

Delft University of Technology

Declarative procedural generation of architecture with semantic architectural profiles

van Aanholt, Levi; Bidarra, Rafael

DOI
10.1109/CoG47356.2020.9231561
Publication date
2020
Document Version
Final published version
Published in
2020 IEEE Conference on Games (CoG)

Citation (APA)
van Aanholt, L., & Bidarra, R. (2020). Declarative procedural generation of architecture with semantic
architectural profiles. In 2020 IEEE Conference on Games (CoG) (pp. 351-358). Article 9231561 IEEE.
https://doi.org/10.1109/CoG47356.2020.9231561

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/CoG47356.2020.9231561
https://doi.org/10.1109/CoG47356.2020.9231561

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Declarative procedural generation of architecture
with semantic architectural profiles

Levi van Aanholt and Rafael Bidarra
Computer Graphics and Visualization Group

Delft University of Technology
The Netherlands

l.s.vanaanholt@student.tudelft.nl, r.bidarra@tudelft.nl

Abstract—Procedural content generation (PCG) for architec-
ture is widely used in a variety of digital media, most notably
in games. However, such methods are often limited in their
expressive range, and require considerable technical knowl-
edge to create non-trivial architectural structures. We present
a novel tile-based PCG approach for generating architecture,
that proposes the use of architectural profiles, a declarative
characterization of architectural typology, within a generic tile
solving framework. An architectural profile consists of a set of
tiles, representing atomic architectural building blocks, and a set
of declarative constraints and rules, specifying which conditions
a tile configuration has to satisfy to be valid. These conditions
are translated into logic constraints, and used by a tile solver to
control tile placement in a bottom-up manner. Eventually, each
valid model output by the solver is a representative instance
of its architectural profile. We describe an implementation of
this approach with Answer Set Programming, using an off-the-
shelf constraint solver for model generation. We performed an
expressive range analysis, and concluded that our declarative
method is quite controllable and can be steered over a broad
range of architectural structures, regarding density and repeti-
tiveness. Due to this expressive range and control, our tile-based
method is very suitable for the customized development of urban
environments for games.

Index Terms—Procedural Content Generation, Architecture,
Expressive Range, Tile Solving

I. INTRODUCTION

Procedural content generation (PCG) for architecture is
increasingly used in a variety of digital media, allowing for
the cost-effective creation of urban spaces for ads, movies and
games, and reducing the volume of hand-made content needed
[1].

Architectural typology categorises buildings based on their
physical and functional properties, and this characterization
can be applied to PCG for architecture. We say a PCG
technique is declarative when the generator can be easily
steered to generate models of the intended typology [2]; and it
is comprehensive if it is capable of generating a variety of ty-
pologically distinct models [3]. Many current PCG approaches
use grammars, which are highly configurable and fast, but
are difficult to write and apply, thus lacking in declarative
control. Other approaches are data-driven, which makes them
easier to use, but their expressive range is dependent on

the existence of good training sets, potentially compromising
comprehensiveness.

We present a novel tile-based PCG approach for generating
architecture that is both declarative and comprehensive. Our
method does not rely on grammars or a training set, but on the
definition and use of architectural profiles, a semantic char-
acterisation of architectural typology suitable for use within a
generic tile solving framework (Section III). This declarative
approach is easily configurable (Section IV), and able to
generate a broad range of architectural structures (Section V).

II. RELATED WORK

Previous research results fall into two categories: tile solving
methods and procedural modelling for architecture.

A. Tile Solving
Tile solving deals with the challenge of filling a space

with tiles given a tile set, under a variety of neighborhood
constraints for each tile, e.g. allowing only a tile subset at
its adjacent positions. Wang Tiles approaches [4] formalize
this problem. A common data-driven PCG approach with
tiles is tile synthesis, consisting of a tile retrieval step and a
tile solving step. This approach achieved successes in texture
synthesis [5], [6] and in 3D model synthesis [7]; the latter
takes a 3D object as input, splits it into tiles using a grid,
and proceeds to do tile solving with a greedy algorithm.
Tiles can also be obtained using offset statistics [8]. Model
synthesis was later generalized by using Markov Random
Fields [9], which allow for statistical constraints over larger
tile groups. WaveFunctionCollapse (WFC) [10] is another
tile solving method, which omits a tile retrieval step. It has
been popular in the PCG community and has also inspired
valuable research work [11], [12]. In particular, WFC can
be solved using Answer set Programming (ASP) [13], a
declarative language for computationally complex problems.
This approach is promising because by using ASP it is exact
and extendable.

B. Architectural Semantics in PCG
Architecture can be understood as the meaningful organi-

zation of space, accomplished by purposefully placing con-
struction elements. PCG techniques model architecture by

978-1-7281-4533-4/20/$31.00 ©2020 IEEE

351
Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2020 at 07:48:18 UTC from IEEE Xplore. Restrictions apply.

connecting architectural semantics with computational means.
Shape grammars with split rules [14] model architecture as
a hierarchic application of refinements to a base shape. This
approach successfully models building envelopes and classic
architecture [15] but does not easily capture the overall build-
ing semantics. To create believable buildings, multiple distinct
generators can be orchestrated [2], or a building layout can be
optimized using a trained network [16]. Grammars represent-
ing diverse architecture can be blended by adding labels [17],
creating a large variety of new mixtures. Moreover, labeling
shapes as public and private space [18] results in evocative
spatial layouts within a hierarchical generation process.

III. APPROACH

We describe our novel tile-based approach for the generation
of architectural structures, that proposes the notion of archi-
tectural profile and its use within a generic tile solving frame-
work. An architectural profile is a declarative characterisation
of a given architectural typology, and consists of a set of
tiles (as atomic architectural building blocks) and a variety
of declarative constraints and rules (as validity conditions for
tile configuration).

Before describing in detail the components of the architec-
tural profile, we first introduce the basic elements of a tile
solving framework.

A. General Tile Solving Framework

The essential elements of a general framework for tile solv-
ing can be summarized around the notion of Tile Constraint
Profile, as follows:

TileConstraintProfile = (T,A,R), (1)

where T is the set of available tiles, A a set of adjacency
conditions between tiles, and R a set of validity constraints.
Figure 1 illustrates the global approach: given a Profile and the
available input space, the tile solver incrementally ‘fills that
space’ with tiles that comply to all conditions and constraints
expressed, yielding a valid output model.

For this, we consider the input space subdivided in equally
sized cells c, each cell susceptible to hold one and only one
tile. The goal of the solving process is to assign one tile to each
cell without violating the profile conditions and constraints, in
A and R.

1) Tiles: T is a set of 3-dimensional tiles, each of which has
a bounding box of the size of a (space) cell c. Some examples
of tiles are given in Figure 2, fitting a cell size of 5× 5× 4.
For convenience (and unlike Wang tiles), we will consider
that a tile may be rotated (by multiples of) 90° around the
vertical axis (Z). This allows for a strong reduction in the size
of the tile set T , required for generating moderately complex
structures.

2) Adjacency conditions: A is the set of Adjacency Con-
ditions, i.e. hard constraints denoting each pair of tiles (t1, t2)
that may be assigned to adjacent cells, along some direction d;
this constraint is indicated as t1

d−→ t2. An adjacency condition
is, by definition, always bidirectional, i.e. t1

d−→ t2 ⇐⇒

SolverInput
Space Model

Profile

Fig. 1: An input space and a profile are input to the solver
yielding an output model.

t1
−d−−→ t2. Moreover, an adjacency condition t1

d−→ t2 also
holds for all 90° rotations (mentioned above) equally applied
to the two tiles. In short, during the solving process, two tiles
can only be placed adjacent to each other if they comply to
some adjacency condition of A.

3) Validity Constraints: R is the set of Validity Constraints,
i.e. profile rules that additionally constrain the solving pro-
cess, by specifying explicit restrictions on tile placement.
Constraints can be either hard constraints, which have to be
satisfied by all tiles in the output Model, or soft constraints,
each of which poses a penalty cost when violated.

An example of a hard validity constraint would be to require
the output to follow a valid Sudoku pattern, i.e. for any row,
column or sub grid in the Model, no two cells may contain
the same tile. An example of a soft validity constraint is
optimizing for a uniform distribution of tiles in the Model.
The penalty cost can be described as the variance of the
occurrences of the tiles in the Model.

Summarizing, the purpose of the whole solving process for
a Tile Constraint Profile (T,A,R) consists of assigning a tile
from T to each and every cell of the input Space, yielding an
output Model such that (i) every tile satisfies the adjacency
conditions in A, (ii) it satisfies all hard validity constraints in
R, and (iii) it minimizes the cost penalty of all soft validity
constraints in R.

B. Architectural Profile

An Architectural Profile is a semantic specification tailored to
declaratively constrain a tile solver for architectural generation.
The specification for an architectural profile applies the general
framework of the previous subsection to an architectural con-
text: tiles represent architectural elements, each with its own
semantics, and are combined to create architectural structures
called shapes, which in turn can be further combined. The es-
sential solving process of architectural profiles will, therefore,
focus on the placement of shapes in the input space, rather
than on tile placement. An architectural profile is defined as:

ArchitecturalProfile = (Ta, A, S,AS , RS), (2)

where Ta is the set of tiles with architectural semantics,
representing architectural building elements and their function,
and A is a set of adjacency conditions between tiles. S is the
set of profile shapes, built with tiles of Ta, AS is a set of
adjacency conditions between shapes of S, and RS is a set of
architectural validity constraints on shapes of S.

352
Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2020 at 07:48:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Tiles used in the profiles showcased in this paper.
From left to right, first row (interior tiles): corner, wall, door,
window, interior area; second row (exterior tiles): roof, street,
stairs, landing, void tile. Stairs and landing tiles can be both
interior and exterior.

1) Tiles: In an architectural profile each tile has some
architectural meaning, or semantics e.g. walls, windows and
doors. Moreover, semantics on tiles can be captured in the
form of labels. For the examples in this paper, we will
make use of two tile labels to indicate that a tile is meant
for building interior or exterior (or possibly both). This tile
architectural semantics is illustrated in Figure 2, where each
tile corresponds to an architectural element, and has one or
more labels. Enriched with this semantics, tiles can be grouped
and filtered, defining types which will prove convenient for
describing shapes.

2) Adjacency conditions: Semantics is also defined on the
adjacencies between tiles, expressing the meaning of how tiles
may relate to each other. This can define, for example, an
allowed navigation direction from one tile to the other (traver-
sal condition), or whether a tile supports construction above
it (construction condition). These meaningful adjacencies can
be defined between a tile and a whole type of tiles, yielding
so-called typed adjacency conditions: t d−→ type ∈ Atype ⊆ A.
Figure 3 exemplifies the two typed adjacency conditions men-
tioned above, used throughout the examples in this paper. As
before, typed adjacency conditions define in which direction(s)
they hold. Typed adjacency conditions are useful to specify
which building elements can be connected within a shape.

Finally, we define a typed adjacency condition as an ‘en-
trance’, when it involves an entrance tile t (e.g. a ‘door’)
and (tiles of) some type (e.g. ‘traversal’), along the entrance
direction d; it is denoted as t

d,e−−→ type. Entrances defined
in this way are useful as the entry point for shapes to be
connected together, thus allowing for the definition of shape
connectivity.

3) Shapes: The central concept of an architectural profile
is a shape, defined as a connected cluster of tiles, all sharing
a common label (e.g. interior). The term ‘connected’ here has
the common recursive definition (i.e. t1 is connected to t2 if
either t1 is adjacent to t2 or t1 is adjacent to some tile ti that is
connected to t2), but with the condition that these adjacencies
are of the same type (e.g. traversal), and are not entrances.
All tiles that are connected in this way belong to the same

Fig. 3: Semantics on tile adjacency conditions, in two types:
traversal (in red) and construction (in yellow). The interior
here, composed of a corner tile and a door tile, allows for
construction above them, as indicated by the upward arrows,
which are matched by the roof tiles above, with downward
arrows. The door tile, allowing for a traversal entrance adja-
cency condition (towards the exterior), matches with the street
tile, providing access to the interior.

shape. This adjacency type is, therefore, essential in the shape
definition.

Because we are interested in the generation of architecture,
shapes can be seen as the larger structures (e.g. streets or
buildings), and the tiles as the basic elements composing that
structure (see Figure 4).

As an architectural structure, a shape can be expected to
assume a variety of sizes. Depending on the shape and on its
intended architectural use, some way has to be provided to
indicate the valid range(s) for a shape’s size. For simplicity,
we will assume here two simple bounding boxes, indicating
the shape’s minimum and maximum sizes, respectively.

Summarizing, in order to generate a shape, a cluster of
connected tiles has to be assembled, such that (i) they all share
the same specific label, (ii) their adjacencies are of the same
type, and (iii) the tile cluster fits within the given size range.

4) Shape adjacency conditions: Similar to adjacency con-
ditions defined between tiles, we define adjacency condi-
tions between shapes to constrain their placement. Adjacency
conditions between tiles described local placement relations

Fig. 4: Shapes used in the profiles showcased in this paper:
(from left to right) street, stairs, roof, one-story house, two-
story house.

353
Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2020 at 07:48:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Shape adjacencies between shapes, indicated by the
arrows, traversal in red and construction in yellow. Each shape
adjacency can only exist if there is a corresponding shape
adjacency condition defined in the profile.

between architectural elements such as walls, ceilings and
stairs. Adjacency conditions between shapes describe place-
ment relations between architectural structures. For example,
a building and its connection(s) with the street or with other
buildings, illustrated by figure 5.

We say that two shapes, shapea, shapeb ∈ Model, are
adjacent over a given adjacency type when they include two
adjacent tiles, ta, tb, such that ta

∗−→ tb ∈ Atype, where the
∗ symbol stands for any direction. An adjacency condition
between the two shapes is then indicated as Shapea

∗−→
Shapeb ∈ AS,type; and, because tile adjacencies are sym-
metric relations, so are shape adjacencies. We will, therefore,
simply indicate a shape adjacency condition as Shapea

∗←→
Shapeb ∈ AS,type.

All adjacent shapes in the model have to satisfy the shape
adjacency conditions.

5) Architectural validity constraints: Architectural validity
constraints are important to express generic conditions that
hold for most structures. In addition, they help steering the
generation process towards the domain of plausible and fea-
sible architectural models. For the examples in this paper,
we define the following three rules, controlling traversability,
gravity and occurrence.
Traversability This constraint aims at ensuring that the model
is traversable, i.e. that all shapes in it are accessible, via
adjacencies of type traversal. Without this, some architectural
structure might never be reachable from the remaining ones.
In formal terms, this means that the graph defined by the tile
adjacency conditions of type traversal is connected.
Gravity In most architectural structures, each construction
always stands or leans on some previous structure, possibly
including the ground, rather than just floating above it. The
gravity constraint aims at ensuring the connection of each

shape to the ground, which can be itself regarded as a shape
on its own. In formal terms, this requires that all graphs
defined by the tile adjacency conditions of type construction
are connected with the ground.
Occurrence The occurrence constraint allows for the specifi-
cation of a desired density for a given shape in the model. In
this way, one can control, for example, the density of house
placing, ranging from, say, a rural village to a dense social
neighborhood. It also allows to prioritize the occurrence of
some shapes over others.

Summarizing, the complete solving process for an architec-
tural profile (Eq. 2) consists of successively generating shape
instances, and ‘attaching’ them to the model, by finding for
them a location and orientation that (i) adheres to all shape
adjacency conditions, and (ii) fulfills all validity constraints
defined in the profile.

IV. EVOCATIVE EXAMPLES

In this section, we present several examples of architectural
profiles that are illustrative of the power of the concept. For
this, we first define a simple architectural profile that forms
the basis for all subsequent variants.

Our Base Profile uses the tile set TS shown in Figure 2, and
includes the Traversability and Gravity validity rules for all
building constructions. The adjacency conditions for this Base
Profile A are obtained from one example model, by registering
all tile adjacencies found between its tiles.

The Base Profile employs the same shapes shown in Figure
4. Additionally, other derived profiles also use the ‘high-rise’
and the ‘monolith’ shapes, which represent larger buildings.
Following the shape definition in the previous section, a shape
is defined by specifying a label, an adjacency type and a
bounding box. For example, a small one-story house can be
defined with [traversal, interior, (3,2-3,1)], while other bigger
one-story buildings can use larger values for the bounding
box. In these profiles, Shape Adjacencies have a type, either
traversal or construction which is indicated by τ and κ.

A. Examples

Table I presents four examples of architectural profiles, all
of them extending the Base Profile above. For each of these
profiles, we depict one model output by the solver for it.

1) One-story Profile: the street, one-story house and roof
shapes are used to create a flat composition that is only
traversed horizontally. The street is connected with shape
adjacencies to itself and the one-story shape through the
traversal. One-story shape is connected with the street, the
roof and the ground through construction.

2) One-story Stacked Profile: the inclusion of a shape
that allows for vertical traversal can dramatically change
the generated models. We modify the [One-story] profile to
become the [One-story] [stacked] profile. The stairs shape
is added and it is connected using shape adjacencies with
the street and itself through traversal, and with the ground
through construction. Also a one-story house is connected to

354
Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2020 at 07:48:18 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Evocative examples

[One-story] [High-rise]

[One-story][stacked] [Monolith]

[One-story]
S = {
street, 1story, roof}
SA = {
street

τ,∗←−→ 1story,

street
τ,∗←−→ street,

roof
κ,∗←−→ 1story,

street
κ,∗←−→ ground,

1story
κ,∗←−→ ground,

}

[One-story][stacked]
S = ([One-story]).S + {stairs}
SA = {
([One-story]).SA + {
stairs

τ,∗←−→ street,

stairs
τ,∗←−→ stairs,

stairs
τ,∗←−→ ground,

1story
κ,∗←−→ 1story,

street
κ,∗←−→ 1story

}

[High-rise]
S = {
street, highrise, roof}
SA = {
street

τ,∗←−→ highrise,

street
τ,∗←−→ street,

roof
κ,∗←−→ highrise,

street
κ,∗←−→ ground,

skyscraper
κ,∗←−→ ground

}

[Monolith]
S = {
street,monolith, roof}
SA = {
street

τ,∗←−→ street,

street
τ,∗←−→ monolith,

roof
κ,∗←−→ monolith,

street
κ,∗←−→ ground,

monolith
κ,∗←−→ ground

}

itself through construction. This results in the buildings being
stacked on top of each other. Because stairs exist, walkways
are being generated above the ground to connect the stacked
buildings with each other.

3) High-rise Profile: the [High-rise] profile is a modifica-
tion of [One-story] profile, substituting the one-story shape
for the much larger high-rise shape. This modification makes
buildings multi-storied and increases the building volume.

4) Monolith Profile: in the [Monolith] profile, the monolith
shape is used that takes all the volume of the input space. This
results in the model consisting of one large building.

V. EXPRESSIVE RANGE ANALYSIS

We evaluate our technique by analysing the expressive range
[19]. This evaluation technique analyses the variety a generator
can produce and the configuration effort of a PCG technique.
It has been used to analyse many PCG techniques such as
a road generator [20] and several learned generators of 2D
game levels [21]. For our purposes, we define two metrics,

density and repetitiveness, and evaluate how the output of
various profiles falls within these metrics.

A. Density

Density is a common metric in architecture, indicating the
ratio between interior and exterior space. We classify interior
space as that of shapes that form an enclosed space, and we
count the tiles in these enclosed shapes (interior). Exterior
space then are (the tiles of) all remaining shapes (exterior).
The density is given by density = interior/(interior +
exterior)

B. Repetitiveness

The repetitiveness metric indicates the prevalence of some
patterns in a model. We focus only on the repetitiveness
that occurs through the placement of buildings, i.e. regarding
interior tiles. First the repetitiveness of all relevant tiles is
calculated individually. We define the repetitiveness of an
individual tile with a specific rotation as the ratio between r,

355
Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2020 at 07:48:18 UTC from IEEE Xplore. Restrictions apply.

the highest amount of times it is repeated a specific distance
apart and rt, the total occurrence of that rotated tile in the
model. The repetitiveness for the entire model is calculated
as the weighted average of the individual repetitiveness for all
(interior) tiles, where each weight is the normalized occurrence
of the corresponding rotated tile in the model.

C. Model generation
We construct twelve profiles for the analysis. A maximum

of 100 model samples are generated per profile. Each model
is of size 8 × 8 × 4 cells. We use a concise naming scheme,
previously used in the evocative examples section, to describe
the different profiles. This convention indicates the building
shapes used and additional other designations that alter the
profile. The [stacked] designation means that buildings are
allowed to stack on top of each other and the stairs shape
is added to allow for vertical traversal. When [sparse] or its
opposite [dense] is used, an occurrence rule is used on the
building shapes in the profile, [sparse] indicating one building
shape in the Model space in total, and [dense] indicating at
least one building shape in every equal quadrant of the Space.
[adjoined] means that separate building shapes can directly be
connected door to door. Lastly, [naor] stands for no access on
roof, meaning the top of buildings is never walkable (which
they otherwise are).

D. Exploring the expressive range
Our metrics result in a two dimensional evaluation space

with noteworthy properties shown in Table II. We now discuss
each quadrant of this space.

1) Lower left: This quadrant indicates models that are
varied and are sparsely built. The corner point is the empty
model, no density and therefore no possibility for patterns.
Profile a and e, that can only build on the ground and are
sparsely built, naturally reside in this space. Also many profiles
that stack buildings on top of each other are placed in this
quadrant, f , g and h. These profiles are varied due to the
existence of a lot of possibilities to stack buildings in a
disordered way. To connect these freely placed buildings, a
large amount of walkways are placed, limiting the density.

2) Upper left: This quadrant contains repetitive sparsely
built models. Occupied by profile b, c and i. No models exist
for the corner point, because our repetitiveness metric is zero
if the density is zero.

3) Lower right: This quadrant has dense models with little
repetitiveness. In the profiles that we have included in this
investigation, one cannot find such models; these would need
more tiles than the present limited tile set of 10 tiles, which
does not provide a large enough variety of combinations.

4) Upper right: This quadrant is dense and highly repet-
itive. This is occupied by models from high-rise(k) and
monolith(l) profiles, as these fill much space with repetitive
buildings elements. The repetitiveness here stems predomi-
nantly from vertical placement patterns.

Looking closer at the impact of small changes between pro-
files, the following observations can be made on the changes
in the expressive range.

0 100 200 300 400 500
(cell amount)

0

2

4

6

8

10

12

av
er

ag
e

tim
e

(s
)

Run time of profiles for different Model sizes

b
g
i
j
k
l

Fig. 6: Runtime analysis of the implementation. The different
colored plots correspond to different profiles from Table II.
Every data point is the average runtime of 10 model genera-
tions. The size of the shapes in the profile has a large impact
on runtime: profiles that place bigger shapes, such as high-
rise shapes and monolith shapes in profile k and l, take much
longer to solve than profiles with small one-story buildings,
such as profile b.

Profiles d relative to g show the impact of the [naor]
designation to disallow traversal on the top of buildings. d’s
Profile is more constrained and a subset of g’s Profile, but
the samples of g mostly stay out of the area covered by
d’s samples instead of covering the whole space evenly. This
suggests for profile g that model distribution is biased towards
low repetitiveness. The declarative control added by [naor] in
profile d is useful to create higher repetitive models.

The sample distributions for profiles b and c are roughly the
same, although c is a subset of b. At the same time the lower
repetitive models in a are not covered in b. This suggests that
b’s profile model distribution is biased to be dense.

VI. IMPLEMENTATION

We have used Answer Set Programming to implement ar-
chitectural profiles. This implementation consists of a dynamic
part, that converts the input space and an architectural profile
to ASP, and a static part, consisting of fixed logic written in
ASP to constrain the Model to architectural profile adherence
(described in Section III). These two parts are combined and
given to an ASP solver, in our case, the off-the-shelf solver
clingo [22]. The solver then outputs a model that adheres to
the architectural profile. For every new model generated the
solver is restarted with a new random seed.

Solving an architectural profile is a complex problem, as it
is generally as hard as tile solving (which is proven to be NP-
hard [23]). Evidence of this complexity is also given in Figure
6, which shows an exponential run-time growth with Model
size. To make solving an architectural profile computationally
feasible we solve shapes and profiles separately. First, given
the shape definitions in a profile, a finite number of shape
instantiations are generated and stored. Subsequently these are
made available in the profile solver to build models with.

356
Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2020 at 07:48:18 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Expressive range analysis of twelve architectural profiles: above each bin plot histogram, one of its sample models
is shown. Lower right corner accumulates all expressive range results (color indicates the amount of models in a bin).

i. [Two-story] [dense] j. [Two-story] [dense] [stacked] [naor] k. [High-rise] l. [Monolith]

e. [Two-story] [sparse] f. [One-story] and [Two-story] [stacked] g. [One-Story] [stacked] [dense] h. [One-story] [stacked] [adjoined]

c. [One-story] [dense] d. [One-story] [stacked] [naor] [dense]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

re
pe

tit
iv

en
es

s

Expressive Range

100

101

102

a. [One-story] [sparse] b. [One-story]

357
Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2020 at 07:48:18 UTC from IEEE Xplore. Restrictions apply.

Additionally, we keep low the amount of unique shapes used in
the profile solver: two shape instantiations per shape definition.
Our ASP implementation only makes use of hard constraints
(no soft constraints were used). Finally, the current imple-
mentation is not optimal, and can be improved by addressing
all performance bottlenecks, exploring further use of solving
heuristics in clingo, and making use of multi-shot solving
within clingo [24].

VII. CONCLUSION

We present a novel tile-based PCG method for generating
architecture. The method is centered on the notion of archi-
tectural profiles, a semantic specification that declaratively
characterizes architectural typology. By combining a set of
tiles, meaningful adjacency conditions among them, and a
variety of validity constraints, architectural profiles offer a
powerful vocabulary for steering a 3D tile solver towards the
generation of many creative architectural structures. From our
expressive range analysis, we have shown that this method is
tune-able to generate a large variety of architectural structures
over significant ranges of density and repetitiveness.

Our present implementation in Answer Set Programming,
is serviceable as an offline generator with modest to moderate
model sizes. We believe that this method has a large potential
for generating urban environments in (indie) game contexts,
including the Minecraft concept [25]. We are currently explor-
ing its application to the generation of narrative-rich urban
settlements [26].

Interesting future work includes (i) automating the creation
of an architectural profile by using machine learning on exam-
ple data, (ii) recursively defining architectural shapes within
profiles, further expanding the expressive range of the method,
and (iii) the development of a designer GUI for allowing the
interactive configuration of architectural profiles.

ACKNOWLEDGMENT

We thank Adam Smith for helping us improve our solver
performance with his ASP and clingo expertise.

REFERENCES

[1] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Beneš, “A survey on
procedural modeling for virtual worlds,” Computer Graphics Forum,
vol. 33, no. 6, pp. 31–50, 2014, doi: 10.1111/cgf.12276.

[2] T. Tutenel, R. M. Smelik, R. Lopes, K. J. de Kraker, and R. Bidarra,
“Generating consistent buildings: A semantic approach for integrating
procedural techniques,” IEEE Transactions on Computational Intelli-
gence and AI in Games, vol. 3, no. 3, pp. 274–288, Sep. 2011.

[3] T. Tutenel, R. Bidarra, R. M. Smelik, and K. J. de Kraker, “The role of
semantics in games and simulations,” ACM Computers in Entertainment,
vol. 6, pp. 1–35, 2008.

[4] H. Wang, “Proving theorems by pattern recognition — ii,” The Bell
System Technical Journal, vol. 40, no. 1, pp. 1–41, Jan 1961.

[5] M. F. Cohen, J. Shade, S. Hiller, and O. Deussen, “Wang tiles for
image and texture generation,” in ACM SIGGRAPH 2003 Papers, ser.
SIGGRAPH ’03. New York, NY, USA: ACM, 2003, pp. 287–294.
[Online]. Available: http://doi.acm.org/10.1145/1201775.882265

[6] A. Lu, D. S. Ebert, W. Qiao, M. Kraus, and B. Mora, “Volume
illustration using Wang cubes,” ACM Trans. Graph., vol. 26, no. 2, Jun.
2007. [Online]. Available: http://doi.acm.org/10.1145/1243980.1243985

[7] P. Merrell, “Example-based model synthesis,” in Proceedings of the
2007 Symposium on Interactive 3D Graphics and Games, ser. I3D ’07.
New York, NY, USA: Association for Computing Machinery, 2007, p.
105–112. [Online]. Available: https://doi.org/10.1145/1230100.1230119

[8] X. Wu, C. Li, M. Wand, K. Hildebrandt, S. Jansen, and H. Seidel,
“3d model retargeting using offset statistics,” in 2014 2nd International
Conference on 3D Vision, vol. 1, Dec 2014, pp. 353–360.

[9] Y.-T. Yeh, K. Breeden, L. Yang, M. Fisher, and P. Hanrahan,
“Synthesis of tiled patterns using factor graphs,” ACM Trans.
Graph., vol. 32, no. 1, Feb. 2013. [Online]. Available:
https://doi.org/10.1145/2421636.2421639

[10] M. Gumin, “WaveFunctionCollapse,” 2016. [Online]. Available:
https://github.com/mxgmn/WaveFunctionCollapse/

[11] A. Sandhu, Z. Chen, and J. McCoy, “Enhancing Wave Function
Collapse with design-level constraints,” in Proceedings of the 14th
International Conference on the Foundations of Digital Games, ser.
FDG ’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3337722.3337752

[12] I. Karth and A. M. Smith, “Addressing the fundamental tension of
PCGML with discriminative learning,” in Proceedings of the 14th
International Conference on the Foundations of Digital Games, ser.
FDG ’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3337722.3341845

[13] ——, “WaveFunctionCollapse is constraint solving in the wild,”
in Proceedings of the 12th International Conference on the
Foundations of Digital Games, ser. FDG ’17. New York,
NY, USA: ACM, 2017, pp. 68:1–68:10. [Online]. Available:
http://doi.acm.org/10.1145/3102071.3110566

[14] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool,
“Procedural modeling of buildings,” ACM Trans. Graph.,
vol. 25, no. 3, pp. 614–623, Jul. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1141911.1141931

[15] P. Filipe Coutinho Cabral D’Oliveira Quaresma, “A detail shape gram-
mar. using alberti’s column system rules to evaluate the longitudinal
elevation of the nave of sant’andrea church generation,” Artificial Intel-
ligence for Engineering Design, Analysis and Manufacturing, vol. 32,
pp. 1–13, 04 2018.

[16] P. Merrell, E. Schkufza, and V. Koltun, “Computer-generated
residential building layouts,” ACM Trans. Graph., vol. 29,
no. 6, pp. 181:1–181:12, Dec. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1882261.1866203

[17] S. Lienhard, C. Lau, P. Müller, P. Wonka, and M. Pauly, “Design
transformations for rule-based procedural modeling,” Comput. Graph.
Forum, vol. 36, no. 2, pp. 39–48, May 2017. [Online]. Available:
https://doi.org/10.1111/cgf.13105

[18] H. Hua, “A bi-directional procedural model for architectural design,”
Computer Graphics Forum, vol. 36, no. 8, pp. 219–231, 2017. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13074

[19] G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proceedings of the 2010 Workshop on Procedural Content
Generation in Games. ACM, 2010.

[20] E. Teng and R. Bidarra, “A semantic approach to patch-based
procedural generation of urban road networks,” in Proceedings
of PCG 2017 - Workshop on Procedural Content Generation
for Games, co-located with the Twelfth International Conference
on the Foundations of Digital Games, 2017. [Online]. Available:
http://graphics.tudelft.nl/Publications-new/2017/TB17

[21] S. Snodgrass and S. Ontañón, “Learning to generate video game maps
using markov models,” IEEE Transactions on Computational Intelli-
gence and AI in Games, vol. 9, no. 4, pp. 410–422, Dec 2017.

[22] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and
M. Schneider, “Potassco: The Potsdam answer set solving collection,”
AI Commun., vol. 24, no. 2, p. 107–124, Apr. 2011.

[23] P. C. Merrell, “Model synthesis,” Ph.D. dissertation, University of North
Carolina at Chapel Hill, 2009.

[24] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, “Multi-shot
ASP solving with clingo,” CoRR, vol. abs/1705.09811, 2017. [Online].
Available: http://arxiv.org/abs/1705.09811

[25] M. Persson, “Minecraft,” 2011.
[26] C. Salge, M. C. Green, R. Canaan, F. Skwarski, R. Fritsch,

A. Brightmoore, S. Ye, C. Cao, and J. Togelius, “The AI settlement
generation challenge in minecraft,” KI - Künstliche Intelligenz, vol. 34,
2020. [Online]. Available: https://doi.org/10.1007/s13218-020-00635-0

358
Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2020 at 07:48:18 UTC from IEEE Xplore. Restrictions apply.

