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Abstract—Axie infinity is a complicated card game with a huge-
scale action space. This makes it difficult to solve this challenge
using generic Reinforcement Learning (RL) algorithms. We pro-
pose a hybrid RL framework to learn action representations
and game strategies. To avoid evaluating every action in the
large feasible action set, our method evaluates actions in a fixed-
size set which is determined using action representations. We
compare the performance of our method with the other two
baseline methods in terms of their sample efficiency and the
winning rates of the trained models. We empirically show that
our method achieves an overall best winning rate and the best
sample efficiency among the three methods.

Index Terms—Game AI, Reinforcement Learning, Large-Scale
Action Space, Action Representation, Axie Infinity

I. INTRODUCTION

Games have facilitated the rapid development of RL al-
gorithms in recent years. Card games, as a classical type
of games, also pose many challenges to RL algorithms. The
direct applications of generic algorithms [1]–[4] in card games
are problematic in many aspects because of the large-scale
discrete action space [5]. Prior works have proposed RL
methods to approach a number of traditional card games, like
Texas Hold’em [6]–[8], Mahjong [9], DouDizhu [5], [10], etc.
However, the issues brought by the large action space still
remain, especially for modern card games such as Axie Infinity
1 which has a huge discrete action space.

Axie Infinity is an one-versus-one online card game which
has millions of players globally. Axies are virtual pets that
have different attributes such as species, health, speed, etc.
Each axie has its own card deck consisting of 2 copies of
4 cards. The player needs to form a team of 3 axies at the
beginning and play their cards (24 cards in total) to beat the
opponent player’s team.

This game is different from the traditional card game in the
following aspects:

1) For a fixed team, the player needs to choose one
sequence of cards from 23 million different card se-
quences.

© 2022 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

1A detailed description of Axie Infinity can be found in https://whitepaper.
axieinfinity.com/

2) The effect of a card is usually influenced by the its
position in the card sequence and the status of the axies
such as the health and the shield.

3) There are thousands of teams for players to choose. The
optimal strategies for different teams are various.

These difficulties are all connected to the large-scale action
space, and they are shared by a lot of other modern card games
such as Hearthstone2.

Some existing works have investigated the large action space
issue in card games. Zha et al. [5] propose an action encoding
scheme for DouDizhu. However, this encoding scheme cannot
properly encode the action in our problem as the complexity
of the action space in our problem is much higher than
that in DouDizhu (27472 possible moves). Dulac-Arnold et
al. [11] propose to choose actions in a small subset of the
action space to speed up the action search process. This set
is chosen based on a proper action encoding method which
usually relies on prior knowledge. However, the prior human
knowledge for our problem is hard to obtain due to the
diversity of the teams and the strategies. Chandak et al. [12]
propose an algorithm to learn action representations from the
consequences of corresponding actions. This method can avoid
using prior human knowledge, but the policy-based method
produces optimal actions which are not feasible in the discrete
action set. We also mention several general techniques in
[13] to reduce the size of the action space to improve the
performance. However, they are not applicable in our case as
it still requires prior human knowledge of this game.

In this paper, we consider a hybrid RL method to deal
with the large discrete action space. This method chooses the
optimal action in a small subset of the large-scale feasible
action set. It can quickly train models on different teams
with minimal prior knowledge. We test our method with
other baseline methods using Axie Infinity task. We have the
following main contributions:

1) A Markov Decision Process (MDP) formulation for
Axie Infinity problem including a novel action encoding
scheme.

2) An efficient RL method to solve card game problems
with large-scale discrete action space.

2https://playhearthstone.com
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3) A supervised learning method to learn action represen-
tations.

4) Empirical results demonstrating the superiority than
other baseline methods

II. PROBLEM FORMULATION

We assume our agent uses a fixed team to play against a
rule-based player who randomly uses multiple popular teams.
As the opponent is fixed, we formulate this problem as a
single-agent Markov Decision Process (MDP). This MDP has
a finite time horizon, each time step is one game round.
The process is terminated when one player is defeated. The
one-step transition probability measure is denoted as Pt.
Every state in the state space S consists of all the available
information to our player. This includes all six axies’ status,
energy, available cards, card history, etc.

In Axie Infinity, each team has three axies, each of which
has two copies of 4 distinct cards. Thus, this forms a 24-
card deck. In each round, the player places a sequence of
cards for each axie, thus three sequences of cards are placed.
Each sequence can have at most 4 cards by the rule of the
game. Considering all these rules, we propose a novel action
encoding scheme to vectorize an action as a 6×12 matrix. One
example is given in Figure 1. All legit actions form the discrete
action space A whose size equals 23,149,125. In contrast,
DouDizhu in [5] only has 27,472 actions.

Fig. 1. A demonstration of an encoded action consisting of 3 card sequences.
Axie A/B/C respectively places 1/2/4 cards in this round. The status of each
card is encoded in a 6-digit vector where the first two digits represent the
number of this card and the rest 4 digits encode its positional information.
The matrix is formed by 12 such vectors for 12 distinct cards.

We define the reward as the result of the game, with
a penalty on the activity discarding cards. Mathematically,
we denote the terminal state set T as a set of states at
which the game is over. For a transition tuple (st, at, st+1),
0 ≤ t < T − 1, we define the reward function as

rt(st, at, st+1) =

{
I − c · nd, if st+1 ∈ T ,
0, o.w.,

where I and nd are components in st+1. The game result
indicator I equals to 1/0/-1 if the agent wins/ties/loses the
game, and nd is the number of discarded cards in the whole
game. The positive constant c adjusts the importance of the
penalty term.

III. METHODOLOGY

Due to the challenges brought by the large-scale action
space, we consider to only evaluate a small group of actions
which are filtered out from all feasible actions. We form this
small set of actions with those actions which have similar
effects with a target action. This target action is generated by
a policy function. A distance function is needed to measure the
“similarity” between two actions. Inspired by Word2Vec [14],
we learn an action embedding function which maps one-hot-
like action vectors into a continuous space which is defined as
the latent action space. The Euclidean distance in this latent
space reflects the difference between two actions in terms of
their effects.

A. A Decision Procedure

We illustrate the decision procedure in Figure 2. This
decision procedure of our method consists of 3 parametrized
components:

1) A raw policy function uθ1 : S → Rn where n is the
dimensions of the action space, A ⊂ Rn.

2) An embedding function fθ2 : Rn → E where E is
the latent action space, and E ⊂ Rm, m < n. For an
arbitrary action a, e = fθ2(a) is called the latent action
representation of a.

3) A state-action value function, i.e., a Q-function qθ3 : S×
A → R. The Q-value qθ3(s, a) evaluates the expected
return when executing action a at state s.

For a given input s, the overall policy function µ selects
the action using the following procedure. Firstly, we obtain a
point ā = uθ1(s) as a “raw action”, note it is possible that
ā 6∈ A. Secondly, we denote the set of all available actions
for s as U(s). We calculate the distance between available
actions with the raw action in the latent space by d(a, ā; fθ2) =
‖fθ2(a) − fθ2(ā)‖2 for all a ∈ U(s). We form a k-element
subset of U(s) with the top k closest actions to the raw action
in the latent space, denote it as Uk(s; θ1, θ2). Mathematically,
this is done by

Uk(s; θ1, θ2) = arg min
U⊂U(s),|U|=k

∑
a∈U

d(a, uθ1(s); fθ2). (1)

In the last, we select the action which has the highest Q-value
in this subset. If we denote an overall policy function as µ for
a given state s, the action is selected by

a∗ = µ(s; θ1, θ2, θ3) = arg max
a∈Uk(s;θ1,θ2)

qθ3(s, a). (2)

B. Training procedures

Our method consists of three sets of parameters θ1, θ2, and
θ3. We design a two-stage algorithm to train these parameters.

In the first stage of training, we design a supervised learning
method to learn the embedding function fθ2 . We learn the
action representations based on the effects of the actions on
the system states. For instance, assume an arbitrary state s ∈ S
and two actions a1 and a2, if the probability measure p(s, a1)
is similar to p(s, a2) where p(s, a) = P (St+1 | St = s,At =
a), we say a1 and a2 have similar effects. Following this



Fig. 2. An illustration on the decision procedure.

Fig. 3. An illustration of the model of the system dynamics.

idea, we train the embedding function by learning a model
of the system dynamics which consists of the embedding
function fθ2 . We illustrate the architecture of the system model
in Figure 3. Specifically, we define a deterministic transition
function mθ4 : S × E → S, which maps the state and action
embedding to the next state. Thus, mθ4(s, fθ2(a)) should
estimate the next state after executing a at s. We define the
following objective function to minimize the mean square error
between the estimated next states with the actual next states

J1(θ2, θ4) = EPt,·[(mθ4(s, fθ2(a))− s′)2]. (3)

We collect the transition tuples (s, a, s′) in a dataset D by
randomly selecting actions. Then, we apply a gradient-based
optimization method to optimize θ2 and θ4 by minimizing J1
on D. In the next stage of training, we discard the dense layers,
and only use the embedding function θ2.

In the second stage of training, similar to Deep Determin-
istic Policy Gradient in [2], we apply an iterative training
procedure to alternatively update the deterministic raw policy
function (the actor) uθ1 and the Q-function (the critic) qθ3 .
We use the raw action ā instead of the final action a∗ in the
policy improvement part [11]. The Q-function training uses
Monte-Carlo estimate described in [15].

IV. EXPERIMENT

In this section, we compare our method with two baseline
methods:

1) DouZero. We adapt the DouZero method in [5] to our
problem. We design a similar action encoding scheme
as the one mentioned in this paper, where each action
is encoded as a 2-by-12 matrix.

2) DouZero+pooling. We reduce the size of the action
space by shrinking its dimensions. We design this base-

line method by adding an 1D pooling layer [16] on the
flattened actions from DouZero.

Indeed, other techniques to reduce the scale of action spaces
are mentioned in [13]. They inevitably introduce prior human
knowledge, which conflicts with our intention, and this makes
the comparison unfair. In our experiments, we try to answer
the following questions:

1) Does our method produces overall better performance
than other baseline methods?

2) Does our method achieve better sample efficiency?

A. Sample Efficiency

We select six teams that are popular at different levels in
the global rank. A detailed description of these teams can be
found in Appendix VI-B. We train a model for each team
using 3 methods: our method, the DouZero method, and the
DouZero+pooling method. Thus, we trained 18 models in
total. To make a fair comparison, we stop the training after
1× 107 steps for all these models.

Figure 4 shows the evolution of average returns during
training in the first 1× 105 steps. It can be seen that, on most
of the teams, the models from our method have the highest
average return among the three by trained with the same
amount of samples. This indicates that our method can quickly
produce high-quality models due to high sample efficiency.

B. Battle

We evaluate the performance of each model by letting it play
against other models and rule-based players. This guarantees
that the models trained for the same team have the same set
of opponents. Each battle consists of 1000 games. Each model
plays 29000 games against various opponents to obtain a
comprehensive result. This makes the variance of estimators of
the winning rates small enough to show statistical significance.

We aggregate the winning rate of the models trained by each
method in Table I. It can be seen that the overall winning rate
of our method is 5% and 7% higher than the DouZero and
DouZero+pooling method respectively. This also confirms our
method has a better generalization ability on different teams.



Fig. 4. Comparison on the learning curves. Six line-charts shows the
learning curves of 18 models in the first 5 × 105 steps. It can be seen that
our method shows a faster convergence with the same amount of samples on
most of the 6 teams.

TABLE I
THE AVERAGE WINING RATE OF 3 METHODS ON 6 TEAMS

(174000 GAMES FOR EACH METHOD)

Method Winning rate

Our method 0.4986

DouZero 0.4477

DouZero+pooling 0.4283

We also compare the models which use the same team.
For each team, we calculate the difference between the
number of wins by our method with that of DouZero or
DouZero+pooling. A positive difference indicates our method
plays this team better than the baseline method. We visualize
these differences in the number of wins in Figure 5. We can
find that our method can achieve a higher number of wins
across most teams than the baseline methods. This indicates
that our method has good generalizability to most team types.
We notice that our method cannot outperform DouZero on
teams 2 and 6. The reason is that strategies for these two
teams are more diversified than those for the other teams. This
makes high-reward actions far away from each other in the
latent space. In such cases, the DouZero method may make
better decisions than our method because it evaluates every
feasible actions, though it is more computationally expensive.

C. Time of Action Selections

Axie Infinity requires players to make decisions in 30
seconds in every round. We mention that some methods such
as Monte Carlo Tree Search (MCTS) in [17] can also achieve
good performance, but they usually fail to select cards by the
time limit. We show our method is more efficient in time
than the other two baseline methods using the time consumed
by selecting card sequences. We test the 18 models in 1000

Fig. 5. Comparison on battle performance between our method with
two baseline methods on 6 teams. We train 18 models using these three
methods on 6 teams. We evaluate each model by letting it play against a same
set of opponent players consisting of the other trained agents and random
players (29000 battles in total). Note the qualities in the left/right bar-plot
respectively show (the number of wins of our method - the number of wins
of the DouZero/DouZero+pooling method).

rounds, and record the time for selecting cards3. Table II shows
the statistics of the distribution of time for card selections for
three methods. It can be seen that our method uses shorter time
than the other two methods in average. The 25% quantiles for
the three methods are similar, but the 75% quantiles of the two
baseline methods is mush higher than that of our method. This
indicates that our method has more consistent performance in
terms of the time. This confirms that our method benefits from
only evaluating actions in a fixed-size subset from all feasible
actions.

TABLE II
THE DISTRIBUTION OF TIME FOR SELECTING CARDS BY THREE METHODS

(IN MILLISECOND)

Statistics Our Method DouZero DouZero+pooling

Mean 7.42 18.71 16.35

Std 18.42 86.67 72.28

25% Quantile 5.01 4.91 5.22

50% Quantile 5.64 8.71 8.61

75% Quantile 7.00 16.50 15.87

Max 1186.32 3699.20 3707.82

V. CONCLUSIONS

In this study, we try to use an RL method to solve the
challenges in a card game problem with a large action space.
We give the MDP formulation for the game Axie Infinity.
We propose a general RL algorithm to learn the strategies
of different teams. We design a training procedure to learn
the action embedding function without prior information. We
empirically demonstrate our method outperforms the baseline
methods in terms of the battle performance and the sample
efficiency.

3The experiment is conducted on a platform with Apple M1 chip (3.2 GHz)
and 16 GB LPDDR4 RAM.



Our work can be improved by incorporating the self-play
technique [17] in training to enhance the opponents. Moreover,
learning prior information from the textual data of card de-
scriptions can enhance the action embedding component in our
method. Future works may focus on this direction for further
improvement.
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VI. APPENDIX

A. Game rules

We briefly explain the rules of Axie Infinity in this section.
More detailed rules can be found in the website (https:
//whitepaper.axieinfinity.com/).

Fig. 6. An illustration of the attributes of an Axie.

Axie Infinity is an online one-verse-one card game. Axies
are virtual pets in this game, and they can be traded between
players. Figure 6 illustrates the attributes of an Axie. The
behavior of an Axie can be determined by three of its
characteristics: the class, the attributes (stats), and the cards.
The game has 9 classes in total. Every class is stronger than
three classes, and is weaker to other three classes. Figure
7 depicts the relationship between 9 classes. In battles, an
Axie produces more/less damages to other Axies if their class
are weak/strong against the class of this Axie. Attributes
(stats) consist of 4 values which indicate the Axie’s ability
in Health/Speed/Skill/Morale. Every Axie carries 8 cards – 2
copies of 4 distinct cards. Players need to buy three Axies to
form a team for combat. Thus, this forms a 24-card deck for
the player to play.

Figure 8 demonstrates a battle between two players. Two
players play cards round by round. In each round, the player
draws cards from the card deck and gains energy points.
The energy points limit the number of cards to select since
some cards need energy points to execute. Most of the cards
consume 0 or 1 energy point. The player can select at most 4
cards from an Axie, the order of these 4 cards can significantly
impact their effects. Thus, the player create 3 card sequences
from each Axie to play in a round. Once the card sequences
are determined, the player can hit “End Turn” button, and the
card sequences submitted by the two players are executed in
an order which is associated with the Axies’ attributes and the
card effects. The cards produce damages to the Axies on the
other side. Each Axie has health points, the Axie is beaten
when it has 0 health point. When all three Axies on a side are
beaten, the game ends, and the player whose at least one Axie
is alive wins this game. If all six Axies are beaten, a tie is
reached. If the game can continue after the card execution, next
round starts and the players draw cards from the remaining
card deck again. Once the card deck is exhausted, the used
cards are automatically shuffled and form a new card deck.

https://whitepaper.axieinfinity.com/
https://whitepaper.axieinfinity.com/


Fig. 7. The relationship between the 9 classes.

Fig. 8. A snapshot of a battle of Axie Infinity.

B. Teams in the experiments

In order to validate our method, we select six teams which
are popular from different levels in the global rank. Since
the human strategies for these six teams are very different,
our method ideally can lean these diversified strategies. The
following tables show the detailed information for the 6 teams
in our experiments.

TABLE III
DETAILS OF THE SIX TEAMS IN THE EXPERIMENTS

Team 1 Axie 1 Axie 2 Axie 3

Axie Class Aquatic Plant Bird

Axie Stats 45/57/35/27 61/31/31/41 27/59/35/43

Axie Card 1 Aqua Vitality Cleanse Scent Single Combat

Axie Card 2 Crimson Water Drain Bite Soothing Song

Axie Card 3 Aquaponics Prickly Trap Headshot

Axie Card 4 Tail Slap Spicy Surprise All-out Shot

Team 2 Axie 1 Axie 2 Axie 3

Axie Class Aquatic Bug Dusk

Axie Stats 45/51/35/33 43/35/35/51 57/41/27/39

Axie Card 1 Swift Escape Scarab Curse Ivory Chop

Axie Card 2 Terror Chomp Terror Chomp Terror Chomp

Axie Card 3 Bug Signal Bug Signal Bug Signal

Axie Card 4 Tail Slap Anesthetic Bait Cattail Slap

Team 3 Axie 1 Axie 2 Axie 3

Axie Class Plant Dusk Mech

Axie Stats 56/33/31/44 59/47/27/31 37/48/43/36

Axie Card 1 October Treat Ivory Chop Juggling Balls

Axie Card 2 Vegetal Bite Sneaky Raid Sneaky Raid

Axie Card 3 Disguise Surprise Invasion Sinister Strike

Axie Card 4 Gas Unleash Venom Spray Twin Needle

Team 4 Axie 1 Axie 2 Axie 3

Axie Class Plant Dusk Dusk

Axie Stats 59/31/31/43 57/43/27/37 51/50/27/36

Axie Card 1 October Treat Barb Strike Barb Strike

Axie Card 2 Vegetal Bite Sneaky Raid Chomp

Axie Card 3 Disguise Surprise Invasion Smart Shot

Axie Card 4 Gas Unleash Venom Spray Venom Spray

Team 5 Axie 1 Axie 2 Axie 3

Axie Class Plant Dusk Dusk

Axie Stats 59/31/31/43 54/48/27/35 51/46/27/40

Axie Card 1 October Treat Spike Throw Sticky Goo

Axie Card 2 Vegetal Bite Chomp Chomp

Axie Card 3 Disguise Disarm Mystic Rush

Axie Card 4 Gas Unleash Allergic Reaction Allergic Reaction

Team 6 Axie 1 Axie 2 Axie 3

Axie Class Plant Beast Bird

Axie Stats 59/31/31/43 32/45/31/56 27/61/35/41

Axie Card 1 October Treat Single Combat Blackmail

Axie Card 2 Vegetal Bite Nut Crack Dark Swoop

Axie Card 3 Disguise Nut Throw Eggbomb

Axie Card 4 Carrot Hammer Ivory Stab All-out Shot
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