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Distributed Detection of Malicious Attacks on Consensus Algorithms with
Applications in Power Networks

Sourav Patel1, Vivek Khatana1, Govind Saraswat2 and Murti V. Salapaka1

Abstract— Consensus-based distributed algorithms are well
suited for coordination among agents in a cyber-physical
system. These distributed schemes, however, suffer from their
vulnerability to cyber attacks that are aimed at manipulating
data and control flow. In this article, we present a novel
distributed method for detecting the presence of such intrusions
for a distributed multi-agent system following ratio consensus.
We employ a Max-Min protocol to develop low cost, easy to
implement detection strategies where each participating node
detects the intrusion independently, eliminating the need for a
trusted certifying agent in the network. The effectiveness of the
detection method is demonstrated by numerical simulations
on a 1000 node network to demonstrate the efficacy and
simplicity of implementation.

keywords: Ratio consensus, distributed intruder detection, cy-
bersecurity, smart microgrids, distributed algorithm.

I. INTRODUCTION

Distributed coordination and decision making has enabled
new paradigms in cyber-physical systems that include sensor
networks, autonomous vehicle systems and power networks.
A key strategy often employed is achieving consensus among
the agents in a network by sharing local information with
its neighbors [1], [2]. The applicability of Consensus-based
distributed coordination methods often depends on the termi-
nation of the consensus algorithm in finite-time (see [3], [4]
for static graphs and [5] for dynamic topology networks)
which allows for the inferences reached to be used by
the agents to perform subsequent important operations; for
example, to provide ancillary services by local agents in a
power grid (see [6] and [7]). Moreover, the implementation
of such methods in a cyber-physical system might necessitate
a prior centralized coordination step. In many situations, such
centralized coordination is not feasible. To this end, a ratio
consensus algorithm that eliminates the need of a centralized
framework is presented in [8], [9]. Such distributed decision
making schemes depend heavily on trust and credibility of
the participating agents. Each agent gathers information by
relying on it’s neighbors to share their information honestly.
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When factoring this type of information exchange into a
model, each agent’s lack of honesty can skew the resulting
decision (consensus value). It is imperative to increase the
resilience of multi-agent systems towards such malicious or
manipulative behaviour. To address the cyber-security issues
in distributed algorithms, a number of different approaches
have appeared in the literature. One such method encom-
passes trust based models for multi-agent systems [10]. Such
trust-based approaches need repeated interactions between
the agents and need to gather a large amount of information
from different agents in the network to formulate notions
of cooperation or rejection of transactions. Reference [11]
formulates an intrusion detection system based on network
traffic analysis whereas authors in [12], [13] assert the
need of creating an r-robust graph for a resilient consensus.
Thus, most proposed methods involve techniques that impose
additional constraints on the network that are difficult to
generalize.
This article presents a distributed algorithm for detection
of malicious nodes in a cyber-physical system. We use the
monotonic properties of global maximum and minimum
over the network following the consensus algorithm, to
detect intrusions. The proposed algorithm has many benefits
over the existing counter parts in the literature [10]–[14].
Firstly, the scheme proposed eliminates the need of a unique
identifier (as required in [14]) for each node in the network
which allows each node to individually detect the intrusion.
The results developed here enable a truly distributed way of
detection as an agent utilizes information only from its neigh-
bors. The only global information needed is an upper bound
on the graph diameter D (defined in Section II). Furthermore,
it obviates the need for any centralized planning before-
hand. Secondly, the scheme proposed has a small memory
requirement; specifically, each node needs to store D values
for each of its neighbors (unlike the memory requirement
which increases as a polynomial function of the number
of nodes N in [14]). Also, the computations involved are
simple mathematical operations like multiplication of scalar
values, in contrast to techniques using matrix inversions and
rank calculations which can easily become intractable as
the size of the network increases. This makes the proposed
algorithm suitable for ad-hoc networks where the agents
have less computational power and storage capacity. Unlike
other works (see [11], [14]) the proposed algorithm does not
need a learning stage where the network parameters used
for intrusion detection are estimated before the actual detec-
tion protocol can be deployed, thus, facilitating an on-line
implementation in cyber-physical systems like smart micro-
grids. Also, the proposed scheme is topology independent
unlike schemes where the graph topology is the determining
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factor for tolerance towards malicious agents [13]. With the
above benefits, this algorithm can be applied to a multitude
of cyber-physical systems.

The rest of the paper is organized as follows. In Section II
and III, we present the ratio consensus and distributed
apportioning framework. In Section IV, different intruder
models and their analysis are presented. Section V presents
the proposed distributed detection scheme for creating a
cyber-secured network. The proposed algorithm is validated
on simulations and results are presented in Section VI.
Section VII provides the conclusion and future directions.

II. PRELIMINARIES

A. Definitions

In this section, we present basic notions of graph theory
and linear algebra. Detailed descriptions are available in [15].

Definition 1. (Directed Graph) A directed graph G is a pair
(V,E) where V is a set of vertices (nodes) and E is a set of
edges, which are ordered subsets of two distinct elements of
V . If an edge from j ∈ V to i ∈ V exists then it is denoted
as (i, j) ∈ E.

Definition 2. (Strongly Connected Graph) A directed graph
is strongly connected if it has a directed path between each
pair of distinct nodes i and j.

Definition 3. (Column Stochastic Matrix) A real n×n matrix
A = [aij ] is called a column stochastic matrix if 0 ≤ aij ≤ 1

and
n∑
i=1

aij = 1 for 1 ≤ i, j ≤ n.

Definition 4. (Irreducible Matrix) A N × N matrix A is
said to be irreducible if for any i, j ∈ {1, ..., N}, there exist
m ∈ N such that (Am)(i, j) > 0.

Definition 5. (Primitive Matrix) A non negative matrix A is
primitive if it is irreducible and has only one eigenvalue of
maximum modulus.

Definition 6. (Diameter of a Graph) The diameter of a
directed graph is the longest shortest directed path between
any two nodes in the network.

We will consider D as an upper bound on the diameter of
the graph throughout.

Definition 7. (Epoch) An epoch is defined as any D con-
secutive state update iterations i.e. kth epoch defines the
discrete-time interval [kD + 1, (k + 1)D].

Definition 8. (In-Degree) In-degree of a node i is the number
of elements |N−i |, where N−i = {j : (i, j) ∈ E}.

Definition 9. (Out-Degree) The out-degree of a node i is the
number of elements |N+

i |, where N+
i = {j : (j, i) ∈ E}.

B. Ratio Consensus Protocol

Consider a directed graph G = {V,E} containing N
nodes. Each node i ∈ V maintains two states at time k,
denoted by xi(k) (referred as numerator state of node i)
and yi(k) (referred as denominator state of node i). Node i

updates its state at the (k+1)th discrete iteration according
to the following update law:

xi(k + 1) = piixi(k) +
∑
j∈N−i

pijxj(k), (1a)

yi(k + 1) = piiyi(k) +
∑
j∈N−i

pijyj(k), (1b)

where N−i is the set of in-neighbors of node i. We next
present a result from [8] which establishes the convergence
of the ratio xi(k)/yi(k).

Theorem 1. Suppose the weight matrix P with P (i, j) =
pij associated with the directed graph G is primitive and
column stochastic with P (i, i) > 0 for all i ∈ V . Let
{x1(0), x2(0), ..., xN (0)}, yi(0) = 1 be the initial condi-
tions for numerator and denominator states respectively for
all i ∈ V . Then, the ratio xi(k)

yi(k)
asymptotically converges to

α := 1
N

∑N
i=1 xi(0) for all i = 1, ..., N (referred to as ratio

consensus).

Lemma 1. With the assumptions of Theorem 1, sum of state
values of x and y are conserved, i.e. for any k,∑N

i=1 xi(k) =
∑N
i=1 xi(0),

∑N
i=1 yi(k) =

∑N
i=1 yi(0),

for updates according to (1a) and (1b).

Proof. Proof is straightforward and is omitted due to space
constraints.

C. Problem Formulation

Let q denote the intruder node violating the update rules (1a),
(1b) such that, given ρ > 0, for all i ∈ V ,∣∣∣∣ limk→∞

xi(k)
yi(k)

−
∑N

j=1 xj(0)∑N
j=1 yj(0)

∣∣∣∣ > ρ, (3)

lim
k→∞

(
xi(k)
yi(k)

− xq(k)
yq(k)

)
= 0. (4)

In other words, the intruder’s aim is to steer the final
convergence value of the ratio consensus away from the true
convergence value (ratio of sum of initial states) to a new
desired value and achieve consensus among all the nodes in
the network at the desired value.

Objective: Given update rules (1a), (1b) for all i ∈ V
and an intruder q, the goal is to detect any intrusions of
the form (3) and (4) in the network in a distributed manner.

Next, we substantiate the motivations of intruders and
the need for a distributed detection algorithm through a
distributed power allocation framework. The proposed de-
tection algorithm, however, is applicable for detecting ma-
licious attacks in other consensus-based applications such
as distributed optimization [16], [17], finite time consensus
algorithms in higher dimensions [18], [19], movement coor-
dination in autonomous vehicles, task allocation in unmanned
aerial vehicles (UAVs) for rescue and search operations.
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III. FRAMEWORK FOR DISTRIBUTED APPORTIONING IN
POWER NETWORKS

The ratio consensus protocol discussed above is used
for distributed coordination of Distributed Generation (DG)
units to meet the ancillary service demand. We first summa-
rize below the distributed averaging protocol [7], [8], [20]
Here the ratio consensus algorithm is used to compute the
power reference commands for the DG units based on their
generation capacities. Let ρd represent the total amount of
power requested by an aggregator of the smart micro-grid
to be supplied by the N DG units (see Fig. 1(a)). Let π∗j
represent the power supplied by DG j while respecting its
own generation capacity and load constraints. πmaxj , πminj

represent the maximum and minimum power the jth DG unit
can supply. Thus,∑N

j=1 π
∗
j = ρd, and πminj ≤ π∗j ≤ πmaxj for all j ∈ V. (5)

We refer to the problem of determining π∗j respecting
the above constraints as the resource apportioning problem
where (5) gives the feasibility criteria for all participating
units. A fair way of apportioning DG units to supply the
demanded power is given by [7]:

π∗j = πminj + r(πmaxj − πminj ) for all j ∈ V, (6)

where, r =
ρd −

∑N
j=1 π

min
j∑N

j=1(π
max
j − πminj )

. (7)

The power apportioning algorithm [7] provides a distributed
way to calculate r when a single aggregator can communicate
to at least one node in the network.

IV. ANALYSIS OF ATTACK STRATEGIES

In this section, we describe various attack models for
intruders. We classify the intrusion attacks based on two
criteria: (1) the impact they have on the power network and
(2) the kind of strategy used by these intruders. Based on
the impact caused, intrusions are categorized as vandalism
attacks and manipulative attacks. The vandalism attacks
directed towards the power network are used to disrupt the
proper functioning of the power network. Such attacks can
be easily detected by monitoring physical quantities like
voltage and current profile of the power network [21] and
are not within the scope of this paper. Manipulation attacks
on the other hand are difficult to detect. These attacks are
responsible for diverting the power network from the actual
operating point. Although, these attacks are not as severe as
the vandalism attacks in their impact, the difficulty lies in
detection of such attacks. A manipulation attack running for
a long time may lead to large revenue losses.
Intruder model: We consider a class of intruders whose
objective is to alter the consensus value by θ (called attack
strength), viz. the consensus algorithm converges to α−θ or
α+ θ where α =

∑N
i=1 xi(0)

N . Without loss of generality, we
will analyze the case of intruder trying to steer the consensus
to (α− θ) where θ > 0.

A. Assumptions on intruder attack model

We provide the assumptions imposed on our attack model:
A1. All the attacks are intended to manipulate the smart

micro-grid performance (by manipulating the consen-
sus value). The intruder is motivated to increase its
profit by increasing its share of the total power supplied
to the loads (similar to competitive Transactive Grids).
Furthermore, we assume that attacks do not occur at
k = 0.

A2. The intruder has as much global information available
to itself as every other agent in the network.

Based on the above assumptions we now provide various
attack strategies:

1. Constant (False) data injection attacks: Here the
motive of the attacker is to modify the consensus value by
injecting a constant false value into the network. In such
attacks the ratio of the state updates of the intruder node
remains constant after some iteration k′ i.e.

xq(k)

yq(k)
=
x∗

y∗
, (8)

for k ≥ k′ where, q is the intruder node, and x∗ and y∗

are the intruder injected constant values. Note, that these
kind of intrusion attacks also encompass stuck nodes. We
extend the work of [22] requiring doubly-stochastic weight
matrix and strong assumptions on the induced sub-graph after
removing the intruder in the network be strongly connected.
We present a theorem below which shows for the ratio
consensus protocol all nodes in the network will converge
to the value injected by the intruder.

Theorem 2. With the attack strategy defined in (8), the ratio
of numerator and denominator states xi(k)

yi(k)
for all nodes i

converges to a common limit (consensus value). Further, the
limit is equal to x∗

y∗ .

Proof. Proof is omitted due to page constraints.

2. Data Manipulation attacks: Let T denote the set
of discrete-time attack instants when an intruder injects
malicious values in the network. Let the lth attack by the
intruder i occurs at instant t, then,

xi(t+ 1) =
∑

j∈N−i ∪ i

pijxj(t)− δkl , (9)

where, t ≥ l and
∑
l∈T

δkl = Nθ. State yi is updated according

to (1b). One such attack strategy is to choose δ0 and a to
achieve a desired attack, θ, within m number of attacks is,

δ0 =

(
1− a
1− am

)
Nθ, a ∈ [0, 1], (10)

with, δl = al−1δ0 for some δ0 > 0.
The next theorem shows that the intruder has an attack
strategy that can steer the ratio consensus protocol to achieve
desired state in the network.

Theorem 3. The intruder attack strategy given in (9) steers
the consensus value to (α− θ), where α = 1

N

∑
j∈V xj(0).
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Proof. (By Induction) Let α be the consensus value without
attack.

∑
j∈V xj(0) = Nα (as

∑
j∈V yj(0) = N ). It

is sufficient to prove that under the attack strategy (9)∑
j∈V xj(k) = Nα − Nθ. Consider i to be the intruder

node and let k1, k2, . . . ∈ T be the attack instants where kl
denotes the lth attack instant. From Lemma 1 with l = 1,∑

j∈V
xj(k1) =

∑
j∈V
j 6=i

∑
l∈N−j ∪ j

pljxj(k1 − 1)

+
∑

l∈N−i ∪ i

plixi(k1 − 1)− δk1

=
∑
j∈V

∑
l∈N−j ∪ j

pljxj(k1 − 1)− δk1

(Induction Hypothesis) Let, for l = m′,
∑
j∈V xj(km′) =

Nα−
∑m′

l=1 δkl . For l = m′ + 1 and since no attack occurs
between the instants km′ and km′+1, proceeding as above,∑
j∈V

xj(km′+1) =
∑
j∈V

∑
l∈N−j ∪ j

pljxj(km′+1 − 1)− δkm′+1

(Using Lemma 1 and no attack between km′ and km′+1),

=
∑
j∈V

∑
l∈N−j ∪ j

pljxj(km′)− δkm′+1

=
∑
j∈V

∑
l∈N−j ∪ j

pljxj(km′ − 1)−
m′∑
l=1

δkl − δkm′+1

=
∑
j∈V

∑
l∈N−j ∪ j

pljxj(km′ − 1)−
m′+1∑
l=1

δkl .

Therefore, induction holds. Hence,
∑
j∈V xj(km) = Nα −

m∑̀
=1

δk` = Nα − Nθ .Thus, from [8] the ratio converges to

limk→∞
xj(k)
yj(k)

= Nα−Nθ∑
j∈V yj(0)

= α− θ.

Remark 3.1. Here, the attack strategy depends upon the
knowledge of N (more generally

∑
j∈V yj(0)) by the at-

tacker node. During imperfect knowledge of the network,
attacker can steer the consensus only to α − N ′

N θ, where
N ′ is an estimate of N by attacker.

V. CYBER-SECURED DISTRIBUTED NETWORK
FRAMEWORK

In this section, we propose a cyber-secured framework
for networks running distributed consensus algorithms. We
first present the max-min protocols to obtain global max-
imum and minimum values of the network and use the
monotonicity property of these protocols [9] to devise the
proposed distributed intruder detection algorithm. Define the
maximum and minimum value of the ratio of numerator and
denominator states given by (1a) and (1b) over all nodes at
any time instant k as,

M(k) := max
i∈V

xi(k)

yi(k)
, yj(k) 6= 0, j ∈ V, (11a)

m(k) := min
i∈V

xi(k)

yi(k)
, yj(k) 6= 0, j ∈ V. (11b)

Lemma 2. For all time instants k
′ ≥ k and for all i ∈ V,

xi(k
′
)

yi(k
′ )
≤M(k), xi(k

′
)

yi(k
′ )
≥ m(k). (12)

Proof. See [9] for proof.

The following theorem shows that the maximum (or mini-
mum) value M(k) (or m(k)) strictly decreases (or increases)
after finite time.

Theorem 4. Define the initial ratio vector as r(nD) :=[
x1(nD)
y1(nD)

x2(nD)
y2(nD) . . .

xN (nD)
yN (nD)

]
such that min(r(nD)) <

max(r(nD)), where, n = 0, 1, 2, ... Then,

M((n+ 1)D) < M(nD) and m((n+ 1)D) > m(nD)

Proof. See [9] for proof.

A. Maximum-Minimum (MXP-MNP) Consensus Protocol
The Maximum and Minimum Consensus Protocol re-

ferred as MXP and MNP protocol computes the maximum
and minimum of the given initial node values v(0) =
[v1(0) v2(0) ... vN (0)]T in a distributed manner. It takes
v(0) as an input and generates a sequence of node values
based on the following updates for any node i ∈ V ,

zi(k + 1) = max
j∈N−i ∪ i

zj(k), wi(k + 1) = min
j∈N−i ∪ i

wj(k), (13)

where zi(0) = wi(0) = vi(0).

Lemma 3. The estimates zi(k) and wi(k) in (13) converges
to max

j∈V
zj(0) and min

j∈V
wj(0) respectively in finite time k ≤

D for all i ∈ V .

Proof. See [3] for the proof.

The MXP and MNP protocols are reset after every epoch
and the initial conditions are set as the initial ratios held by
the nodes, that is, zi(nD) = xi(nD)/yi(nD) and wi(nD) =
xi(nD)/yi(nD) respectively for all i ∈ V . Notice that in the
above scheme the global maximum and minimum values of
the ratios at the beginning of an epoch are available to each
node after next D iterations (as one iteration of the Max-Min
algorithm is completed in D iterations) [3]. In other words
MXP (k) =M((k − 1)D) and MNP (k) = m((k − 1)D).

B. Detection Algorithm
Based on the above discussion we now present a detection

algorithm. The algorithm requires each node in the network
to store and access the last D state updates of all of its
neighbors. We define the values stored by a node i as:
xij [kD : (k+ 1)D] and yij [kD : (k+ 1)D] for all j ∈ N−i .
This storage is maintained in a StorageBuffer at each
node. If each node in the network has access to last D
state updates of all of its neighbors, δm cannot be chosen
successfully by intruder node i with the assumptions of A1
and A2 (following the attack strategy (9) and (10)) as it can
be detected due to one of the following violations:

xji[kD : (k + 1)D]

yji[kD : (k + 1)D]
≤MXP (k + 1) or, (14)

xji[kD : (k + 1)D]

yji[kD : (k + 1)D]
≥MNP (k + 1), (15)
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for all nodes j ∈ N+
i . Such a detection will happen

simultaneously at all the neighboring nodes of i followed
by the generation of an AttackF lag signal that is emitted
by each node to its neighbors. Within the next D iteration of
the algorithm the AttackF lag signal regarding intrusion is
propagated to all the nodes in the network which results in
the interruption of the consensus protocol and further actions
can be taken to make the network secure. The complete
detection algorithm is presented in Algorithm 1.

Remark 4.1. The proposed detection algorithm requires
each node i to store |N−i | × D values thus, can be imple-
mented in low-cost devices such as Raspberry-pi units.

Algorithm 1: Distributed intruder detection protocol
(at each node i ∈ V )

Repeat:
Input:

D;
Initialize:

k = 1; l = 1; AttackF lagi = False;
StorageBufferi = [ ];

Repeat:
/* ratio consensus updates of

states xi(k), yi(k) given by (1a)
and (1b) */

/* MXP and MNP protocol for each
node i ∈ V */

zi := MXP(k); wi := MNP(k);
(Using (11a) and (11b))
StorageBufferi ←− N−

i ;
/* Store last D values of all

in-Neighbors. */
if k = lD then

for j ∈ N−
i do

if
{(xij [1 : (k − 1)D]

yij [1 : (k − 1)D]
−MXP(k)

)
≥ 0

or(xij [1 : (k − 1)D]

yij [1 : (k − 1)D]
−MNP(k)

)
≤ 0
}

then
AttackF lagi = True;

emit: AttackF lagi −→ N+
i ;

/* Send AttackFlag for
termination. */

else
StorageBufferi ←− [ ];
/* Empty Buffer */

end
end
l = l + 1;

end
k = k + 1;

Output: AttackF lagi // Detection of
intruder by node i

VI. RESULTS

We now provide the validation of our detection scheme for
a smart micro-grid involving distributed power apportioning
as the cyber-physical system.

A. Simulation Results
In this section, we present simulation results to demon-

strate distributed detection of an intruder attack in a
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MXP and MNP values over the network.
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Fig. 2: A 6-node power network with the malicious node 5
launching a constant injection attack resulting in detection.

power network. Intruder models developed in Section
IV will be used to validate the detection strategy. Fig.
1(b) shows the state trajectories of the DGs and the
M(k) and m(k) values following the distributed appor-
tioning algorithm for communication network of Fig. 1
without any intruder in the network (α = 0.6). The
nodes have minimum and maximum power capacities
as: πmin(W ) = [1000 1000 1000 1000 1000 1000]T ,
πmax(W ) = [1000 2000 5000 6000 4000 3000]T with a
total aggregator demand of 15 kW (≤

∑
j∈V π

max
j ). Fig. 2

presents simulation results for constant data injection attacks.
Here, the malicious node 5 attacks the network by constantly
injecting a ratio of 0.45 after iteration 30 (θ = 25%),
emulating an actual aggregator demand of 12.75 kW as
seen by the remaining (honest) nodes. Thus, the total power
delivered by the rest of the power network becomes 10.4
kW, and node 5 can inject its maximum power (4 kW),
making the total power delivered by the network as 14.4
kW. It is important to note that aggregator cannot distinguish
between the two scenarios where the power network’s total
capacity is just 14.4 kW (deficit) or the case where attack is
causing the total power delivered to be 14.4 kW. It can be
observed that the intruder node is able to steer the consensus
to its desired ratio (0.45 in this case) in the absence of any
detection strategy. However, in the presence of the detection
algorithm, intrusion is detected when node 5 violates Lemma
2 in the next 2D iterations (iteration number 36) resulting in
detection (AttackF lag = 1) (Fig. 2). The following results
are obtained by running simulations for a set of 10,000
graphs with 1000 nodes with a maximum possible diameter
of 40. At each run we pick a graph with arbitrary initial
conditions for all nodes. The attack strength (θ) is varied
from 1% to 90% of the consensus value (α). We created
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Fig. 3: Instances of random graphs generated for 1000 node
network for attack statistics.

Fig. 4: Malicious node launching data manipulation attack in
a 1000-node power network. Detection at iteration 50 (2D).

30 million possible scenarios by varying the graph topology,
attack strength (θ% of the consensus value α), intruder node,
time instant of attack, number of attacks. The detection
accuracy of the proposed algorithm for all cases are shown
in Fig. 3.

Remark 4.2. Our algorithm detects smaller attacks (θ <
5%) with an average accuracy of 89% which are harder
to detect. In such cases the intruder cannot steer the final
consensus to achieve larger deviations. Medium attacks (5 ≤
θ ≤ 10%) are detected with an accuracy > 99.5% where as
stronger attacks (θ > 10%) are always detected.

Remark 4.3. The outliers (denoted by red crosses in Fig.
3) in the simulations that avoided detection for smaller and
medium attack strengths, were mostly observed to be cases
where the intruder could inject a large value when the range
of minimum and maximum initial values across all the nodes
in the network were large. However, such a strategy doesn’t
guarantee success in attack as intruder has no knowledge of
this range in this framework.

An example case of data manipulation attack is shown in
Fig. 4. The global maximum and global minimum are shifted
by D iterations to the left for clarity but are obtained only
after D iterations in the protocol. Here the intruder node
with an attack strength of 3% following (9) and (10) with
a = 0.95, m = 95 and δ0 = 7.3×10−4. However, it violates
the MNP criteria in (14) leading to detection and sending
AttackF lag = 1 at iteration number 50 (2D).

VII. CONCLUSION AND FUTURE WORK

In this work, we considered the problem of detecting ma-
licious attacks in distributed cyber-physical systems. Attack
models for intruders were proposed and analyzed that have
not been previously considered in the literature. A distributed
intruder detection algorithm was presented, analyzed and
validated using simulations. The proposed detection method

makes use of only local information of the nodes under
limited storage and computation requirements as opposed
to existing detection methods. Analyzing the efficacy of the
proposed scheme under time varying topologies and web-
socket based experiments on a communication network are
future directions for the current work.
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