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Abstract—We present a tool for synthesizing and verifying
optimal game playing strategies represented by compact fast-and-
frugal trees, i.e., prioritized lists of strategic rules. The purpose of
the tool is to create human-friendly optimal strategies for simple
board games, e.g. for teaching a human player to play optimally,
or to assess the difficulty of a given board game in terms of the
length of the generated strategy. The tool supports arbitrary one-
or two-player zero-sum games with perfect information specified
through the game description language GDL within general game
playing. When synthesizing a strategy, the game is initially solved,
the solution is turned into a fast-and-frugal tree, and the tree is
then minimized. We illustrate the use of the tool to synthesize
compact optimal strategies for Tic-tac-toe, Nim, and Sim, which
leads us to provide an even shorter optimal strategy for Tic-tac-
toe than the well-known Simon & Newell strategy. Additionally,
we have developed a visual tool enabling users to build and verify
manually crafted fast-and-frugal strategies.

I. INTRODUCTION

Significant amounts of artificial intelligence research is
focused on solving games [1]–[4]. However, the game solution
itself offers limited value. It may reveal which of the players
can force a win from the initial state, or provide a perfectly
playing game agent. But it helps little in making humans
understand why it is a solution, and what it takes to play
optimally. In the computer, the perfect strategy is often simply
represented as a vast collection of unique state-move pairs. For
non-trivial games, human memories are simply inadequate to
reliably contain all this information. Instead, humans rely on
general strategic rules to understand and memorize strategies.
In this paper, we attempt to automatically generate such
strategic rules, one of the aims being to teach human players
how to play (near-)optimally. We have created a tool that can
synthesize optimal game playing strategies represented by fast-
and-frugal trees containing simple strategic rules. Our tool
also supports verifying whether manually crafted strategies
are optimal, and minimizing them if they are (by removing
or simplifying rules). Fast-and-frugal trees are acknowledged
as a decision making tool that is easy to comprehend and that
in many scenarios resembles human decision making [5].

We offer two versions of our tool. The first version is a
plug-and-play solution built around the general game playing
(GGP) open source base package.1 It simply takes a game

1https://github.com/ggp-org/ggp-base

description language (GDL) file as input [6], solves the game,
i.e., computes an optimal strategy for the game, and then
outputs the strategy as a fast-and-frugal tree. The second
version of the tool requires the user to implement various
game-specific functions and classes within the code. The
benefit of this approach is that the runtime is significantly
faster, but typically requires more work to set up for new
games. The major issue with the GGP version of our tool
is that the prover-based engine used to process and evaluate
states is quite slow. Although speed-up techniques exist [7],
[8], we won’t be considering those in this paper.

The strategic rules we generate are of the form φ ⇒ a,
where φ is a precondition (a logical formula) and a is an
action (a move). The rule simply says that if φ is true in the
current game state, the move a should be made. In Tic-tac-toe,
a rule for getting 3-in-a-row by marking the right corner with
a cross may look as follows, using simplified GDL syntax
(where (cell i j k) means that cell (i, j) contains k, and k
can be either b (blank), x (cross) or o (nought)): (cell 1 3

x) ∧ (cell 2 3 x) ∧ (cell 3 3 b) ⇒ (mark 3 3 x).
We use symmetry detection in games to reduce the number

of strategic rules required. Whenever checking if a rule applies
to a state, we also check if it applies to any symmetric
states. We have integrated automatic symmetry detection in our
general game playing solution using the graph automorphism
detection program made by Schiffel et al. [9].

In addition to symmetry detection, we apply various simpli-
fications to our generated strategies in order to minimize them
(make them as simple and short as possible). This includes
simplifying the preconditions of strategic rules and removing
rules that become obsolete. Our tool handles all games that are
finite, deterministic, sequential, 1- or 2-player, zero-sum and
has perfect information. Since we generate optimal strategies
using Minimax, we can only handle games of rather limited
size.

We have tested our tool on the games Tic-tac-toe, Nim
and Sim. Although these games are trivially solvable with
very small state space sizes, we still expect the tool to be
applicable to most strongly solved games like Kalah and Awari
[1], [10] when given sufficient computational resources. Apart
from storing the solution to the game, using the tool has no
significant additional memory overhead.

With our tool, we managed to compress and simplify the
978-1-7281-4533-4/20/$31.00 ©2020 IEEE
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famous optimal strategy used in Newell and Simon’s 1972
Tic-tac-toe program [11]. Their strategy features a list of 8
prioritized rules expressed in natural language. We formalised
these rules in our logical framework and showed that it may be
compressed to 6 rules, while still retaining the optimality and
simplicity of the strategy. Additionally, our tool independently
synthesized an optimal strategy with only 5 strategic rules. We
know of no previous succesful attempts to simplify the Newell
and Simon strategy.

II. GDL AND FAST-AND-FRUGAL TREES

A general game playing (GGP) system is one that can
understand the rules of arbitrary new games and play them
effectively without human intervention [6]. The game descrip-
tion language (GDL) is the official language for general game
playing. GDL is a variant of Datalog and uses prefix notation,
along with 9 reserved keywords. GDL requires games to be
deterministic with perfect information.

A fast-and-frugal tree (FFT) is a binary classification tree
that can be used as a decision-making tool [12]. The benefits
of FFTs is that they are normally very simple and fast to query.
FFTs can also be represented in a linear format as a (priori-
tized) sequence of strategic rules φ1 ⇒ a1 | · · · | φn ⇒ an.
To use such an FFT for decision-making, one first evaluates
φ1. If φ1 is true, action a1 is chosen for execution. If not,
one evaluates φ2. If φ2 is true, action a2 is executed, etc.
Gigerenzer [13] presents an example of an FFT to be used at
a hospital for deciding whether patients need coronary care.
In our linear format it can be written as: (ST segment changes)
⇒ (to Coronary Care Unit) | (chief complaint of chest pain)
⇒ (to regular nursing bed) | (any other factor (NTG, MI, T,
...))⇒ (to Coronary Care Unit) | > ⇒ to regular nursing bed.

In this paper, we use the structure of FFTs to represent
strategies for board games. In order to be able to automatically
generate and simplify FFTs, we represent them in a simple
logical language (section IV). Below, we first define games
and (optimal) game strategies. To be able to iteratively build up
strategies, we introduce two novel notions of partial, optimal
strategies.

III. STRATEGIES AND OPTIMALITY

We use state transition systems to describe games. State
transition systems describe the underlying state space of the
game as well as all possible moves (actions) and their effects.
In general, our states are going to be described as sets of
atomic formulas, that is, as subsets of a (finite) set of atoms,
Atm. These atoms can be atomic propositions of propositional
logic or ground atoms of a first-order language. The state
transition systems induced by GDL descriptions will always
have atoms of the second kind.

Definition 1. A (finite, deterministic) state transition system
over a finite set of atoms Atm is Σ = (S,A, γ), where S ⊆
2Atm is a finite set of states, A is a finite set of actions (also
called moves) and γ : S×A→ 2S is a state transition function
satisfying |γ(s, a)| ≤ 1 for all s, a. When γ(s, a) 6= ∅, we say

that action a is applicable in state s. For A′ ⊆ A, we define
γ(s,A′) =

⋃
a∈A′ γ(s, a).

Definition 2. A (finite, deterministic, perfect information)
game is G = (Σ, s0, T, P, ρ, u) where Σ = (S,A, γ) is a state
transition system, s0 ∈ S is an initial state, T ⊆ S is a set of
terminal states, P is a set of players, ρ : S → P is a player
function determining who has the move, and u : P×T → R is
a real-valued utility function. A game with |P | = n is called an
n-player game. A game with

∑
p∈P u(p, t) = 0 for all t ∈ T

is called zero-sum.

This definition of a game is equivalent to the definition of a
multiagent environment by Schiffel [9], except our definition
only allows sequential games (in each state, only one player
can make a move). Schiffel uses multiagent environments as
a semantics for GDL game descriptions, hence any game de-
scribed in GDL can be equivalently represented as a multiagent
environment, and hence also as a game according to the above
definition, as long as it is sequential. Our tool accepts games
described in GDL format, but when reasoning about games and
game properties, we will most of the time describe these in
terms of the induced games according to the definition above.

Definition 3. A strategy for player p ∈ P in game G =
(Σ, s0, T, P, ρ, u) with Σ = (S,A, γ) is a mapping σ : S →
2A satisfying σ(s) = ∅ for all s ∈ S with ρ(s) 6= p and
satisfying that a ∈ σ(s) implies a is applicable in s. A strategy
for p is called total if σ(s) 6= ∅ for all s with ρ(s) = p,
otherwise partial. It is deterministic if |σ(s)| ≤ 1 for all s.
We say that σ is defined on a state s if σ(s) 6= ∅, and define
the domain of σ as dom(σ) = {s ∈ S | σ(s) 6= ∅}.

As usual, we can identify mappings σ : S → 2A with their
corresponding relations {(s, a) ∈ S × A | a ∈ σ(s)}. In this
paper, we will restrict attention to 1- and 2-player zero-sum
games. In the following, to keep the exposition simple, we
will furthermore restrict our definitions to the two-player case
with players P = {1, 2}. In such games, we can apply the
MINIMAX algorithm [14], [15] to assign a (minimax) value
(game-theoretic value) v(s) to each state s of the game. The
value v(s) is the utility achieved by player 1 (the MAX player)
when starting the game in s and assuming perfect play by both
players.2 In the following, we will for simplicity only consider
strategies for player 1. To consider strategies for player 2, one
can always replace any game by a game in which the roles of
the two players are swapped.

A total strategy σ for player 1 is optimal if for all s with
ρ(s) = 1 and all s′ ∈ γ(s, σ(s)) we have v(s′) = v(s), i.e.,
if following the strategy always preserves the minimax value
of the states to which it is applied. We can define a unique
maximal, optimal strategy opt (for player 1) by, for all s ∈ S
with ρ(s) = 1,

opt(s) = {a ∈ A | for all s′ ∈ γ(s, a) : v(s′) = v(s)}.
2Note that we have not restricted our state transition systems to be acyclic,

so games can potentially loop. We give loop states a minimax value of 0
unless one of the players can enforce a better outcome by breaking the loop.
We assume the reader to be familiar with MINIMAX [14], [15].



Any optimal strategy will then be a substrategy of opt (where
we define σ1 to be a substrategy of σ2, written σ1 ⊆ σ2, if
σ1(s) ⊆ σ2(s) for all s). Similarly, we can define the maximal
strategy (for player 1) by, for all s ∈ S with ρ(s) = 1,

max(s) = {a ∈ A | γ(s, a) 6= ∅} .

Optimal strategies are strong solutions to games in the
sense of guaranteeing the game-theoretic (minimax) value for
any legal state of the game, no matter whether that state
is reachable by following the optimal strategy. If a game is
always played from the initial state s0, and player 1 always
follows strategy σ, it is of course irrelevant which actions σ
specify for states s that are not reachable from s0 when player
1 plays by σ. Hence we can define a weaker notion of optimal
strategy that still guarantees the best possible outcome when
following a strategy σ. To define this notion, we first need to
define the reachable states when playing according to σ.

Given a state s and total strategy σ for player 1, the set of
successors of s w.r.t. σ is

Γ(s, σ) =

{
γ(s, σ(s)) if ρ(s) = 1

γ(s, {a ∈ A | γ(s, a) 6= ∅}) if ρ(s) = 2

Note that we consider all applicable actions in the moves of
player 2, as we are defining all possible successors when
player 1 plays by σ and player 2 plays by any strategy.
For S′ ⊆ S, we let Γ(S′, σ) =

⋃
s∈S′ Γ(s, σ). We now

let Γ0(s, σ) = {s}, and for all n ∈ N, we recursively
define Γn+1(s, σ) = Γ(Γn(s, σ), σ). Finally, let Γ∗(s, σ) =⋃

n∈N Γn(s, σ): this is the set of reachable states from s when
player 1 follows strategy σ and player 2 follows any strategy.
We define Γ∗(σ) as an abbreviation of Γ∗(s0, σ): the set of
reachable states from the initial state when player 1 plays σ.

We can now define a total strategy σ for player 1 to be
weakly optimal if for all s ∈ Γ∗(σ) we have σ(s) ⊆ opt(s)
(note that when ρ(s) = 2, σ(s) = ∅ and hence we auto-
matically have σ(s) ⊆ opt(s)). This definition is simply the
restriction of our earlier definition of optimal strategy to the
relevant reachable states. Clearly, if player 1 follows a weakly
optimal strategy, player 1 is still guaranteed to receive the
game-theoretic value for any play of the game, and against
any opponent.

In this paper, strategies are going to be built iteratively,
meaning that we start with the empty strategy that is then
iteratively extended. Hence, we are mainly going to work with
partial strategies. In order to ensure that our partial strategies
can be extended to optimal, total strategies, we need a notion
of optimality for partial strategies. We are going to define two
such notions in the following. First we define the following
closure operations on any partial strategy σ (for player 1):

• The optimal closure of σ is the strategy σopt given by,
for all s ∈ S with ρ(s) = 1,

σopt(s) =

{
σ(s) if σ(s) 6= ∅
opt(s) otherwise

• The maximal closure of σ is the strategy σmax given by,
for all s ∈ S with ρ(s) = 1,

σmax(s) =

{
σ(s) if σ(s) 6= ∅
max(s) otherwise

Definition 4. A (possibly partial) strategy σ of player 1 is
called weakly optimal if for all s ∈ Γ∗(σopt) we have σ(s) ⊆
opt(s). If σ(s) ⊆ opt(s) even holds for all s ∈ Γ∗(σmax), the
strategy is called strongly optimal.

Hence for a partial strategy to be weakly optimal, it has to
return optimal moves (or no moves at all) on all states that
can be reached by following the strategy, where defined, and
following arbitrary optimal moves otherwise. This ensures that
any partial, weakly optimal strategy can be extended into a
total, weakly optimal strategy. Indeed, it follows immediately
from Definition 4 that if σ is a partial, weakly optimal strategy,
then σopt is also weakly optimal (and, of course, total). Note
that if σ is total then σopt = σ, so for total strategies,
Definition 4 reduces to the previously given definition of
weak optimality. A strongly optimal strategy is a partial
strategy that returns optimal moves on all reachable states
even when extending with arbitrary moves in all the states on
which the strategy is undefined. Our goal is to build compact
representations of strongly optimal strategies. Such strategies
are sufficient to play perfectly (always achieve the game-
theoretic value), since the player then just has to follow the
strategy when defined and make random moves otherwise.

IV. STRATEGIC RULES AND LOGICAL FFTS

Definition 5. Given partial strategies σ and σ′, their sequential
composition σ | σ′ is the strategy defined by

σ | σ′(s) =

{
σ(s) if σ(s) 6= ∅
σ′(s) otherwise

Definition 6. A (strategic) rule r of a game G is an expression
of the form l1∧· · ·∧ln ⇒ a, where all li are literals (elements
of Atm and their negations) and a is an action (a move in
the game G). If n = 0, we write > ⇒ a. The intended
interpretation of a strategic rule is: if l1, . . . , ln are true, then
do a. The formula l1∧ · · · ∧ ln is called the precondition of r,
denoted pre(r), and the action of r is a, denoted action(r).
A fast-and-frugal tree (FFT) is any sequential composition
r1 | r2 | · · · | rn of strategic rules.

Representing strategies by FFTs in a logical form is similar
to work by Jiang et al. [16] and Silva et al. [17].

Definition 7. The partial strategy σ(r) induced by a strategic
rule r = l1∧· · ·∧ln ⇒ a is defined by, for all s with ρ(s) = 1,

σ(r)(s) =

{
{a} if s |= l1 ∧ · · · ∧ ln and γ(s, a) 6= ∅
∅ otherwise

Here s |= φ means that φ is true in s using standard semantics
for propositional logic. A rule r is said to apply to state s if



TABLE I
EXAMPLE OF AN FFT f

r1 : (cell 1 3 x) ∧ (cell 3 3 x) ⇒ (mark 2 3 x) |
r2 : (cell 1 3 x) ∧ (cell 3 1 x) ⇒ (mark 2 2 x) |
r3 : (cell 3 3 x) ∧ (cell 3 2 x) ⇒ (mark 3 1 x) |
r4 : ∅ ⇒ (mark 2 2 x)

σ(r)(s) 6= ∅. The partial strategy σ(r1 | · · · | rn) induced by
an FFT r1 | · · · | rn is defined by

σ(r1 | · · · | rn) = σ(r1) | · · · | σ(rn).

Whenever there is no risk of ambiguity, we will identify FFTs
f with their induced strategies σ(f), hence e.g. writing f(s)
for σ(f)(s). Similarly for strategic rules.

Table I provides an example of an FFT f , again based on
Tic-tac-toe, and again using simplified GDL syntax. Consider
the state s = {(cell 1 1 o), (cell 2 1 b), (cell 3 1 b),
(cell 1 2 b), (cell 2 2 o), (cell 3 2 x), (cell 1 3 x),
(cell 2 3 o), (cell 3 3 x)}. We can now compute f(s):
Starting from r1, we check if it applies to s, which is the case,
but since (mark 2 3 x) is not applicable in s, we continue
to check r2. However, s 6|= pre(r2), so we move on to r3 that
successfully applies, hence f(s) = (mark 3 1 x).

V. SYNTHESIZING FFTS

Let f = (r1 | · · · | rn) be an FFT. Note that for any
state s ∈ dom(f), f(s) = ri(s), where ri is the earliest rule
in f with s |= pre(ri) and γ(s, action(ri)) 6= ∅. Suppose
that for some j we have, for all s ∈ S, if s |= pre(rj) and
γ(s, action(rj)) 6= ∅ then there exists i < j with s |= pre(ri)
and γ(s, action(ri)) 6= ∅. Then σ(f) = σ(r1 | · · · | rj−1 |
rj+1 | · · · | rn), i.e., we can remove rj without changing the
induced strategy. In this case we say that the rule rj is dead
in f .

Definition 8. Given a state s and an action a, the rule induced
by the pair s, a is r(s,a) := (

∧
p∈s p ∧

∧
q∈Atm−s ¬q)⇒ a.

A naive way to synthesize a strongly optimal FFT for a
game G is to: 1) compute a deterministic, total, optimal strat-
egy σ = {(s1, a1), . . . , (sn, an)} for G using the MINIMAX
algorithm; 2) Construct the FFT f = r(s1,a1) | · · · | r(sn,an).
This FFT is necessarily total and optimal, since σ(f) = σ
(each rule r(si,ai) only applies at exactly one state si).
However, the entire purpose of constructing FFTs is to have
compact strategies that are easy to follow, and for this purpose
it is clearly not helpful to represent strategies simply as a list
of optimal moves. We now introduce ways to simplify FFTs.

Definition 9. Let f = r1 | · · · | rn be an FFT. A single-step
simplification of f is achieved by performing the following
modifications:

1) Removing a single literal from the precondition of a
single rule of f . That is, replace f by the FFT f ′ =
r1 | · · · | ri−1 | r′i | ri+1 | · · · | rn for some i, where
ri = l1 ∧ · · · ∧ lm ⇒ a and r′i = l1 ∧ · · · ∧ lj−1 ∧ lj+1 ∧
· · · ∧ lm ⇒ a for some j.

Algorithm 1 Naive synthesis of FFT for game G
1: procedure NAIVE-SYNTHESIZE-FFT(G)
2: Compute strategy opt for game G using MINIMAX3

3: Pick a deterministic, total strategy σ ⊆ opt
4: From σ = {(s1, a1), . . . , (sn, an)} construct the FFT f =
r(s1,a1) | · · · | r(sn,an)

5: Iteratively apply valid single-step simplifications to f until it
becomes simplification minimal

6: return f

2) Removing all rules that have become dead by the previous
modification.

A multi-step simplification is a sequence of single-step sim-
plifications. A (single- or multi-step) simplification f ′ of a
weakly optimal FFT f is called valid if f ′ is also weakly op-
timal. A weakly optimal FFT is called simplification minimal
if it allows no further valid simplifications.

Letting f = (p ∧ q ⇒ a | q ∧ r ⇒ b), both f ′ = (p ⇒ a |
q ∧ r ⇒ b) and f ′′ = (q ⇒ a) are single-step simplifications
of f (assuming a is applicable in any state satisfying q). It
is possible to define a game in which both f ′ and f ′′ are
valid simplifications of f , and both are simplification minimal,
showing that the the length of a simplification minimal FFT
can depend on the order in which we apply the simplification
steps. We can now devise a first non-trivial, but still naive,
algorithm for synthesizing FFTs, Algorithm 1. Note that
line 5 iteratively applies simplification steps until the FFT is
minimal. The reason for doing this is that a simplification step
most often changes the reachable states of the induced strategy,
hence potentially making other simplification steps valid that
weren’t valid previously.

Consider a single-step simplification g of some weakly
optimal FFT f . How costly is it to verify that the simplification
step is valid? We need to verify that g is also weakly optimal,
i.e., assigns optimal moves to all states reachable by gopt. For
the subset of states that are also reachable by fopt and for
which f and g specify the same action, there is of course
nothing to prove (since f is assumed weakly optimal). But
for all s ∈ Γ∗(gopt) − Γ∗(fopt) we need to verify that
g(s) ⊆ opt(s). In the worst case Γ∗(gopt)−Γ∗(fopt) can have
size Ω(|S|), the size of the state space, e.g. if g(s0) 6= f(s0)
in a game where the underlying state transition system is a
(binary) tree. We hence clearly want to both keep the number
of such validations low, and choose simplifications for which
the number of states to be checked is as low as possible.

It is not obvious how to achieve this. Is it for instance
best to first build an entire FFT and then try to simplify its
rules afterwards, or should we try to simplify each added
rule as much as possible before adding a new? The answer
is that unfortunately it depends on the game, so no approach
is universally best. The issue is that there is a non-trivial trade-
off:

3We compute the maximal, optimal strategy instead of just a single
deterministic, total, optimal strategy since we anyway need σopt for validating
simplifications in line 5.



Algorithm 2 Synthesis of FFT for game G
1: procedure SYNTHESIZE-FFT(G)
2: Let f be the empty FFT
3: Compute strategy opt for game G using MINIMAX
4: σ ← opt
5: while σ 6= ∅ do
6: σ ← σ − {(s, a)} for some choice of (s, a) ∈ σ
7: if max(s) = opt(s) or f(s) 6= ∅ then skip
8: f ← f | r where r = r(s,a) . extend f with r = r(s,a)
9: for all literals l in pre(r(s,a)) do

10: if removing l from r is a valid simplification then
11: f ← (f with the simplification applied) 5

12: Apply valid single-step simplifications to f until minimal
13: for all rules r in f do
14: if f with r removed is (still) strongly optimal then
15: f ← (f with r removed)
16: return f

1) Extending an FFT f with new rules to get g, gopt will
generally have fewer reachable states than fopt.4 This
speaks in favour of extending an FFT before simplifying
its rules, as the extended FFT will have fewer states in
which to check for optimal moves when verifying weak
optimality.

2) When verifying the validity of a simplification, we don’t
need to consider the reachable states that were also
reachable before the simplification and for which the
simplified FFT specifies the same action as before the
simplification. Hence, the fewer modifications we make
to an FFT before we attempt to simplify one of its rules,
the bigger is the proportion of such states where there
is nothing to verify. This speaks in favour of simplifying
rules before extending with new rules.

Which approach is best, simplify first or simplify last, depends
on the particular game in question, but our experimental
results suggest that most often it is better to simplify before
adding new rules. This leads us to Algorithm 2, simplifying
each rule before adding new rules, and applying a few other
tricks to optimise computation time compared to Algorithm 1
(see section IX for a comparison of the performance of the
two algorithms).

Theorem 1. For any game G, Algorithm 2 returns a strongly
optimal FFT f .

Proof. First we prove that throughout the algorithm, f is
weakly optimal. Initially f is empty and hence trivially weakly
optimal. Consider the extension of f with r(s,a) in line 8.
We need to prove that if f is weakly optimal, so is the
extension f | r(s,a). So assume f is weakly optimal and let
s′ ∈ Γ∗((f | r(s,a))opt) be chosen arbitrarily. Then we need

4The optimal closure fopt of f returns all optimal moves in the states not
in dom(f). If g is an extension of f , dom(g) will be larger than dom(f)
and hence gopt will have fewer states than fopt in which all optimal moves
are returned. In other words, going from fopt to gopt reduces the non-
determinism of the strategy, and hence the set of reachable states.

5We greedily simplify the added rule r by attempting to remove one
precondition literal at a time.

to prove (f | r(s,a))(s′) ⊆ opt(s′). We must have f(s) = ∅,
since otherwise we would have skipped the current iteration
of the loop in line 7 and never have reached line 8. This
implies fopt(s) = opt(s). Since a ∈ opt(s) (by choice of
(s, a)), we get (f | r(s,a))(s) = {a} ⊆ opt(s) = fopt(s)
and hence (f | r(s,a))opt(s) ⊆ fopt(s). For any s′′ 6= s, we
clearly have (f | r(s,a))opt(s′′) = fopt(s′′). Hence, in total,
for all s′′ ∈ S, (f | r(s,a))opt(s′′) ⊆ fopt(s′′). This implies
Γ∗(f | r(s,a))opt) ⊆ Γ∗(fopt). Hence s′ ∈ Γ∗(fopt). By weak
optimality of f we can then conclude f(s′) ⊆ opt(s′). If s′ 6=
s, we now get (f | r(s,a))(s′) = f(s′) ⊆ opt(s′), as required.
If s′ = s, we get (f | r(s,a))(s′) = {a} ⊆ opt(s) = opt(s′),
again as required. This proves the extension f | r(s,a) is weakly
optimal. For the other modifications of f , weak optimality is
guaranteed by construction. This proves that throughout the
algorithm, f is weakly optimal.

We now prove that the FFT returned in line 16 is strongly
optimal. First we prove that the FFT is already strongly
optimal when the while loop terminates. Call the FFT when
the while loop terminates g. Since g is weakly optimal, it
suffices to prove that gmax = gopt. Letting s ∈ S, we need
to prove gmax(s) = gopt(s). First assume g(s) 6= ∅. Then we
immediately get gmax(s) = g(s) = gopt(s), as required. So
assume instead g(s) = ∅. Since σ in line 4 is initialised to be
the maximal, optimal strategy, it must initially contain a pair
(s, a) with a ∈ opt(s). This pair will in some iteration of the
while loop be chosen in line 6. In line 8, the current FFT f
will be extended with r(s,a) unless the iteration is skipped in
line 7. Assume first that the extension in line 8 is executed.
Then f is replaced by f | r(s,a) and clearly (f | r(s,a))(s) 6= ∅.
Now note that no simplification step on an FFT can make its
domain smaller (simplifications only make rules apply to more
states and delete dead rules). Hence, if the extension in line
8 is executed, s will also be in the domain of f when the
while loop terminates, i.e., in the domain of g. This implies
g(s) 6= ∅, contradicting our assumption. Assume instead that
the extension in line 8 is not executed. This means that in line
7 we will have max(s) = opt(s) or f(s) 6= ∅. If f(s) 6= ∅,
we will also have g(s) 6= ∅, which again contradicts our
assumption. If max(s) = opt(s) we get, using that g(s) = ∅,
gmax(s) = max(s) = opt(s) = gopt(s), as required.
This proves that f is strongly optimal when the while loop
terminates. Strong optimality is clearly also preserved under
valid simplification steps, and in lines 13-15 we explicitly only
perform operations preserving strong optimality. Hence, the
returned FFT f will be strongly optimal.

Let’s show an example of applying Algorithm 2, where
G is a simplified version of Tic-tac-toe with the objective
to get 2 in a row instead of 3. The algorithm extracts a
pair (s, a) from opt and turns it into a rule r(s,a): (cell

1 1 b) ∧ (cell 2 1 b) ∧ (cell 3 1 b) ∧ (cell 1 2 o) ∧
(cell 2 2 b) ∧ (cell 3 2 b) ∧ (cell 1 3 x) ∧ (cell 2 3

b) ∧ (cell 3 3 x) ⇒ (mark 2 2 x). The empty FFT f is
extended with r = r(s,a), and we now for each literal in pre(r)
check whether the literal can be removed from r while still



ensuring weak optimality. For this game, each precondition
literal can actually be removed (it is always an optimal move
to put a cross in the center), so we end with the simplified
rule > ⇒ (mark 2 2 x), which then becomes the current
FFT f . All of the remaining states s ∈ dom(opt) satisfy
either max(s) = opt(s) or f(s) 6= ∅, meaning the remaining
iterations of the while loop will skip in line 7. Hence when the
while loop terminates, we still only have the one rule in our
FFT. The algorithm will now try to first simplify the rule (line
12) and afterwards try to remove it (lines 13-15), and both will
fail. Hence the algorithm will eventually return the single-rule
FFT > ⇒ (mark 2 2 x), which indeed induces a strongly
optimal policy in this simple game (it is a winning strategy for
the first player to place a cross in the center whenever possible
and otherwise just make random applicable moves).

VI. IMPLEMENTATION

In line 3 of Algorithm 2, we use MINIMAX to compute the
maximal, optimal strategy. Our version of MINIMAX employs
transposition tables in combination with iterative deepening,
to save memory and avoid re-expanding existing states (loop-
checking) [18]. When checking if a strategy σ is weakly
or strongly optimal, we compute the set of reachable states
Γ∗(σopt) or Γ∗(σmax), respectively, by performing a Breadth-
First Search (BFS) on the game tree. We maintain a set of
hashed states to avoid expanding unique states more than once.
We make use of parallelization by assigning worker threads
to compute the results of sub-branches of the tree.

VII. A VISUAL TOOL FOR BUILDING, GENERATING,
VERIFYING, PLAYING AND UNDERSTANDING STRATEGIES

The purpose of generating strongly optimal strategies is to
teach human players to become better at a game, to learn to
play the game optimally, or just to understand what the optimal
strategy is (e.g. why a certain player has a winning strategy
in a given game). We have built a visual tool that can help
making strategies easier to understand and follow for the user.
Additionally, the tool can help users build and verify their
own strategies, as well as turn user-generated partial, weakly
optimal strategies into strongly optimal strategies.

a) Playing with a strategy: Figure 1 shows how a
strongly optimal strategy generated by our tool can be followed
step by step in Tic-tac-toe when playing against a player
making arbitrary optimal moves. On the left we see the states,
where every legal move is represented by a color and a number.
The number represents the maximum number of turns to a
terminal node from the corresponding next state with optimal
play. The color represents the outcome of a game, where
green, yellow and red means a win, draw and loss respectively.
The blue color represents the move chosen by the computed
optimal strategy. On the right we see the strategy represented
as an FFT, where the chosen move is highlighted in blue. This
representation allows the user to quickly identify the move
chosen by the FFT.

Fig. 1. Tic-tac-toe states during game play with tool

Fig. 2. Building and verifying a strategy via an interactive interface

b) Building and verifying manually crafted strategies:
We provide an interactive interface where a strategy can be
built from scratch by adding, removing and moving rules. It
is possible to verify whether the strategy is (weakly/strongly)
optimal or not. If the verification fails, the user is shown an
example of a reachable state where the strategy is sub-optimal.
An example of this from Tic-tac-toe is shown in Figure 2. In
the first image we see the interactive interface with the Tic-



TABLE II
RESULTS OF SYNTHESIZING OPTIMAL STRATEGIES IN VARIOUS GAMES

|S| no. rules no. precond. lit. comp. time
Tic-tac-toe 4520 5 6 0.828s

Nim 342 18 24 0.1974s
Sim 1350022 32 166 14651.58s

tac-toe board on the left and the current strategy on the right.
The last rule of the strategy is highlighted and showed on the
board. The red crosses indicate that these positions are not part
of the current rule. In the second image the user has asked the
tool to check whether the strategy is weakly optimal, which
it is not. The user is then presented with a state where the
strategy chooses a sub-optimal move, and is given the option
to create a new rule with an optimal move in that state.

Additionally, it is possible for the user to add what we
call meta-rules to the strategy. A meta-rule is a sequential
composition of strategic rules r1 | · · · | rn that can not be
modified (only moved). This will allow the user to e.g. define
a single meta-rule for getting 3-in-a-row in Tic-tac-toe, and
then afterwards let the tool synthesize the remaining rules.

The tool is available at https://github.com/JacobPjetursson/
Board-game-strategy-synthesis

VIII. EXPERIMENTAL RESULTS

We have run benchmarks on Tic-tac-toe, Nim6 and Sim,
using the version of the tool requiring game-specific functions
and classes. In all cases, the tool successfully generated a
strongly optimal strategy. The results are shown in Table II,
where we report: 1) the size |S| of the state space of the game;
2) the number of rules in the FFT generated by the tool; 3)
the total number of precondition literals in the generated FFT;
4) the total computation time of generating the FFT (running
time of Algorithm 2). Note that symmetry detection has been
used to shorten our FFTs such that a rule that applies to a
state s also applies to states symmetric to s.

For Tic-tac-toe and Nim, we chose to generate an optimal
strategy for player 1, whereas in Sim we did it for player
2 (who has a winning strategy in the game). Due to the
non-determinism of the algorithm (lines 6, 9, 12 and 13
in Algorithm 2), the algorithm generates FFTs of varying
length. The results in Table II are the best results measured
in number of rules of the produced FFTs by running the
algorithm 10 times. The benchmarks were made using an
Intel Xeon Gold 3.7GHz 6126 Processor with 24 threads and
384GB RAM. Note that for Nim, we generate a much larger
FFT than for Tic-tac-toe, even though the state space of Tic-
tac-toe is significantly larger. For Sim we generate a very small
FFT compared to the size of the state space. The size of the
generated FFTs are clearly more indicative of how difficult the
games are to play (optimally) than the state space sizes.

The tool synthesized an optimal strategy for player 1 in Tic-
tac-toe consisting of 5 rules and 6 precondition literals in total,

6Nim rules: https://en.wikipedia.org/wiki/Nim. Note that Nim is played as a
misre game and is a variant of the original game where the four heaps (noted
a,b,c,d) have sizes 1,2,4,5 respectively, instead of the standard 1,3,5,7.

TABLE III
OPTIMAL TIC-TAC-TOE STRATEGY FOR PLAYER 1

r1 : (cell 1 1 x) ∧ (cell 3 1 x) ⇒ (mark 2 1 x)
r2 : (cell 2 2 b) ∧ (cell 1 2 b) ∧ (cell 2 1 b)

⇒ (mark 1 1 x)
r3 : > ⇒ (mark 2 2 x)
r4 : (cell 2 3 o) ⇒ (mark 2 1 x)
r5 : > ⇒ (mark 1 3 x)

TABLE IV
OPTIMAL NIM STRATEGY FOR PLAYER 1

r1 : (heap a 0) ∧ (heap d 0) ⇒ (reduce c 0)
r2 : (heap c 0) ∧ (heap a 0) ⇒ (reduce d 0)
r3 : > ⇒ (reduce b 0)
r4 : (heap c 1) ∧ (heap a 0) ⇒ (reduce d 1)
r5 : (heap d 1) ∧ (heap a 0) ⇒ (reduce c 1)
r6 : (heap d 1) ⇒ (reduce c 0)
r7 : (heap c 0) ⇒ (reduce d 1)
r8 : (heap c 1) ⇒ (reduce d 0)
r9 : (heap d 0) ⇒ (reduce c 1)
r10 : (heap c 2) ∧ (heap a 0) ⇒ (reduce d 2)
r11 : (heap a 0) ∧ (heap d 2) ⇒ (reduce c 2)
r12 : (heap a 1) ∧ (heap d 3) ⇒ (reduce c 2)
r13 : (heap c 3) ∧ (heap a 0) ⇒ (reduce d 3)
r14 : (heap c 3) ⇒ (reduce d 2)
r15 : (heap d 3) ⇒ (reduce c 3)
r16 : (heap d 2) ⇒ (reduce c 3)
r17 : (heap c 2) ⇒ (reduce d 3)
r18 : > ⇒ (reduce d 4)
r19 : > ⇒ (reduce a 0)

as shown in Table III, and an optimal strategy for a variant
of Nim as shown in Table IV. For the original Nim, the tool
generated a strategy consisting of 71 rules.

Simon & Newell created an optimal strategy for Tic-tac-toe
in 1972 featuring 8 rules expressed in natural language [11].
We converted these rules into our logical FFT format and used
the tool to: 1) verify the strong optimality of the Simon &
Newell strategy, and 2) simplify their strategy to only 6 rules.
The simplified list of rules generated by the tool is, translated
back into natural language:

1) Win: If the player has two in a row, they can place a third to
get three in a row.

2) Block: If the opponent has two in a row, the player must play
the third themselves to block the opponent.

3) Fork: Create an opportunity where the player has two ways to
win (two non-blocked lines of 2).

4) Blocking an opponent’s fork: Prevent the opponent from
creating a fork.

5) Center: The player marks the center.
6) Empty corner: The player plays in an empty corner square.

To follow the strategy, one has to always choose the first rule
that applies and make random moves if none of them do.

IX. BENCHMARKS FOR ALTERNATIVE APPROACHES

As earlier mentioned, there are four sources of non-
determinism in Algorithm 2 (lines 6, 9, 12 and 13). We now
consider each of these in turn, where we have benchmarked
different implementations of the non-determinism.

First we consider the non-determinism in line 6 of Al-
gorithm 2. We made experiments to test whether the order
in which pairs (s, a) are extracted from the maximal, total

https://github.com/JacobPjetursson/Board-game-strategy-synthesis
https://github.com/JacobPjetursson/Board-game-strategy-synthesis
https://en.wikipedia.org/wiki/Nim


strategy matters for the size of the FFT generated by the
algorithm. More specifically, we compared 1) random order;
2) extracting pairs (s, a) s.t. s has minimal distance to a
terminal state with perfect play; 3) extracting pairs (s, a) s.t.
s has minimal distance to the initial state. The differences
were negligible on Nim, but on Tic-tac-toe, using 2) worked
significantly better than both 1) and 3), generating only 8.4
rules on average compared to 13 for 1).

Now consider the non-determinism in line 9 of Algorithm 2:
the choice of precondition literals to remove. The algorithm
greedily tries to remove one literal at a time, i.e., a literal is
only considered for deletion once. So if e.g. the precondition
literals of the rule l1∧l2∧l3 ⇒ a are considered in order from
left to right, we might remove l1, whereafter it might not be
possible to remove l2 or l3. However, had we removed l2 first,
we might still have been able to remove l3 as well, thus ending
with a rule containing fewer precondition literals. We made a
non-greedy version of the algorithm that considers all subsets
of precondition literals in order to find a subset of minimal size
to which the rule could be validly simplified. Synthesizing 10
strategies for Tic-tac-toe, the greedy approach of Algorithm 2
on average generated 8.4 rules with 14.66 precondition literals
in 0.83s. The non-greedy approach generated on average 8.14
rules with 10.57 precondition literals in 556.27s. Hence, the
improvement in terms of quality of the produced FFTs using
the non-greedy approach appears relatively small, and the
penalty in computation time quite significant.

Finally, consider the non-determinism in line 12 of Algo-
rithm 2: the order of simplifications. Here we also tried various
orders, e.g. random, left-to-right (simplifying the left-most
rules first) and right-to-left. The difference in both computation
time and size of generated FFTs were negligible. Similarly for
the non-determinism in line 13.

We have also compared the performance of Algorithm 2
against the naive Algorithm 1. The comparison didn’t lead to
huge differences in the size of the produced FFTs, but the
impact on running time was significant. On Tic-tac-toe, Algo-
rithm 2 produced an FFT 132 times faster than Algorithm 1
(0.879s vs 116.3s).

X. RELATED AND FUTURE WORK

The closest related research we are aware of are by Silva
et al. [17] and Antos and Pfeffer [19]. Silva et al. presents
an algorithm that generates a strategy represented as an FFT,
but it differs from our approach by not generating optimal
strategies—and by not being a general solution that applies to
any game. Antos and Pfeffer construct non-optimal reasoning
patterns which models the human decision-making process, in
an attempt to cover the various ways a player may try to win
a game. These patterns offers advice to human game-players.
They proved that human players who received advice prior to
playing had better performance than those who did not.

A natural extension to our tool would be to make the
definition of our rules more flexible, e.g. by allowing rules
of the form l1, . . . , ln ⇒ {a1, . . . , an} meaning “choose any
applicable action ai”, as well as allowing lifted rules using

first-order logic. This would make it easier to describe existing
game strategies as logical FFTs, such as the optimal strategy
in Sim by Mead [20]. Additionally we could generalize the
game class by allowing n-player, simultaneous games by
improving our MINIMAX implementation [21], [22]. Further-
more, a deeper algorithmic analysis might allow additional
optimizations of the algorithm, e.g. by not having to recompute
all reachable states when simplifying a strategy.
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