconds.

Different delay scenarios have also been taken into ac-
count in the getDelay function depending on the update
architecture under consideration.

In an online update architecture, we consider one sce-
nario with fixed delay values C, and an another scenario
accounting for stochastic delays. If we consider a Bernoulli
distribution with medium expected rewards, then the delay
is randomly generated from a [0, 300] truncated exponential
distribution with parameter A = 1/80. In the second reward
scenario, we use a [0, 480] truncated exponential distribution
with parameter A = 1/150.

When applying a batch mode update architecture, then the
getDelay function returns the difference between 24:00 and
the time instant at which the function is executed. Thus, all
rewards are received at 00:00.

The performance of the 16 MAB algorithms under con-
sideration will be analyzed in all the scenarios in terms of
their mean cumulative regrets and standard deviations.

The mean cumulative regrets are computed as follows: a
K -armed bandit problem can be defined by random variables
Xipn for1 <7 < K and n > 1, where each ¢ is the index
of one arm of a bandit and n refers to the round of play.
Successive plays of arm ¢ yield rewards X; 1, X; o, ..., which

CoDIT’19 | Paris, France - April 23-26, 2019

are independent and identically distributed according to an
unknown law with unknown expectation ;.

The regret of a given allocation strategy after n trials
(plays) can be computed as

K

win — Z wiE[n;], where p* =
i=1

[max {pi},
where p*n is the total reward that can be achieved given full
knowledge of the problem. E[-] denotes expectation and n; is
the number of times arm ¢ has been played by the allocation
strategy during the first n plays.

Note that 1000 simulations of 7' = 50,000 trials
(arm/campaign selections) are executed in the scenarios.

A. Campaign management with an online update architec-
ture

We analyze the performance of the 16 allocation strategies
under consideration for the six possible scenarios with an
online update architecture and stochastic delays.

Table II shows the resulting mean cumulative regrets and
standard deviation values in the reward scenarios concerning
the Bernoulli distribution with medium expected rewards
(Bern_M), whereas A1 (t), \2(t) and A3(¢) are the intensity
functions accounting for a low, high or very high traffic,
respectively.

We randomly generate the delays from a [0, 300] truncated
exponential distribution with A = 1/80 for reward scenario
1 (Bern_-M).

Note that, the performance of the allocation strategy PR3
in the first reward scenario where a Bernoulli distribution is
used for the reward distribution, is exactly the same as for
PR2 and Thompson sampling (TS), as pointed out in [12].

Looking at the first three columns in Table II, corre-
sponding to reward scenario 1 (Bern_M), we again find
that the performance of the original allocation strategies
and their respective blackbox version is similar irrespective
of the traffic and the mean cumulative regret is in some
cases higher for the original allocation strategy although
the opposite applies in others. The biggest difference in the
mean cumulative regrets is 36.31 (8.4%) for BESA with
high traffic. The standard deviations are similar for all the
allocation strategies, except for BESA and BB-BESA, which
are as much as six times greater.

In the low traffic scenario (A1(¢)), PR2 and BB-PR2
outperform the other allocation strategies, followed by BB-
PR1 (and PR1), BESA and BB-DMED. In the high traffic
scenario (A2(t)), PRI is the best allocation strategy, followed
by BB-PR2, PR2 and BB-PRI, with similar performances,
and further behind by BB-DMED and DMED. Finally, PR2
outperforms the other allocation strategies when traffic is
very high (A3(t)), followed by BB-PR1, BBPR2 and PRI,
with similar performances.

Thus, the original PR methods outperform the other allo-
cation strategies in reward scenario 1 (Bern_M), irrespective
of the traffic.

The last three columns in Table II, shows the resulting
mean cumulative regrets and standard deviation values for

-955-

CoDIT'19 is technical sponsored by: IEEE Systems, Man, and Cybernetics Society

TABLE I

RESULTS IN ONLINE UPDATE ARCHITECTURE (BERN_L, BERN_V)

[[BernM, A;(¢) [BernM, Ao(t) | BernM, A3(#) | Bem.V, A1(t) [Bem.V, A2(f) [Bern.V, Az(t) |

UCB 742.84(150.95) 744.23(169.99) 780.8(151.75) 1155.66(90.58) 1187.47(111.35) 1213.45(109.57)
BB-UCB 715.41(159.65) 725.3(155.49) 753.36(159.42) 1153.47(90.06) 1180.69(130.58) 1131.56(110.77)
DMED 403.0(163.28) 417.76(177.24) 460.53(182.7) 570.33(181.24) 577.84(167.8) 659.01(176.5)

BB-DMED 378.86(163.0) 403.12(175.27) 426.64(171.06) 554.7(151.38) 574.32(158.79) 526.98(198.09)
KL-UCB 736.52(150.33) 725.76(157.51) 776.59(155.89) 909.56(109.66) 923.44(122.98) 949.47(114.16)
BB-KL-UCB 718.9(158.24) 727.74(150.06) 744.6(151.67) 906.81(108.16) 920.09(120.6) 699.26(126.9)

KL-UCB+ 456.51(139.73) 456.24(144.95) 508.34(144.58) 624.65(127.73) 627.52(117.47) 644.45(120.14)
BB-KL-UCB+ 453.29(139.26) 440.38(144.0) 465.53(126.22) 617.63(112.37) 609.73(123.61) 494.98(167.5)

BESA 401.83(575.82) 430.49(586.63) 430.14(574.81) 376.86(489.9) 358.56(487.99) 305.72(350.99)
BB-BESA 438.64(602.83) 457.85(594.14) 498.72(637.67) 1007.88(756.96) 487.9(608.52) 1087.91(808.51)
PR1 361.93(160.66) 337.84(142.9) 366.11(147.56) 708.87(130.97) 715.52(132.34) 738.45(132.06)
BB-PR1 346.51(152.91) 352.23(222.63) 357.8(156.98) 692.21(119.06) 701.49(120.05) 741.08(130.38)
PR2 (TS) 338.63(148.39) 349.8(156.31) 341.4(146.07) 448.18(115.41) 462.3(127.19) 506.55(120.86)
BB-PR2 (TS) 342.84(157.49) 347.96(144.64) 359.79(167.94) 432.4(98.41) 442.82(120.97) 470.29(158.54)
PR3 345.86(115.2) 353.91(106.18) 396.41(113.98)
BB-PR3 335.58(102.12) 349.21(99.72) 349.97(120.68)

120,000 trials in reward scenario 2, concerning the vari-
ant with rewards associated with the corresponding delays
(Bern_V), where the delays are randomly generated from a
[0,480] truncated exponential distribution with A = 1/150.

BESA, PR3 and BB-PR3 are the best three allocation
strategies, irrespective of the traffic under consideration.

Blackbox versions tend to outperform the original allo-
cation strategies for low traffic (\;(¢)), except for BESA,
which is clearly better than BB-BESA.

BESA is the best allocation strategy in terms of the mean
cumulative regret when the number of trials is lower than
83,700. For a higher number of trials, BB-PR3 is the best
allocation strategy. PR3 is the second best strategy from trial
95,000 onwards. As the average number of trials per day
is 500, which is equivalent to low traffic, BB-PR3 would
outperform BESA from day 175 onwards. However, the
usual duration of campaigns is from 5 to 20 days. In this
case, BESA is definitely the best allocation strategy when
traffic is low. However, BB-PP3 would be better in long-
term campaigns.

It is also important to note that the standard deviation for
BESA is about four times greater than for PR3 and BB-PR3.

In the high traffic scenario (A\2(t)), blackbox versions
tend to outperform the original allocation strategies without
exceptions, although performances are very similar. BESA is
the best allocation strategy in terms of the mean cumulative
regret when the number of trials is lower than 105,000.
For a higher number of trials, BB-PR3 is the best allo-
cation strategy. PR3 is the second best strategy from trial
112,000 onwards. As the average number of trials per day is
20,000, which is equivalent to high traffic, BB-PR3 would
outperform BESA from day 5.71 onwards. Thus, BB-PR3 is
definitely the best allocation strategy when traffic is high.

Finally, blackbox versions clearly outperform the respec-
tive original strategies in the very high traffic scenario
(As(t)), except for BESA, which is clearly better than BB-
BESA. BESA is the best allocation strategy when the number
of trials is lower than 358,350. For a higher number of trials,
BB-PR3 is the best allocation strategy. PR3 is the second-

CoDIT’19 | Paris, France - April 23-26, 2019

best strategy from trial 650,000 onwards. In high traffic, the
average number of trials per day is 250,000. Therefore, BB-
PR3 would outperform BESA from day 5.71 onwards. Thus,
BB-PR3 is definitely the best allocation strategy when the
traffic is high (As(¢)).

B. Batch mode update architecture

We now assume that the rewards associated with the ac-
tions performed by the users when the contents are displayed
in the campaign management system are analyzed at 0:00
each day.

Table III shows the mean cumulative regrets and standard
deviation values for the regret after 120,000 trials using
the 16 allocation strategies under consideration for the six
possible scenarios (two reward scenarios with low and high
traffic respectively) with a batch mode update architecture.

Note that in scenario Bern_V, the reward value depends
on the time the customer takes to read the corresponding
campaign (piece of news or information). This reading time
is randomly generated from a [0, 480] truncated exponential
(A = 1/180).

BB-DMED outperforms DMED in the scenarios under
consideration, whereas the original allocation strategies out-
perform the blackbox version of the BESA and PR methods
in all scenarios. KL-UCB+ outperforms its blackbox exten-
sion in Bern-M scenario, whereas the opposite applies to
Bern_V scenario.

In reward scenario 1 (Bern_.M), PR1 and PR2 are the
best strategies with a very similar mean accumulated regret if
traffic is low (A1 (t)). They are followed by BESA. However,
we find that BESA is the best allocation strategy for a number
of trials lower than 29,630. As the average number of trials
with high traffic is 20,000 per day, PR1 and PR2 outperform
BESA from day 1.45 onwards. Thus, PR1 and PR2 are the
best allocation strategies when traffic is low.

When traffic is high, PR2 is the best allocation strategy
for any number of trials, followed by PR1 and BESA.

Finally, in reward scenario 2 (Bern_V), BESA is the
best strategy for both low and high traffic irrespective of

-956-

CoDIT'19 is technical sponsored by: IEEE Systems, Man, and Cybernetics Society

TABLE III

RESULTS IN BATCH MODE UPDATE ARCHITECTURE

[

Bern-M, A1 (%)

[

BernM, Ao(t) |

Bern.V, A1 (¢) |

Bern_V, A2 (f) |

UCB 874.81(167.24) 1589.23(118.42) 599.41(58.81) 618.01(55.6)
BB-UCB 1249.5(1122.55) 1737.9(438.82) 400.76(317.49) 532.92(138.96)
DMED 1828.35(348.07) 2350.95(116.23) 698.75(55.66) 704.97(50.16)
BB-DMED 1109.94(1075.93) 1736.9(422.98) 343.4(310.11) 608.65(127.26)
KL-UCB 872.93(168.15) 1589.32(118.38) 541.98(68.51) 584.41(60.32)
BB-KL-UCB 1249.5(1122.55) 1737.9(438.82) 377.41(336.54) 531.55(128.41)

KL-UCB+ 606.47(149.87) 1517.61(154.81) 446.31(72.74) 536.1(62.3)
BB-KL-UCB+ 1249.5(1122.55) 1737.9(438.82) 414.84(333.58) 509.77(133.38)
BESA 390.69(436.57) 427.38(251.0) 205.18(180.23) 229.4(152.62)
BB-BESA 1369.22(1108.85) 1730.14(438.33) 360.19(335.46) 529.49(132.0)
PRI 349.1(140.21) 405.93(147.98) 452.57(78.48) 464.19(77.12)
BB-PRI 1362.33(1112.65) 1804.48(442.98) 499.37(321.03) 561.61(143.12)

PR2 (TS) 351.06(155.5) 391.92(145.55) 347.52(88.38) 352.61(90.7)
BB-PR2 (TS) 1413.95(1131.51) 1752.21(431.29) 410.44(337.29) 531.98(143.3)
PR3 - - 288.15(86.72) 297.76(88.83)
BB-PR3 - - 471.88(338.07) 538.77(143.96)

TABLE IV

BEST ALLOCATION STRATEGIES IN THE SCENARIOS UNDER CONSIDERATION

Online update architecture

In batch mode update architecture

Bern .M Bern_V Bern .M Bern_V
A1 (t) PR2 BESA/BB-PR3 PR1/PR2 BESA
A2 (t) PR1 BB-PR3 PR2 BESA
As(t) PR2 BB-PR3 - -
the number of trials, followed by PR3 and further by PR2. REFERENCES

Thus, we can conclude that the BESA and PR methods
are the best allocation strategies for campaign management
with a batch mode update architecture.

IV. CONCLUSIONS

Table IV shows the best allocation strategies for the
scenarios, accounting for different levels of traffic and reward
distributions in online and in batch update architectures.

There is no one allocation strategy that outperforms the
other in all scenarios under consideration. Four allocation
strategies are the best in at least one of the 10 analyzed
scenarios. PR2 is the best for four out of 10 scenarios,
followed by BESA and BB-PR3 (three scenarios) and PR1
(two scenarios). In only two cases is the blackbox version
of an allocation strategy the best option.

Thus, depending on the configuration of the campaign
management under consideration, a MAB algorithm could
be the most appropriate. In an online update architecture,
if a Bernoulli distribution with medium expected rewards
(Bern_M), PR2 is recommended with low or very high traffic,
whereas PR1 should be used when traffic is high. Finally,
BB-PR3 is the best algorithm for the variant with rewards
associated with the delays (Bern_V) irrespective of the traffic.

In a batch mode update architecture, BESA and PR2 are
the best algorithms for reward scenarios Bern_M and Bern_V
irrespective of the traffic, respectively.

ACKNOWLEDGMENT

The research reported in this paper was supported by
Spanish Ministry of Economy and Competitiveness project
MTM2017-86875-C3-3-R.

CoDIT’19 | Paris, France - April 23-26, 2019

[2

—

[3

—

[4

=

[5

=

[6

=

[7

—

[8

=

[9

—

[10]

(11]

[12]

[13]

Agrawal, R., 1995. Sample mean based index policies with O(log
n) regret for the multi-armed bandit problem, Advances in Applied
Probability 27, 1054-1078.

Agarwal, A., Duchi, J., 2011. Distributed delayed stochastic optimiza-
tion, Advances in Neural Information Processing Systems 24, 873-881.
Auer, P, Cesa-Bianchi, N., Fischer, P,, 2002. Finite-time analysis of
the multiarmed bandit problem, Machine Learning 47, 235-256.
Baransi, A., Maillard, O.A. Mannor, S., 2014, Sub-sampling for multi-
armed bandits, Proceedings of the European Conference on Machine
Learning and Knowledge Discovery in Databases, 115-131.
Desautels, T., Krause, A., Burdick, J., 2014, Parallelizing exploration-
exploitation tradeoffs with gaussian process bandit optimization, Jour-
nal of Machine Learning Research 15, 4053-4103.

Dudik, D., Hsu, D., Kale, S., Karampatziakis, N., Langford, J., Reyzin,
L., Zhang, T., 2011. Efficient optimal learning for contextual bandits,
Proceedings of the 27th International Conference on Uncertainty in
Artificial Intelligence, 169-178.

Garivier, A., Cappé, O., 2011. The KL-UCB Algorithm for bounded
stochastic bandits and beyond, Proceedings Conference on Learning
Theory 24, 359-376.

Honda, J., Takemura, A., 2010. An asymptotically optimal bandit
algorithm for bounded support models, Proceedings of the 24th Annual
Conference on Learning Theory, 67-79.

Joulani, P., Gyorgy, A., Szepesvari, C., 2013. Online learning under
delayed feedback, Proceedings of the 30th International Conference
on Machine Learning 28(3), 1453-1461.

Kaufmann, E., Cappé, O., Garivier, A., 2012. On Bayesian upper con-
fidence bounds for bandit problems, Proceedings of the International
Conference on Artificial Intelligence and Statistics, 592-600.

Martin, M., Jiménez-Martin, A., Mateos, A., 2016. Possibilistic reward
method for the multi-armed bandit problem, Proceedings of the 6th
International Conference on Operations Research and Enterprise
Systems, 75-84.

Martin, M., Jiménez-Martin, A., Mateos, A., 2018. The Possibilistic
Reward Methods for the Multi-Armed Bandit Problem, Neurocomput-
ing 310, 210-212.

Thompson, W.R., 1933. On the likelihood that one unknown probabil-
ity exceeds another in view of the evidence of two samples, Biometrika
25(3-4), 285-294.

-957-

