arXiv:2005.10211v2 [cs.LG] 1 Jul 2020

A Metric Learning Approach to Anomaly Detection
in Video Games

Benedict Wilkins
Department of Computer Science
Royal Holloway University of London
London, England
Benedict.Wilkins.2014 @rhul.ac.uk

Abstract—With the aim of designing automated tools that assist
in the video game quality assurance process, we frame the prob-
lem of identifying bugs in video games as an anomaly detection
(AD) problem. We develop State-State Siamese Networks (S3N) as
an efficient deep metric learning approach to AD in this context
and explore how it may be used as part of an automated testing
tool. Finally, we show by empirical evaluation on a series of Atari
games, that S3N is able to learn a meaningful embedding, and
consequently is able to identify various common types of video
game bugs.

Index Terms—Anomaly Detection, Video Games, Metric
Learning, Representation Learning, Siamese Networks

I. INTRODUCTION

Video game development companies take significant steps
at all stages of development to reduce the likelihood of bugs
appearing in release code. These steps range from the use
of software development paradigms early in the process to
heavy investment in Quality Assurance (QA) closer to release.
As games become increasingly vast and complex, exploring
and uncovering bugs manually is becoming less feasible [1].
In contrast, the continuing advancements in Reinforcement
Learning (RL) are allowing software agents to play and ex-
plore with greater proficiency in increasingly complex games.
This has opened up an opportunity for the development of
automated tools to assist developers and testers in the video
game QA process. Previous attempts in developing these tools
have focused on building frameworks [2] or require detailed
descriptions of the environment and are heavily integrated with
the games internal implementation [3].

With the aim of developing automated testing tools that
can be easily integrated with existing development practices,
we frame the problem of identifying bugs as an Anomaly
Detection (AD) problem, treating the manifestation of a bug
in the raw observation space (as seen by a human player) as
an anomaly. With this view, we explore deep metric learning
as an approach to AD, and its potential to form the basis for
such tools.

Specifically, we formalise the AD problem in this context
and present State-State Siamese Networks (S3N) as a semi-
supervised metric learning approach. S3N uses spatial and
local temporal information to efficiently learn a latent repre-
sentation of the state space that induces a meaningful measure

Chris Watkins
Department of Computer Science
Royal Holloway University of London
London, England
C.J.Watkins @rhul.ac.uk

Kostas Stathis
Department of Computer Science
Royal Holloway University of London
London, England
Kostas.Stathis @rhul.ac.uk

. _....J." y o ,"ﬂx
= ' -f_;“:-’";"’._\
- D e g P
: -
: RS g
18 . ’:_- * !-‘ d
. 3’. K1y
. - %
16) .".5'5-1:‘.{ *.
‘ g s
"'.?" ﬁ s Y
14 l.-..‘.. e '..t“.
vEE iy
12) ;’:_“.‘f
B ".. \
£ YD
10 0?:"“::’;}“ yiee C

Fig. 1. A purely illustrative 2D embedding space of the Atari game
Breakout for a single trajectory. States are represented as points (blue=normal,
red=anomalous). The distance between consecutive states is used directly as an
anomaly score. Red points within the cluster of blue points resemble normal
states, but are in fact anomalous with respect to the associated transitions.
Crucially they are distant from their immediate transition neighbours.

of normality. We use Atari games from the Arcade Learning
Environment (ALE) [4] to create an open dataset of anomalies,
the Atari Anomaly Dataset (AAD). The dataset consists of
trajectories from 7 Atari games collected using model-free
RL with common types of bugs [5] introduced artificially.
Finally, we evaluate S3N’s ability to construct meaningful
representations and consequently its ability to detect anomalies
on AAD, and discuss promising future directions.

II. BACKGROUND & RELATED WORK

A. Formalism

We use the following formalism for the remainder of the
paper. We refer to a single frame (image) of a video game at
time ¢ as a state s; € S. A player action a; € A leads to a

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

(stochastic) transition from the state s; to s,y according to
a transition function 7 (S¢i1]As, S, -+ Ao, So). To simplify
our discussion we consider a Markovian transition function
T (Sty1|As, Si). We refer to a single play-through of a game
(from an initial state to a final state) as a trajectory 7. Under
this formalism, a game is modelled as a labelled directed graph
(S, A, T), with nodes as states and edges as transitions with
associated action labels and probabilities. The development
process (including QA) can be thought of as the incremental
improvement of successive graphs that are closer to some
ideal graph. The graph that is released to customers being the
closest approximation to the ideal graph. We denote the ideal
graph as (S,A,7) and an approximate graph as (S, A, 7).
We assume no prior knowledge of the state space or transition
probabilities, and a small constant frame-rate.

B. Anomaly Detection (AD) in Video Games

As it is common in video games for particular states or
transitions to be rare, we cannot take the view of anomalies as
outliers. It is also common for games to have a large branching
factor, in the worst cases states that occur later in time are
exponentially more unlikely than their predecessors. With this
in mind, we take the out of distribution view, and define two
types of anomaly:

1) State anomaly - a state s € S is anomalous iff s ¢ S
2) Transition anomaly - a transition s;y; ~ 7 is anoma-
lous iff syy1 & supp(T).

C. Siamese Networks

Siamese networks are a general approach to metric learning,
and have been successfully applied to many areas, most
notably for learning image similarities in facial recognition
[6]. Siamese networks learn an implicit distance by learning
to represent examples in low dimensional space according to
a distance-based objective [7]. They are trained on pairs of
examples (z;,z;), requiring some labelling that is indicative
of the desired latent structure. One popular distance-based
objective is triplet loss [6]:

L(z,2",27) = max(d(z,27) —d(z,27) + «,0) (1)
d(z,y) = | fo(x) = fo(y)l|

where fy is typically a neural network with parameters 6, x is
an anchor example, z+ is an example with the same label as
and z~ is an example with a label that differs from z. Triplet
loss is derived from the desired property ||f(x) — f(zT)|| <
[|f(z)—f(z7)|]. The margin parameter « prevents the network
from learning trivial solutions. Many other objectives exist [7],
[8], triplet loss is the objective that is used in our experiments.

More recently, metric learning and specifically siamese
networks, have been applied to anomaly detection [9]. The
key idea is that instead of using a proxy anomaly score (e.g.
reconstruction error), the score is learnt directly. The anomaly
score is used to rank examples by their normality, with higher
scores typically indicating abnormality.

III. STATE-STATE SIAMESE NETWORKS (S3N)

S3N is a data-efficient learning procedure that is able to
construct meaningful embeddings without the use of action
information or a direct labelling of normal/anomalous states
or transitions. S3N consists of a dynamic labelling schema and
training procedure, the labelling schema is given below:

:St

= St+1
T =85 1€ {t,t+1}

Under this labelling schema, states that have a temporal
relationship are considered close according to the learned
metric. That is, the network will attempt to embed the game
graph, with connected nodes mapped to similar regions of the
embedding space. We hope then, that the support of 7 is in
some sense captured by the neighbourhood of the particular
node s; in the embedding. The desired property is given below:

1 fo(st) = fo(sea)Il < |l fo(se) — fo(si)ll

In later discussion we refer to Ai(’]’) = ||fo(s;) — fo(sk)l|
as the displacement with reference to a particular trajectory
7. We do not impose any additional constraints on the em-
bedding structure, and have found in our experiments that the
embedding is meaningful with respect to the AD problem, see
Fig. 1. The learned metric evaluated on a particular query pair
(sj,5k), A7, can be used directly as an anomaly score, with
anomalous transitions indicated by high Af ,, or low Al, see
Fig. 2.

Algorithm 1: S3N Training (triplet loss)

Input: batch size n; margin «; trajectory collector D;
neural network fy; learning rate 7.
Repeat:
T~ Dy,
2 < (fo(7t), fo(Tet1))
for (z,zT)" in shuf fle(z) do
vig + |l — ||
L« >y ReLU (yii — yir +)
0+ 0—nVyL

until terminated

Part of the difficulty with the approach is in its compu-
tational complexity. To avoid computing a distance matrix
over an entire trajectory, which is unnecessarily costly, we
take a mini-batching approach and employ stochastic gradient
descent. Positive pairs (xj,x;r) = (fo(se), fo(se41)); are
uniformly sampled from trajectories that are collected using
a trajectory collector D,. For each batch of pairs (z,z7)",
we assume that the positive part x;“ for pair j is negative
for all other anchors z; in the batch and construct a distance
matrix y accordingly. With a sufficiently large sample space
it is unlikely that the assumption is broken, but care should
be taken if the graph is dense. In our experiments the effect
was negligible. It is also important to note that the embedding

0 0
R . T 0
sede%* .

10 L, s .

o

¥ 0 -10 C
20 . -0.5

.
.
.

a) Visual artefact b) Flicker

c¢) Freeze skip

4 6 o ee®
.
s .
* .
10 . .
- - o
R A s
o . ® >
* Y " . ! o le®
3 8ol CF0 "
10 ‘e b 4 ® « o
« . .

d) Split horizontal e) Split vertical

Fig. 2. Illustrative plots of distance vectors fg(s¢) — fo(st+1) for a 2D embedding of Breakout. Blue and red points correspond to normal and anomalous

transitions respectively.

dimension should be sufficiently large, with dense graphs
requiring larger dimensions. The S3N training algorithm is
described in Alg. 1. Using this algorithm, a good embedding
can be learned quickly' requiring orders of magnitude less
data than approaches that rely on prediction or that have a
generative aspect.

In order to learn a meaningful embedding, S3N training
is semi-supervised and trained only on normal trajectories.
In a practical setting, we may not have access to normal
trajectories, more likely we have access to an in-progress
approximate game that contains some bugs. To make S3N
viable for use as part of a practical tool, we envisage an
active learning procedure in which a developer is continually
adapting the training data by re-programming the game after
receiving feedback on the most anomalous transitions. As
this process continues, the game will approach the ideal
game and S3N will improve and adapt its knowledge of
normality. Realising active learning is left as future work, in
our experiments we use the ideal game directly as an initial
demonstration of the feasibility of S3N as an approach.

IV. EXPERIMENTS

A. Atari Anomaly Dataset

To test our approach, we use 7 Atari games® that have
previously been made available as part of the Arcade Learning
Environment (ALE) [4] and OpenAI Gym. States (and actions)
have been collected using model-free RL, specifically, with the
OpenAl stable-baselines [10] implementation of Advantage
Actor-Critic (A2C) [11], totalling approx. 200k states
per game. Common types of anomalies [5] have been
artificially introduced into approximately half of the collected
trajectories, these include freezing, flickering and visual
artefacts (see Fig. 3) at a rate of 0.01. Each game was chosen
with a specific motivation in mind, testing S3N’s ability to
deal with large discontinuities including flashing and scene
changes, embed (a)cyclic graphs, dense/sparse graphs, or to
deal with a high inherent dimensionality. Data and further
details can be found here’.

lin order of minutes rather than hours using an NVIDIA RTX 2070 GPU
2Beam Rider, Breakout, Enduro, Pong, Qbert, Seaquest, and Space Invaders
3https://www.kaggle.com/benedictwilkinsai/atari-anomaly-dataset-aad

Fig. 3. Example anomalies from our dataset (AAD) for Breakout. From top
to bottom: split vertical, split horizontal, flickering, visual artefacts, freeze -
no frame skip, freeze - frame skip.

B. Implementation Details

The neural network used in the experiments to follow
has a three layer convolutional architecture with leaky ReLU
activation and a final linear embedding layer of dimension
64 or 256. The same network architecture was used for each
game, with the following set of hyper parameters, batch size
n = 128, margin o = 0.2, squared Lo norm was used as the
distance in triplet loss, learning rate [= 0.0005 for Adam
optimiser. The network was trained for 12 epochs on as little
as 60k states from the raw partition of AAD. All code and
pre-trained models are available here?.

C. Results & Discussion

Before evaluating the performance of S3N on detecting
anomalies, we make an attempt at evaluating the quality of the
learned embedding. A poor embedding may be the result of an
insufficient embedding dimension or high-entropy transitions,

“https://github.com/BenedictWilkins AI/S3N

https://www.kaggle.com/benedictwilkinsai/atari-anomaly-dataset-aad
https://github.com/BenedictWilkinsAI/S3N

TABLE I
TABLE OF RESULTS

Pr(Ay > Aj) AUC!

Game (d) UDS j=2 7J=5|j=10 | 5=50 | =100 VA Flicker | Freeze | F-Skip SH SV
Beam Rider (64) | 0.0616 | 0.0517 | 0.0076 | 0.0032 | 0.0019 0.0004 0.9347 | 0.9997 | 0.0048 | 0.9878 | 0.9905 | 0.9927
Breakout (256) | 3.2459 | 0.2403 | 0.0729 | 0.0365 | 0.0028 0.0000 0.9884 | 1.0000 | 0.0019 | 0.9647 | 0.9791 | 0.9908
Enduro (256) | 0.0187 | 0.2197 | 0.0011 | 0.0001 0.0000 0.0000 0.8537 | 1.0000 | 0.0001 | 0.9986 | 0.9828 | 0.9826
Pong (256) | 0.0456 | 0.2739 | 0.1093 | 0.0604 | 0.0272 0.0156 0.9914 | 1.0000 | 0.0044 | 0.9381 | 0.9671 | 0.9697
Qbert (64) | 0.0625 | 0.1562 | 0.0185 | 0.0036 | 0.0001 0.0000 0.9313 | 1.0000 | 0.0048 | 0.9848 | 0.9900 | 0.9820
Seaquest (64) | 0.0439 | 0.0969 | 0.0120 | 0.0012 | 0.0000 0.0000 0.9683 | 1.0000 | 0.0005 | 0.9962 | 0.9929 | 0.9949
Space Invaders (64) | 0.0284 | 0.0938 | 0.0423 | 0.0245 | 0.0001 0.0000 0.9834 | 1.0000 | 0.0179 | 0.9750 | 0.9949 | 0.9951

TVA = Visual Artefact, F-Skip = Freeze Skip, SH = Split Horizontal, SV = Split Vertical

but there are other more subtle possibilities. For example, due
to the lack of a hard restriction on the magnitude of Af_ ;.

As the learned metric is going to be used directly to
determine a ranking for normal and anomalous transitions, in
order to avoid false positives, we want to be sure that there
are no large jumps in a normal embedding trajectory. At first
glance, the standard deviation of displacement A}, seems to
give a good indication of uniformity, however self-transitions
are an issue. To make the statistic more robust, we look at the
standard deviation of the residuals maxz (A}, ; — o, 0) where
o is the margin parameter. This has the effect of ignoring any
normal displacements that are already within an acceptable
tolerance, and leads to a more intuitive ideal O value. We refer
to the standard deviation of residual 1-step displacements as
the Uniform Distance Statistic (UDS).

To ensure the embedding is consistent with the original
objective Al | < A!'Vt,i > 1, we treat each A; as a random
variable whose realisations correspond to j-step displacements
and determine Pr(A; > Aj|7) Vj > 1 using a rank-sum test.
We show results for increasing values of j in Table I and see
that the probability quickly vanishes. When combined with
the UDS, we can conclude that S3N is able to construct good
embeddings, even in the face of scene changes and other large
discontinuities. In the case of Breakout, UDS is comparatively
high. We hypothesise that this is due to its high inherent
(combinatorial) dimension with some jumps occurring at the
transitions between different block configurations.

To evaluate the performance of S3N on the detection of
anomalies, as is common in the literature, we use the AUC
score. As shown by the scores in Table I, S3N is able
to correctly identify flickering, skips and various kinds of
visual artefacts. Freezing is part of a particular class of self-
transitioning anomaly that cannot be detected by our approach.
In our experiments, S3N is learning a proper distance (Lo
norm), i.e. d(z,y) = d(y,z) and d(z,z) = 0. The second
axiom results in an anomaly score of 0 being assigned to
self-transitions and hence the bad performance in this case.
We have given special consideration to labelling transitions
for flickering and freeze skip anomalies, labelling only the
non self-transitions as anomalous. It should also be noted that
S3N is invariant to the direction of time due to symmetry in
the distance. We leave it as part of future work to explore
alternative measures that might address these issues, perhaps
by incorporating action information as a source of asymmetry.

V. CONCLUSIONS & FUTURE WORK

S3N is an efficient learning algorithm for constructing
video game embeddings for the purpose of anomaly detection,
requiring orders of magnitude less data and training than
similar generative or predictive approaches. We have given an
initial demonstration of the feasibility of S3N on our dataset
(AAD), making it available to support future work in this area.
We have evaluated the ability of S3N to construct meaningful
embeddings, and shown that it is able to successfully identify
many common types of video game bugs. Future direction
includes exploring actions as part of alternative measures for
use in the objective.

REFERENCES

[1] K. Chang, B. Aytemiz, and A. M. Smith, “Reveal-more: Amplifying
human effort in quality assurance testing using automated exploration,”
in 2019 IEEE Conference on Games (CoG), 2019.

[2] A. Nantes, R. Brown, and F. Maire, “A framework for the semi-
Automatic testing of video games,” in Proceedings of the 4th Artificial
Intelligence and Interactive Digital Entertainment Conference, AIIDE
2008, 2008, pp. 197-202.

, “Neural network-based detection of virtual environment anoma-
lies,” Neural Computing and Applications, vol. 23, no. 6, pp. 1711-1728,
2013.

[4] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade
Learning Environment: An Evaluation Platform for General Agents,”
Journal of Artificial Intelligence Research, vol. 47, pp. 253-279, jun
2013.

[5] C. Lewis, J. Whitehead, and N. Wardrip-Fruin, “What went wrong,” in
Proceedings of the Fifth International Conference on the Foundations
of Digital Games - FDG ’'10. ACM Press, 2010, pp. 108-115.

[6] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified em-
bedding for face recognition and clustering,” in 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 1EEE, jun 2015,
pp. 815-823.

[71 S. Chopra, R. Hadsell, and Y. LeCun, “Learning a Similarity Metric
Discriminatively, with Application to Face Verification,” in 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’05), vol. 1. IEEE, pp. 539-546.

[8] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Large Scale Online
Learning of Image Similarity Through Ranking,” Journal of Machine
Learning Research, vol. 11, no. Mar, pp. 1109-1135, 2010.

[9] M. Masana, I. Ruiz, J. Serrat, J. Van De Weijer, and A. M. Lopez,

“Metric learning for novelty and anomaly detection,” in British Machine

Vision Conference 2018, BMVC 2018, aug 2019.

A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,

P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,

J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https://github.com/

hill-a/stable-baselines, 2018.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,

D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-

forcement learning,” in International conference on machine learning,

2016, pp. 1928-1937.

[3]

[10]

(11]

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

