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Fig. 1. Our proposed system: given a set of views captured in a VE we perform semantic segmentation using a FCN trained
on samples of our scenes. The semantic maps are then reprojected onto objects in the VE. By associating the material classes

with acoustic profiles and scene geometry, this information can be used in physically based audio rendering engines.

Abstract—This paper presents the ongoing work on an approach
to material information retrieval in virtual environments (VEs).
Our approach uses convolutional neural networks to classify
materials by performing semantic segmentation on images cap-
tured in the VE. Class maps obtained are then re-projected onto
the environment. We use transfer learning and fine-tune a pre-
trained segmentation model on images captured in our VEs. The
geometry and semantic information can then be used to create
mappings between objects in the VE and acoustic absorption
coefficients. This can then be input for physically-based audio
renderers, allowing a significant reduction in manual material
tagging.
Index Terms—acoustic applications, machine vision, semantic
networks, games, rendering (computer graphics)

I. INTRODUCTION

Auditory information is paramount to human perception in
natural and virtual environments, helping in orientation and
navigation, increasing immersion and aiding in task perfor-
mance [1]–[3]. The sound field perceived by a listener is a
function of shape, dimensions, boundaries and transmission
mediums of the surrounding environment. Even though the
physics of sound propagation make realistic audio rendering a
challenging task, many proposed approaches allow realistic
simulations of sound fields in virtual environments (VEs).
Computer games, compelling simulations and digital tourism
benefit from realistic audio rendering and improved auditory
presence evoked in virtual environments [4]–[6]. Modern
approaches to audio rendering can be broadly categorised into
geometrical acoustics (GA) methods [7] or finite or boundary
element methods (FEM/BEM) [8]. Finite elements methods,
such as wave-based audio renderers, often require the positions
of sound sources and listeners, as well as the scene geometry
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and associated materials tagged with acoustic absorption coef-
ficients for each material [9], [10]. This process is commonly
performed manually, often at significant cost, due to the
human-in-the-loop. Our work proposes a first step towards
creating an automatic process for generation of such input data
for pre-computed audio rendering pipelines, in the absence of
knowledge of geometry and material information of a complex
scene. Specifically, we propose a proof-of-concept system for
vision-based material information retrieval, which allows for
near-real-time tagging of an objects’ acoustic properties based
on its image features, which are then mapped to frequency
dependent absorption coefficients. The system tags meshes
in VEs representing boundaries in sound propagation paths
having noticeable perceptual impact, facilitating the use of GA
or FEM/BEM-based acoustic renderers on complex scenes.
Our contributions are: 1) a system for material-based tagging
of VEs; 2) a methodology for fine-tuning material-based
semantic segmentation models; 3) an approach to reprojection
of semantic labels back into the VE using level-of-detail.

II. RELATED WORK

This paper leverages recent advances in semantic segmenta-
tion, to extract information relevant to realistic audio render-
ing. Semantic segmentation tasks aim to assign a semantic
class label to every pixel in the input image. Examples of
applications in scene understanding include PixelNet [11],
which performs semantic segmentation and edge detection;
EdgeNet [12], which combines depth information with se-
mantic scene completion, using RGB-D input data. For syn-
thetic data generation, UnrealCV provides a pipeline that
generates images from VEs providing semantic segmentations
[13], allowing for easy generation of training data. However,
few examples of applying computer vision to realistic audio
rendering exist. One approach [14] uses 360◦ photographs,
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TABLE I
THE TABLE DETAILS THE TWO ARCHITECTURES FOR IMAGE

SEGMENTATION TASKS TRAINED FOR THE SYSTEM.

Architecture Backbone Capacity F1-score IOU Epochs

Unet ResNet-34 24.5M 0.51 0.58 70
Unet ResNet-50 32.6M 0.54 0.47 70

and depth estimates to generate 3D geometry and semantic
information, which is then used for physically-based audio
rendering and can also adapt to VEs. In this context, even
approximate semantic information could allow for gains in
efficiency and decrease in costs of applying physically-based
audio rendering to VEs. Modelling sound fields often requires
simulations of phenomena such as diffraction and reflection
that occur naturally in sound propagation. Recent work on
acoustic rendering simulates such phenomena by encoding
the sound field using impulse responses (IRs), which decribe
spatial information of propagation paths, taking tagged meshes
as input. In 3D scenes, efficient acoustic rendering methods
includes the Uniform Theory of Diffraction [15] as well as
parametric wave field encoders and renderers to simulate such
phenomena [10], [16].

III. METHODOLOGY

Based on advances in scene understanding and current state of
wave-based audio renderers, we design an architecture that en-
ables the process of semantic mesh labelling in complex scenes
and associating every category with a frequency-dependent
acoustic absorption function. Methods based on perceptual
metrics should consider only meshes that are relevant to the
acoustic environment. Scene understanding methods and infer-
ence should be optimised depending on the scene geometry.

A. Input

We demonstrate the usage of the pipeline in two scenes: an
open space, urban environment (City) and an indoor wooden
room (Office). City has 6.3M triangles and 8.6M vertices.
Office has 3.3M triangles and 3.8M vertices. We define a set
of classes using tables of measured acoustic absorption of con-
struction materials, where materials are grouped in categories
specifying a vector α of absorption coefficient values across
an approximated equivalent rectangular bandwidth frequency
scale ranging from 125Hz to 4kHz. For every major material
category that exists in our material database, we define two
levels, representing the low and high bounds of mass density
ρ in that category. Mass density is a physical property allowing
for the acoustic properties of two objects made of the same
material to be perceptually distinguishable [17]. We define
23 material classes constituted by the two density levels for
each of the 11 material categories and an additional class
representing “air”, see Table II.

B. Data Generation

We implement the core material tagging system in Unity using
a camera located across probe points of a complex scene.
Segmentation masks associated with each view are generated

TABLE II
THIS SHOWS THE RANGE OF MATERIAL CLASSES USED IN THE TAGGING

PROCESS, COVERING A WIDE RANGE OF ACOUSTIC FILTERS
CONVENTIONALLY AVAILABLE FOR AUDIO ENGINES IN GAMES. FILTERS

ARE COLOURED BY THE LABEL USED IN FIG. 3, LOW AND HIGH α.

Material Low α High α

Glass and glazing

Masonry walls
Stud-work & lightweight walls

Wood & wood panelling

Floors
Panels & doors

Other

Wall treatments & construction

Ceilings

Mineral wool & foams

Audience & seating

by ray-casting through each point of Cn, the near camera
clipping plane, to ∞. For this case, we exclude wavelength-
based strides, to maximise segmentation accuracy. The areas
where rays intersect with Cf , the far camera clipping plane,
are labelled as air, objects that are hit by a ray determine the
pixel value of the mask which points to the corresponding
material. The dataset consists of 3500 labelled images with
512 × 512 pixel resolution, split into 3000 training images
and 500 validation images. In City and Office rendered view
images are generated in different regions of the environments.
The different regions delimit spaces for the collection of
training and validation data. For each delimited region, sets of
points are scattered to cover the walkable space. The camera
position is interpolated across points in these sets and rotated
between 0 and 2π along the azimuth, and between 0 and π
along the elevation.

C. Semantic Segmentation Model

A convolutional neural network is used to discriminate mate-
rials of objects represented in the camera rendered views. This
task is performed with pixel-level semantic segmentation using
a ResNet-34-based Unet [18]. The ResNet backbone offers a
topology that is easy to train and has excellent generalisation
performance. It also provides a compromise between accuracy
and number of parameters [19]. The model, pre-trained on the
ImageNet dataset, is fine-tuned for 70 epochs minimising focal
loss [20]. Table I shows information on the networks trained
including total number of parameters, F1-score, intersection-
over-union (IOU) and number of epochs.

D. Model Inference

The output of the model is an m × n × k matrix M ,
where m and n are the input image resolution and k is the
number of classes. For each pixel, the k channels encode a
probability distribution across the classes. Per-pixel classes



Fig. 2. A comparison between frequency response measured at the RIR probe
point.

are determined with the member having the highest presence
probability, reducing M to an m × n matrix where entries
encode the semantic class (see Table II). In addition, counts of
unique entries in M determine the number of pixels describing
the associated material. With scaling based on the distance
between a target object and Cn, this allows material exclusion
below a threshold.

E. Map Reprojection

Using the segmented images, meshes are labelled by raycast-
ing through Cn divided in strides. Based on the distance of
every Mesh Renderer Unity object inside the camera frustum,
the stride size is determined by the lowest structural dimen-
sion of each mesh, scaled according to its distance to Cn.
This allows consideration of filtering objects by wavelength,
λ = 0.7m from the reprojection process. This is because some
objects are too small to have significant impact on the human
perception of the soundscape [21]. Through this level of detail
(LOD) graduation we reduce the analysed scene geometry
excluding structures having smaller perceptual impacts on the
resulting acoustic model. Among factors affecting performance
and accuracy of acoustical simulation methods is the polygon
count of the acoustic VE, dependent on the complexity of a
scene and the presence of detail and small objects. In acoustic
environments, smaller structures on surfaces tend to induce
scattering of incidental high-frequency waves reflected, and
they are neglected by lower frequencies whose wavelength
is greater than the structure dimensions. As a consequence,
the amplitude of lower frequencies is more likely to be
affected by first order room modes, given by walls and large
boundaries, affecting the frequency response of the sound field
resulting in a more noticeable perceptual effect. As opposed to
frequencies higher than the Schroeder Frequency which tend
to scatter chaotically [22], [23]. A pilot study of this perceptual
optimisation demonstrates up to 123% of performance gains
in offline and real-time acoustic modelling implementations.
Small structures on surfaces can therefore be excluded from
modelling processes. Results of this process can be seen in Fig.
3 where smaller objects than this λ of 0.7m do not receive a
material tag.

F. Testing

An acoustic renderer is used to test the validity of this method
by producing auralisations of Office. City is excluded because
of its computationally-expensive scene complexity. We employ
a state-of-the-art acoustic renderer [10], integrated into Unity,
to generate a model of the acoustic environment in which all
meshes having a potential impact on the VE are included. The

renderer determines per-mesh absorption information based
on the texture meta-data as per Default behaviour. A sound
source and listener are placed at human height in the scene; the
listener captures a 30s chirp signal sweeping logarithmically
from 20Hz to 20kHz emitted by the sound source to measure
an IR. Maintaining the same settings and positions of source
and listener, we repeat the procedure supplying meshes and
absorption information inferred by our system, Tagged. We
compare the two IRs generated by the former (Default) and the
latter acoustic model (Tagged) through comparisons of their
deconvolved frequency responses, see Fig 2.

IV. RESULTS AND DISCUSSION

The model inference takes an average of 400ms and the re-
projection process takes an average of 96ms. These figures
are quoted per camera probe that is used to generate acoustic
labels for surfaces in the scene. Images to be inferred are of
a fixed size from the scene frame buffer, 512 × 512 pixels.
The time taken for inference is largely invariant to typical
scene complexities such as shape, polygon count, materials
etc. The Office scene requires 12 probes to completely tag the
environment, requiring ∼6s to complete the tagging process.
The City scene shown, has extra complexity and requires use
of solutions to the Art Gallery problem to deduce the minimum
number of probes to cover the space and tag all objects.
As shown in Fig. 3, acoustic properties can be associated with
geometry in the scene, and can be tagged from camera probes.
These materials are used in an acoustic rendering process,
either directly in game audio engines or external offline
acoustic renderers. This can result in more realistic aural
spatialisation, using IRs to encode early and late reflections.
An example of this offline rendering is shown in Fig. 2. Cur-
rently our approach works by providing inference for camera
views within the scene. These camera views are manually
placed and would need to be placed in many positions in
order to tag materials accurately for the entire scene. This
process still requires a human-in-the-loop and needs to be
addressed to ensure the goal of having this system as an end-
to-end autonomous vision based material tagging system. To
extrapolate materials tagged to the entire scene, solutions to the
Art Gallery problem would optimise the number of predictions
required [24], [25]. Considering the polygons encapsulating
the walkable space W of a scene, minimum vertex guard
algorithms suggest that bn/3c, where n indicates the total
vertices of W , is the least number of positions from where
the entire scene can be seen. Based on the depth of the
camera, additional intermediate positions p might be needed to
accurately represent objects, this also depends on the number
of pixels per object allowing the the neural network to infer
materials from the set of camera views that facilitate the whole
scene to be visible. For each camera probe position, rotation
steps are needed to ensure that all points of W are inside the
camera frustum. For an omni-directional camera probe, these
rotation steps rθ for azimuthal steps and rφ for elevation steps
should cover the space in 2π azimuth and π elevation. The



Fig. 3. Results are shown for the two scenes used, City and Office, respectively A and B. For each of the scenes 1, 2 and 3, in the first column is the input to
the inference system; in the middle is the segmentation mask from the inference process; finally the rightmost column shows the semantic labels reprojected
into the original scene. The legend at the bottom indicates the materials associated with the corresponding semantic labels.

resulting complexity of the material tagging process for the
scene would then be determined by O(bn/3c+ p + rθ + rφ).

V. CONCLUSIONS AND NEXT STEPS

Acoustic modelling and audio rendering methods can benefit
from research and development of computer vision methods.
The current status of this work does not eliminate the human-
in-the-loop; however, it can generalise and operate on large
sets of complex scenes. As a result, artistic and creative work-
flows for level design can benefit from automated material
tagging system that is agnostic of scene complexity and allow
for easy integration of wave-based acoustic renderers. The
next steps planned for this work include the development of
a generalised system to perform material tagging in complex
scenes. This will consider optimisation methods to allow the
inference of entire scenes automatically with the minimal
set of camera probes to consistently tag every acoustically
congruent object that is contributory to the VE.
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