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Abstract—In this paper, we propose a confidence-calibration
method for predicting the winner of a famous multiplayer online
battle arena (MOBA) game, League of Legends. In MOBA games,
the dataset may contain a large amount of input-dependent noise;
not all of such noise is observable. Hence, it is desirable to attempt
a confidence-calibrated prediction. Unfortunately, most existing
confidence calibration methods are pertaining to image and
document classification tasks where consideration on uncertainty
is not crucial. In this paper, we propose a novel calibration
method that takes data uncertainty into consideration. The pro-
posed method achieves an outstanding expected calibration error
(ECE) (0.57%) mainly owing to data uncertainty consideration,
compared to a conventional temperature scaling method of which
ECE value is 1.11%.

Index Terms—Esports, MOBA game, League of Legends,
Winning Probability, Confidence-Calibration

I. INTRODUCTION

League of Legends (LoL) is arguably one of the most
popular multiplayer online battle arena (MOBA) games in the
world. It is the game in which the red team and the blue
team compete against each other to destroy the opponent’s
main structure first. It was reported that the 2019 LoL World
Championship was the most watched esports event in 2019
[1]. Thus, from both academia and industry, forecasting the
outcome of the game in real time has drawn lots of attention.
However, it is a challenging problem to predict the actual
winning probability because the outcome of the game may
change due to various reasons.

Many existing efforts to predict the match outcome of the
MOBA game in real time have employed machine learn-
ing techniques to attain a good prediction accuracy [2]–[4].
However, we claim that focusing on achieving accuracy may
not be adequate for the eSports winner prediction; instead,
the predictor should be able to calculate the actual winning
probability. To achieve this goal, confidence calibration of
neural networks [5] should be taken into consideration. Well-
calibrated confidence leads to more bountiful and intuitive
interpretations of a given data point. For instance, it may not
be meaningful to predict the winning team when the predicted
winning probability is around 50%.

How to avoid poorly calibrated models has drawn lots
of attention among machine learning researchers. Especially,

Fig. 1. Confidence histograms of Cifar10 and LoL dataset.

deep neural networks for image and document classification
are mostly overconfident, and there have been several studies
to overcome this overconfidence issue [5], [6]. From our
experiments, we have observed that for over 90% of samples,
the confidence level has turned out to be over 90% when we
trained Cifar10 [7] by ResNet-50 [8] as shown in Fig. 1.
Therefore, several attempts to train a confidence-calibrated
neural network were made to overcome such overconfidence
issue.

To train a neural network to predict the outcome of the
game, over 93000 matches in-game data per minute have
been collected. Because of the uncertainty of the game, the
confidence distribution of the LoL datasets seems evenly
distributed contrary to Cifar10 as shown in Fig. 1. Owing to
this characteristic, not only overconfidence but also undercon-
fidence should become a concern. This concern makes it less
effective to adopt conventional calibration methods to the LoL
dataset. Hence, how to tame the uncertainty in the LoL data
is claimed to be the key for predicting the outcome of LoL.

In this paper, we propose a data-uncertainty taming
confidence-calibration method for the winning probability esti-
mation in the LoL environment. The outcome of the proposed
method will be the winning probability of a certain team in the
LoL game. In Section 2, we will briefly address the evaluation
metrics and introduce some existing methods. In Section 3, we
propose a data-uncertainty loss function and we will show how
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it makes the model well-calibrated. We describe the dataset we
used and present experimental results in Sections 4. Finally,
Section 5 concludes this paper.

II. BACKGROUND

In this section, we look over commonly used calibration
metrics and related existing methods. Typically, reliability
diagrams are used to show the calibration performance that
corresponds to differences between the accuracy and the
confidence level. The differences are evaluated in terms of
either expected calibration error (ECE), maximum calibration
error (MCE), or negative log-likelihood (NLL) [5]. These
metrics will have lower values for better calibrated neural
networks. The calibration method that we adopt is Platt scaling
[9], which is a straightforward, yet practical approach for
calibrating neural networks.

First of all, we divide the dataset into M bins based on the
confidence level. The interval of the mth bin is expressed as
Im =

(
m−1
M , m

M

]
and we denote the set of samples of which

predicted confidence level belongs to Im as Bm. We formally
compute the accuracy and the confidence level as:

acc(Bm) =
1

|Bm|
∑

i:xi∈Bm

1(ŷi = yi)

conf(Bm) =
1

|Bm|
∑

i:xi∈Bm

p̂i

(1)

where 1 is an indicator function, yi and ŷi denote the true
label and the predicted label of the ith sample, respectively,
and p̂i denotes the predicted confidence of the ith sample. The
reliability diagram plots the confidence level and the accuracy
in one graph. Also, from the accuracy and the confidence level
of each bin, ECE and MCE can be calculated where ECE
and MCE represent the average error and the maximum error,
respectively. ECE and MCE are computed as:

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)|

MCE = max
m∈{1,...,M}

|acc(Bm)− conf(Bm)|
(2)

NLL is another way to measure the calibration performance
and it is computed as:

NLL = −
n∑

i=1

log p(yi|xi, θ) (3)

Platt scaling [9], which is a parametric calibration method,
shows good calibration results at image and document clas-
sification tasks [5]. A method called Matrix scaling is an
extension to the Platt scaling method. In Matrix scaling, logits
vector zi, which denotes raw outputs of a neural network, is
generated from the trained model. Then, a linear transforma-
tion is applied to the logits to compute the modified confidence
level q̂i and the predicted label ŷ′i, respectively, as follows:

q̂i = max
k

Softmax(Wzi + b)(k)

ŷ′i = argmax
k

(Wzi + b)(k)
(4)

where k is the number of classes. We optimize matrix W and
bias b in such a way that the NLL value on the validation set
is minimized. Vector scaling is similar to Matrix scaling, but
it is slightly different in the sense that W is restricted to be
a diagonal matrix and b is set to be 0.

Temperature scaling is a simplified version of Platt scaling
method in the sense that it relies only on a single positive
parameter T . Temperature scaling scales a ogits vector zi as
follows:

p̂i = max
k

Softmax(zi/T )
(k) (5)

Again, the best T is found in such a way that the NLL value on
the validation set is minimized. When T > 1, the temperature
scaling method tries to avoid overconfidence by making the
softmax smaller.

III. PROPOSED METHOD

The aforementioned Platt scaling is dependent only on
logits. Therefore, it will generate the same scaling result for
two different inputs as long as the two inputs have the same
logits. This limitation is not a problem when the confidence
level is quite high as in the case of image classification shown
in Fig. 1. For the LoL outcome prediction, however, the
uncertainty that is inherent in the input data should be taken
into consideration when logits are scaled for calibration. Thus,
we propose a novel uncertainty-aware calibration method for
training a confidence-calibrated model.

A. Data uncertainty loss function

In this section, we describe how uncertainty in the input
data is measured and how the data uncertainty loss function
builds a calibrated model. The data uncertainty is defined as
the amount of noise inherent in the input data distribution, and
it can be computed as follows:

Ud(y|x) = E[Var(y|x)] (6)

One way to measure the data uncertainty is to utilize a
model called density network [10], [11]. First, we will discuss
about regression tasks. Let µ(x) and σ(x) denote the mean
and the standard deviation of logits from input x, respectively.
Since the standard deviation is a nonnegative number, we take
an exponential to the raw output s(x) to predict σ(x) so that
σ(x) is defined as es(x). With µ and σ, we assume that y is
approximated as follows:

y ∼ N (µ(x), σ(x)2) (7)

In our classification, we get the output of the neural network
as logits vector µ(x) and variance σ(x)2. Therefore, we
estimate the probability p as follows:

u ∼ N (µ(x),diag(σ(x)2)) (8)

p = Softmax(u) (9)

Still, re-parametering is necessary to have a differentiable loss
function because (8) is not differentiable when the backprop-
agation is carried out. To induce the loss function to estimate



Fig. 2. Illustration of the sigmoid function to describe how data uncertainty loss function makes the neural network well-calibrated. Red arrows denote the
winning probability variation of each situation. (a) Alleviation of overconfidence using uncertainty σ, (b) The adjusted value for calibration is determined by
input uncertainty And (c) High confidence input should not be much swayed by uncertainty.

uncertainty, a Monte Carlo integration is used to derive the
probability as in [10]:

u(k) ∼ µ(x) + diag(σ(x))ε, ε ∼ N (0, I) (10)

E[p] ≈ 1

K

K∑
k=1

Softmax(u(k)) (11)

where u is sampled K times. Consequently, the loss function
includes data uncertainty as:

Lclf = H(y,E[p]) (12)

Here, function H computes the cross-entropy.

B. Calibration effects in data uncertainty loss function

In this section, we explain why this uncertainty-based loss
function makes the model better calibrated. Suppose there are
two outputs as in a binary classification task:

u(1) = µ1 + σε1

u(2) = µ2 + σε2
(13)

After the Softmax layer, the probability of class 1 is derived
as:

p1 = exp(u(1))/(exp(u(1)) + exp(u(2)))

= 1/(1 + exp(u(2) − u(1)))

= 1/(1 + exp(−((µ1 − µ2) + σ(ε1 − ε2))))
= Sigmoid(µc + σεc)

(14)

Here, we note that µc is an input-dependent constant and εc
will have a different value for every sampling.

Fig. 2 shows parts of the sigmoid function around output
x = µc. The first thing to note is that the data uncertainty loss
function can alleviate the concerns related to the confidence
level, notably overconfidence. When εc is sampled at two
points that have the same absolute value with the opposite
signs, the probability p1 does not change equally. In Fig.2,
(a) shows how the probability can change with µc and σεc.
Because of the gradient of the sigmoid function is decreasing
gradually at µc > 0, the probability is changing steeper when
εc is sampled at the negative side compared to the sample at
the positive side with the same absolute value.

In our approach, the calibration effect depends on the input’s
uncertainty. Fig.2-(b) shows another data of which output has
(µc, σ′) and σ′ > σ. Even if this dataset has the same µc and
the larger uncertainty σ′, the logit value is smaller to result in
more uncertain results. Temperature scaling, however, changes
µc all at once without considering the characteristics of each
input. Another effect of uncertainty σ’ can be seen with respect
to different µc values. With µc > 0, if the logit increases
in proportion to µc′ as shown in Fig.2-(c), the influence of
uncertainty is mitigated. It also helps the neural network better
calibrated, because the detrimental influence of the uncertainty
is tamed.

IV. EXPERIMENTAL RESULTS

TABLE I
COMPARISON BETWEEN CALIBRATION METHODS

Method Accuracy[%] ECE[%] MCE[%] NLL
No calibration 72.95 4.47 6.76 0.515
Temp. Scaling 72.95 1.11 1.87 0.505
Vector Scaling 72.71 4.63 6.66 0.536
Matrix Scaling 73.05 4.43 6.90 0.540

DU Loss (Proposed) 73.81 0.57 1.26 0.515

We implement a [295, 256, 256, 2] shape multi-layer
perceptron using Pytorch to predict which team will win. The
learning rate chosen at 1e-4 with the Adam optimizer [12]
during 20 epochs. The size of all M bins is set to uniformly
10. As the dataset, we collected information on 83875 matches
as the train data and that on 10000 matches as the test data.
The length of the input vector of the neural network is 295 and
it consists of in-game time, champion composition, gold and
experience difference and numbers of kills so far. All matches
were played between the top 0.01% players.

The reliability diagram of the trained network with the LoL
dataset is shown in Fig. 3. The model without calibration
shows the biggest difference between the predicted confidence
level and the accuracy across all bins. Especially, for the
intervals from I5 to I7, the gap between the confidence level
and the accuracy is bigger than 6%. Among all the Platt scaling
techniques that we have tried, Temperature scaling turns out



Fig. 3. Reliability diagrams of the trained network with a League of Legends dataset. The model without calibration shows a large gap between the predicted
confidence and the accuracy. On the other hand, a model which is trained with the data uncertainty loss function achieves a remarkably small gap.

to be the best, and our experimental results show that the
difference is much smaller with Temperature scaling across all
intervals. However, the model that is trained with the proposed
calibrated confidence under data uncertainty loss consideration
shows almost the same results.

Table I summarizes the accuracy for all of the compared cal-
ibration methods. For brevity, the calibration with the proposed
data uncertainty loss function turns out to be the best method
in terms of the accuracy. The model without calibration shows
72.95% accuracy while Matrix scaling, which shows the best
performance among Platt scaling, achieves 73.05% accuracy.
The proposed calibration method achieves the highest accuracy
at 73.81%

We also compared the calibration methods in terms of ECE,
MCE and NLL. The results are summarized in Table I. Vector
scaling and Matrix scaling have 4.63% and 4.43% ECE values,
which are worse than other calibration methods. Temperature
scaling scores 1.11% ECE that is the best score among Platt
scaling methods. Furthermore, Temperature scaling achieves
the best NLL value with 0.505. The proposed method achieves
0.57% ECE and 1.26% MCE values, both of them are the
best among all compared methods. The model trained with the
proposed method achieves a 0.515 NLL result, and it’s slightly
worse than Temperature scaling, but it is not a significant
difference.

V. CONCLUSION

In this paper, we propose a confidence-calibration method
for predicting the winner of a famous multiplayer online battle
arena (MOBA) game, League of Legends in real time. Unlike
image and document classification, in MOBA games, datasets
contain a large amount of unobservable input-dependent noise.
The proposed method takes the uncertainty into consideration
to calibrate the confidence level better. We compare the
calibration capability of the proposed method with commonly
used Platt scaling methods in terms of various metrics. Our
experiments verify that the proposed method achieves the best
calibration capability in terms of both expected calibration

error (ECE) (0.57%) and maximum calibration error (MCE)
(1.26%) among all compared methods.

ACKNOWLEDGMENT

This paper was supported by Korea Institute for Advance-
ment of Technology(KIAT) grant funded by the Korea Gov-
ernment(MOTIE)(N0001883, The Competency Development
Program for Industry Specialist)

REFERENCES

[1] A. Starkey, “League of legends worlds 2019 final
breaks twitch record with 1.7 million viewer,” Nov
2019. [Online]. Available: https://metro.co.uk/2019/11/11/
league-legends-worlds-2019-final-beats-fortnite-break-twitch-record-1-7-million-viewers-11077467/

[2] Y. Yang, T. Qin, and Y.-H. Lei, “Real-time esports match result predic-
tion,” arXiv preprint arXiv:1701.03162, 2016.

[3] A. L. C. Silva, G. L. Pappa, and L. Chaimowicz, “Continuous outcome
prediction of league of legends competitive matches using recurrent
neural networks,” in SBC-Proceedings of SBCGames, 2018, pp. 2179–
2259.

[4] V. J. Hodge, S. M. Devlin, N. J. Sephton, F. O. Block, P. I. Cowling, and
A. Drachen, “Win prediction in multi-player esports: Live professional
match prediction,” IEEE Transactions on Games, 2019.

[5] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
1321–1330.

[6] S. Seo, P. H. Seo, and B. Han, “Learning for single-shot confidence
calibration in deep neural networks through stochastic inferences,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 9030–9038.

[7] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[9] J. Platt et al., “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” Advances in large
margin classifiers, vol. 10, no. 3, pp. 61–74, 1999.

[10] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?” in Advances in neural information
processing systems, 2017, pp. 5574–5584.

[11] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Advances in
neural information processing systems, 2017, pp. 6402–6413.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

https://metro.co.uk/2019/11/11/league-legends-worlds-2019-final-beats-fortnite-break-twitch-record-1-7-million-viewers-11077467/
https://metro.co.uk/2019/11/11/league-legends-worlds-2019-final-beats-fortnite-break-twitch-record-1-7-million-viewers-11077467/

	I Introduction
	II Background
	III Proposed Method
	III-A Data uncertainty loss function
	III-B Calibration effects in data uncertainty loss function

	IV Experimental results
	V Conclusion
	References

