
Lode Encoder:
AI-constrained co-creativity

Debosmita Bhaumik
Game Innovation Lab
New York University

Brooklyn, USA
db198@nyu.edu

Ahmed Khalifa
Game Innovation Lab
New York University

Brooklyn, USA
ahmed@akhalifa.com

Julian Togelius
Game Innovation Lab
New York University

Brooklyn, USA
julian@togelius.com

Abstract—We present Lode Encoder, a gamified mixed-
initiative level creation system for the classic platform-puzzle
game Lode Runner. The system is built around several autoen-
coders which are trained on sets of Lode Runner levels. When
fed with the user’s design, each autoencoder produces a version
of that design which is closer in style to the levels that it was
trained on. The Lode Encoder interface allows the user to build
and edit levels through “painting” from the suggestions provided
by the autoencoders. Crucially, in order to encourage designers
to explore new possibilities, the system does not include more
traditional editing tools. We report on the system design and
training procedure, as well as on the evolution of the system
itself and user tests.

Index Terms—Machine Learning, Variational Autoencoders,
Co-Creation, Mixed Initiative, Level Design

I. INTRODUCTION

It has been said that constraints are good for creativity [1].
Some of the greatest art in the world came about through ad-
hering to constraints, either self-imposed or imposed by others.
Beginners and professional artists alike often find themselves
becoming more productive (e.g. escaping writers’ block) or
gaining new perspectives and methods through carrying out
formal exercises. One reason that constraints can facilitate the
creative process may be that they can steer creators away from
familiar solutions and workflows.

AI-assisted tools for co-creativity typically seek to assist
a human designer through providing suggestions and feed-
back [2]–[5]. The basic ideas is to use various AI methods
to outsource part of our cognitive labor, such as playtesting
a level, fixing color balance, or suggesting where to place a
character. An implicit assumption is that the tool is attempting
to support the human creator in making the artifact the human
wants to create. Michelangelo famously said “The sculpture
is already complete within the marble block, before I start my
work” and that he just had to “chisel away the superfluous
material”. The guiding philosophy behind many of these AI-
assisted co-creation tools seem to be to help discover the
sculpture that is already in the artist’s mind, and suggest
helpful parts to chisel away. Some of these tools explicitly try
to model the style of the user or the end result they wanted
to create.

But what would happen if we allowed the AI to assist
(or “assist”) the human creator by setting constraints, or
making suggestions that are orthogonal to the direction of the
user? This paper explores this question by describing Lode
Encoder1, a system designed to help but also constrain the
designer. The target domain for the system is levels for the
classic platformer Lode Runner, a game which emphasizes
real-time puzzle-like gameplay on medium-sized 2D levels.
Lode Encoder allows you to create/edit these levels, but not
freely; you must compose your levels based on parts of
suggestions generated by neural networks. More specifically,
these neural networks are autoencoders (thus the name of the
system) trained on a corpus of existing Lode Runner levels.
The autoencoders take the level, the user is currently editing,
and try to make it more like various levels they have been
trained on. As the user composes their level, they can ask
for more suggestions from the networks, but only a limited
number of times, to discourage asking for suggestions until
they just know what they want.

This paper first describes the game itself, and related at-
tempts to learn level generators for it and similar games. It then
describes the autoencoders, the dataset they were trained on,
and data augmentation procedures. We also comment on the
somewhat complicated genesis of the system. After describing
the Lode Encoder system, we report on the results of an open-
ended user study based on recruiting users on Twitter.

II. LODE RUNNER

Lode Runner is a 2D platformer-puzzle game that was
first published by Broderbund in 1983 on multiple systems
(Apple II, Atari 8-bit, Commodore 64, VIC-20, and IBM PC).
The goal of the game is to collect all the gold nuggets in
the level while avoiding the enemies that try to catch the
player character. The player can traverse levels by walking
on platforms, climbing up ladders, moving using ropes, and
falling from edges and ropes but, unlike most other platform
games, cannot jump. Additionally, the player can dig hole
either to their left or right to make path or to trap enemies.
These holes are temporary, over time tiles will regenerate

1http://www.akhalifa.com/lodeencoder/978-1-6654-3886-5/21/$31.00 ©2021 IEEE

ar
X

iv
:2

30
8.

01
31

2v
1

 [
cs

.L
G

]
 2

 A
ug

 2
02

3

Fig. 1: A classic Lode Runner level from Commadore 64
release

to fill the holes. Figure 1 show an example level from the
Commodore 64 release.

Due to Lode Runner’s success [6], the game was
ported/remaked to a lot of consoles including newer ones
such as Nintendo Switch2. Although of that wide spread, the
game didn’t get much attention in the AI in Games research
community compared to other platformer games such as Super
Mario Bros [7]. Perhaps because of the puzzle-heavy nature of
Lode Runner, and there not being a game-playing competition
or benchmark for the game, it has been seen as less attractive
to work on.

The few papers that target Lode Runner focus on machine
learning-based level generation for the game. Snodgrass and
Ontanón [8] applied Markov model to generate levels for Lode
Runner, Super Mario Bros and Kid Icarus. Thakkar et al. [9]
used vanilla autoencoder to learn latent space of Lode Runner
levels and then used latent space evolution [10] to generate
new Lode Runner levels. Snodgrass and Sarkar [11] trained a
Conditional Variational Autoencoder on levels of 7 different
games (including Lode Runner) and used it with example-
driven binary space partitioning algorithm to generate/blend
new levels across these games. Steckel et al. [12] combined the
efficiency of GANs with MAP-Elites to generate new levels
for Lode Runner.

III. MIXED-INITIATIVE GAME DESIGN TOOLS

Lode Encoder is an AI-constrained mixed-initiative level
design tool [2], [13] that helps user to build Lode Runner
levels. The important feature of this tool is the user is
constrained by the AI. The system does not give direct control
to the user for building levels, instead it provides suggestions
generated by the trained Autoencoders to help the user.

Sarkar and Cooper [14] investigated the different ways to
use Machine Learning to enable the users to generate, modify,
and/or blend levels from a single or multiple games. Based on
their work and a number of other AI-assisted mixed-initiative
tools in the literature. We can divide the tools according to the
role of the AI agents in the system:

• a supporting role: the agent provides a group of sug-
gestions to the user where the user can accept it or ask

2https://www.nintendo.com/games/detail/lode-runner-legacy-switch/

for new ones. For example, Sentient Sketchbook [5] is a
mixed-initiative tool that supports creating 2D strategy
maps for StarCraft. The tool provides the user with
multiple suggestions that can improve different factors in
the current level such as balance, safe area, etc. Alvarez
et al. [15] followed the same philosophy and provided a
similar tool to generate dungeons for an dungeon crawler
game.

• a friend: modify the content directly without asking for
the user permission. For example: Tanagra [3] is 2D
mixed-initative tool that creates 2D platformer levels. The
user can add some constraints in these levels by fixing
certain areas and the system generate the whole level
while respecting the user constraints. Similarly, Guzdial
et al. [4] developed a game design tool where the user
can build Super Mario Bros levels with the help of a
trained AI agent. The user and the AI agent take turns in
creating the level and the agent adapts to the user style
by updating its models using active learning methods.

• a creative force: the agent creates the whole content and
the user can only direct the agent using some auxiliary
inputs. For example, Picbreeder [16] and Artbreeder [17]
evolve pictures with the help of the user by allowing the
user to be the critic. The system allow the user to select
levels that they like then the system take these levels and
blend them together to allow for new images inspired
by the user selection. Similary, Schrum et al. [18] uses
similar evolution technique to generate levels for Super
Mario Bros (Nintendo, 1985) and The Legend of Zelda
(Nintendo, 1986). The main difference is that they evolve
the latent variables of a trained Generative Adversarial
Network (GAN). Schubert et al. [19] provided a UI that
allow the user to generate Super Mario Bros (Nintendo,
1985) levels using their TOAD-GAN. TOAD-GAN is a
new proposed GAN that can generate new levels from a
single data point. The tool provided with the system gives
the user minimal control such as which trained GAN to
use, the similarity to the training data set, etc.

Lode Encoder, the subject of this paper, doesn’t fit easily in
any of these categories. It blurs the line between the agent in
a supporting role as the user still have full creative control on
what to place and where to place, and the agent as a creative
force as the agent constraints all these values and the user just
control the generated suggestion using an auxiliary input (the
current level).

IV. AUTOENCODER AND TRAINING

Autoencoders [20], [21] are unsupervised neural networks
that learn to compress data in lower dimension. Autoencoders
are made of two parts, an encoder which compresses the input
data into lower dimension (called latent space) and a decoder
that reconstructs the data from the latent space. Autoencoders
have previously used too generate levels, repair levels, and
recognize design style [22].

While vanilla autoencoders learn to map the input with a
single latent space, Variational Autoencoders(VAE) [23] learn

Fig. 2: A screenshot of Lode Encoder

the probability distribution of latent space for a given input set,
which enables random sampling and interpolation of output.
This can also enable a better representation for the latent space
which can in tern allow an easier way to search the latent space
for contents.

In this work, we use VAEs, as they in preliminary tests
showed better results than vanilla autoencoders. Our network
architecture is based on Sarkar et al. work [24], [25]. Both our
encoder and decoder are made of 4 fully-connected layers with
batch normalization after each layer. The encoder uses ReLU
activation for each layer, whereas the decoder uses ReLU for
first three layers and Softmax in the final layer.

A. Dataset

We used all the 150 classic Lode Runner levels for our
experiments. The level data is taken from Video Games Level
Corpus (VGLC) [26]. These levels are consisted of 22x32
tiles, each tile belongs to one of the tile type from the
tileset: solid, breakable, enemy, gold, ladder, rope, and empty.
We encoded the data using one-hot encoding. This number
of levels is relatively large compared to other games for
which PCGML [27] have been attempted, but small by the
standards of machine learning in general. Machine learning
algorithms usually achieve better results when there is an
abundance of training data which is feasible in fields like face
generation, text generation, etc (Imagenet has more than 14
million images). This is not the case in AI in Games research
as game data is either small (Super Mario Bros has dozen of
levels) or publicly not available (Super Mario Maker levels
can’t be accessed outside of the game).

One of the most common solutions to that problem is to
increase the dataset size by augmenting the input data [28],
[29]. We applied padding to each of the levels using solid tiles.
Each level of the dataset was padded with 10 columns. Varying
the number of columns padded to left and right we create 11
padded levels from each original level. We started with no
padded column on left and 10 padded columns on right of a
level then increased the number of padded columns on left

and decreased the numbers on right. We repeated this process
until left had 10 padded columns and no padded columns on
right for each original level. Then each of these level can be
reflected across the x-axis to double of the size of the levels.
The total amount of levels after augmentation is 3300 instead
of 150.

B. Training

For training, we divided the dataset into three sets of the
original levels. These sets were created based on the features
of the levels: levels with lots of gold, levels with platforms,
and levels with long ladders or multiple ladders. This split
of dataset was made manually. Each set contains 50 levels,
which after data augmentation as described above become
1100 training instances. We trained three different VAE models
on each of these sets and an additional VAE on the whole
dataset. For the rest of the paper we refer to the VAEs as
VAE-Gold, VAE-Platform, VAE-Ladder, and VAE-All.

Each VAE was trained for 10,000 epochs using the Adam
optimizer. Default learning rate was 0.001, learning rate de-
cayed every 2500 epochs by 0.01. We used Categorical-Cross
Entropy to calculate the loss of the model. In the initial
experiments we tried different sizes of the latent space 32,
64 and 128. Based on the results, we finally settled on the
latent size of 128 as it provided the best result.

V. LODE ENCODER

Figure 2 shows a screenshot of our Lode Encoder tool. The
tool provides different size brushes (on the left) that the user
can use to paint from the suggested levels (on the right) in
the editor canvas. The system encourages users to mix levels
by providing an originality score (above the canvas). This
score reflects how different and new the created level from the
original training levels. Finally, the system limits the amount of
times the user can get new suggestion (above the suggestions).
This restriction was added to push users to make the best use
of the current suggestions. Beside level creation, the system
facilitates testing and sharing levels online over Twitter (above
the originality score).

Fig. 3: Lode Encoder system architecture

Figure 3 shows the overall system architecture of Lode
Encoder. The system consists of six different modules:

• Level Manager: maintains the current level and enables
the user to manipulate it using the toolbox and auxiliary
functions.

• Toolbox: enables the user to select a tool for editing the
current level.

• Suggestion Manager: generates and display the AI gen-
erated suggestion.

• Auxiliary Functions: provides the user with extra func-
tionalities that manipulates the flow of the tool.

• Game Player: allows the user to play and share the
current game level.

• Score Manager: generates and shows the current origi-
nality score.

In the following subsections, we are going to discuss each of
these modules in details.

A. Level Manager

Level Manager maintains the current level state during the
level creation process. It is the central piece of flow in the
whole system. The level manager send the current level to
Score Manager to calculate the originality score, Suggestion
Manager to generate new suggestions, and Game Player to test
and share the current level. The user can only manipulates the
current level using the provided tools from the toolbox.

B. Toolbox

Toolbox provides the main tools to manipulate the current
level in the Level Manager. It includes these four tools:

• Brush Tool: enables the user to apply segments of
suggested levels to the current level. The brush applies
the corresponding tiles from the selected suggested level
to the current level. The toolbox provides four different
brush sizes to provide the user with fine control on the
granularity of their painting.

• Eraser Tool: allows the user to erase certain tiles in
the current level. The eraser provides the users to fine

control on removing some of the painted tiles from the
suggestions.

• Wand Tool: adds the majority voting value to the selected
tile. This tool was added in a later iteration (check
section VI for more details) of the tool to help users to fill
small broken areas in their design. This is the only tool
that is limited in its usage to a maximum of 7 tiles. This
limit prevents the user from over using the tool to build
their level and pushes them towards mixing the suggested
levels.

• Player Tool: provides the user with the ability to choose
the player starting position in the level. We provided this
tool because the suggestions does not gives any player as
the models were not trained on player tile.

C. Suggestion Manager

Suggestion Manager is responsible for providing sugges-
tions from the current level. It uses three different models:
VAE-Platform, VAE-Ladder, and VAE-Gold. Each model gen-
erates two suggestions based on the current level, one is with
low variance to the current level other is a high variance to the
current level. Current level is feed to the encoder of the VAE
and latent vector is obtained then with a small uniform noise (-
0.005 <= noise < 0.005) is added to the latent vector then it is
fed to the decoder to get the low variant suggestion. While for
the high variant suggestion comparatively big uniform noise
(-0.5 < noise < 0.5) is added to the latent vector and the loop
goes for 10 times. This loops is added to help the suggested
level to look a lot different from the previous suggestion if the
user didn’t change anything in the current level.

All the suggestions are displayed in a grid of 3x2 where
each row comes from a different model (VAE-PLatform, VAE-
Ladder and VAE-Gold respectively) and each column suggest
different variance (low variance and high variance respec-
tively). The Suggestion Manager allows the user to select from
the suggested levels and use them with the brush tool to make
their own level. User can ask for new suggestions but for
limited number of times (maximum of 7). New suggestions

will be generated based on the current level in the Level
Manager. The limited number of refreshes pushes the user to
be creative in using the current suggestion as they can’t build
any level they want.

D. Auxiliary Functions

Auxiliary Functions provides the user with additional func-
tionality that doesn’t affect the current level but makes the
user’s life easier. The Auxiliary Functions contains:

• Clear All Function: help the user to clear everything and
restart the whole system instead of refreshing the website,
every time the user want to do that.

• Play & Share Function: passes the current level from
the Level Manager to Game Player so the user can test
their level and share it on Twitter with other people to
try.

• Undo & Redo Function: saves all the edits the user do
in the tool and allow them to undo/redo any accidents or
mistakes they have done during creating a new level.

• Save Function: generates a URL that contains the current
level so the user can share it with a friend or continue
editing it later in time.

E. Game Player

Game Player enables the user to play the current level.
This helps users to test their current level and see if they
are playable or not. Once the user wins the level, the level
can be shared on Twitter, or elsewhare using a link. This
module was not built from scratch, we modified an open source
HTML5 implementation of Lode Runner by Simon Hung3.
Currently we do not have any automated agent to determine
the playability.

F. Score Manager

The Score Manager finds the originality value of the current
level. Any change in the current level updates the score. Higher
originality value indicates less similarity between training
levels and current level. The orginality score is calculated
using the VAE-All model. We pass the current level through
the VAE-All model and then measure the hamming distance
between the reconstructed level and the input level. This
hamming distance measures the number of different tiles
between both of them. We normalize that value by dividing by
the level area and then show it to the user as the final score.
To make the user notice the score more and force them to
make a good level, we made sure the originality score flashes
red if it is less than 25%.

VI. SYSTEM EVOLUTION

The Lode Encoder tool came out of a project seeking to
train autoencoders to generate content. We wanted to see
if we could make autoencoders, a self-supervised learning
method, generate levels as well as Generative Adversarial
Networks (GANs), another self-supervised learning method.
If this worked, we would use the basic idea of Latent Variable

3https://github.com/SimonHung/LodeRunner TotalRecall

Name Statistics
Number of users 100
Number of sessions 132
Number of tested levels 84
Number of playable levels 24
Number of Feedback 7

TABLE I: Statistics on using the tool over the course of 18
days

Evolution, searching the latent inputs of GANs for vectors
that lead to good content, but using the bottleneck layer of
the autoencoder. In other words, the initial focus was on
autonomous rather than interactive content generation.

Alas, things went less than perfectly well. Although we
tried every trick we could think of, the autoencoders gen-
erally produced rather lousy levels, that rarely passed our
automated playability test. They seemed unable to model the
long-distance relationships between level elements that are
so important for a game like this; the playability of a level
depends on that every gold nugget is reachable from the
starting point, something that can be hard to ascertain. It is
worth pointing out that the spatial dependencies that must be
understood to make a playable level are much more complex
than those of a typical side-scrolling Super Mario Bros level,
the latter being a target of much PCGML research recently.The
size of the level in tiles is also substantially larger compared
to a single screen (the standard unit of generation) in Super
Mario Bros. This may explain the partial success.

One thing we discovered was that we could train autoen-
coders to generate almost-perfect levels, but only if we overfit
them badly on the data. In other words, regardless of the input,
the overfitted networks would always output something close
to a level in the training set; furthermore, if we pass the output
of the network back into it a few times, it will converge on
something almost identical to a training level. This of course
limits the usefulness of the networks as autonomous content
generators. But it gave us another idea: What if we used
the overfitted networks as a kind of repair function, which
would take what a user created and move it in the direction
of something the network knows to be a good level?

With this in mind we built our first version of Lode Encoder
as a mixed initiative tool. This first version included traditional
editing functionality–“painting” the different tile types directly
onto the level canvas–as well as being able to paint from
the suggested levels. Informal testing with lab members and
friends showed that users mostly did not use the suggestions
beyond the initial ideation stage. That is, most users started
off their design process by painting from one of the suggested
levels, but then they continued using solely the traditional
editing tools. When asked why, users would explain that the
suggestions were either not good or not what they wanted.
Our interpretation of this is that the AI-assistance was not
used to its full potential. We wanted the suggestions to help
users break away from their initial design ideas, and design
around constraints posed by the AI so as to discover new
design strategies. We thought that this could be accomplished

Fig. 4: Number of interactions that each suggestion got over
all the sessions

Fig. 5: Histogram about the number of refreshes used in every
session

by incorporating a more gamelike interaction.
We therefore took the radical step of removing the pos-

sibility for traditional map editing, i.e. selecting tiles freely
and adding them to the level. We also limited the number of
times the user could request new suggestions, to avoid that
users would refresh suggestions until they found exactly what
they wanted. The idea is that the users would have to work
with what they were given, and find ways to design around
limitations.

This version of the system went through the most testing,
and was advertised widely by the authors and others on social
networks. While Lode Encoder was generally well received,
and many found the interaction fun and interesting, a number
of users reported that they found making a playable level a bit
of a chore. A typical problem was finding the few missing
tiles of ladder or brick that would be needed to make a
particular design playable. This was not what we intended
with our system; we wanted the user to have to design around
limitations in a playful way, but we did not want to make it
hard to design a playable level.

To alleviate this problem, we introduced the wand. As de-
scribed above, the wand simply reproduces the most common
tile among its neighbors. This effectively “repairs” broken
ladders or platforms, and was generally perceived by users
as working well.

VII. SYSTEM EVALUATION

For our experiment, we released the tool and shared it on
Twitter and other social media. We asked user to make their
own level, play it and share the level with others. We recorded

Fig. 6: Originality of user made levels

all the user interaction anonymously in an online database and
we also encouraged them to give us their feedback on the tool
via an anonymous form (using Google forms). After 18 days
from the launch of the tool, we froze the data to analyze it.
Table I show some basic statistics about the collected data. We
notice that a lot of people tried the tool but never managed
to create playable levels. Looking into the feedback submitted
through the feedback form, we think that the main problem
for that small conversion ratio is the problem of filling the
holes in the design. Many users got frustrated by not being
able to fill certain holes in their design because they never
occur in the suggestions. We addressed this problem in the
next iteration of Lode Encoder by introducing the wand tool.
We would love to test the effectiveness of the wand tool on
the number of finished playable levels in future research.

Looking into the collected data, we wanted to know which
suggestion engine was most frequently used. Figure 4 shows
the number of interactions that each suggestion got over all
the sessions. As we can see, the low variance platform model
is the most frequently used by a wide margin. We believe that
users preferred this suggestion engine because it has the least
changes from their vision due to the low variance part. Also,
they preferred this suggestion because it tends to produce more
structured levels compared to the rest of the models. It’s worth
noting that the second most frequently used type of suggestion
is the high variance platform model.

As the suggestions from autoencoder is an important part
of our system, we tried to see how helpful the suggestions
are and how often user try to have new suggestions. Figure 5
shows a histogram about the number of refreshes used in every
session. More than 50% of the recorded sessions go with the
initial suggestions only. Nearly 15% and 10% sessions asked
for new suggestions once and twice. Few sessions refreshed
suggestions more than twice. This histogram also shows that
having a limited number of refreshes didn’t confine the user
during their design process as they usually don’t need more
than 3 refreshes to complete their level.

We looked into the 24 playable levels, we noticed that only
5 levels have originality score less than 20% as shown in
figure 6. It seems that showing the originality score encouraged
users to make levels that are different from the training dataset.
Figure 7 shows the top and the bottom four original levels
created by the users. We noticed that the top levels are usually

(a) Levels from training dataset.

(b) Top four playable levels with respect to originality score. The levels have score of 46.73%, 48.86%, 59.66%, and 60.23% respectively
from left to right.

(c) Bottom four playable levels with respect to originality score. The levels have score of 6.96%, 9.38%, 17.76%, and 18.47% respectively
from left to right.

Fig. 7: Examples of original Lode Runner levels and user created levels

more dense with less empty spaces, while the bottom is the
opposite. The originality score might be the culprit behind this
as it pushes the users to create levels that is different from the
original dataset which is mostly more sparse and full of empty
tiles.

Finally, we wanted to see if our system was biasing the
users toward certain level structures. We decided to layer all
the empty tiles in the levels on a heatmap and check if there
is any visible structure. Figure 8a shows the heatmap. We can
notice that there is some bias around always having a ground
floor and having similar structures as the classical lode runner
levels. We attribute this to the fact that they look very clean
and they are mostly generated by the VAE-platform which was
the highest used autoencoder model. We also overlayed the
player starting location on a heatmap as shown in figure 8b.
Most of the player starting locations are around the center
of the x-axis of the level. We don’t know any reason behind
this choice but we think that it gives the player equal choice
when they start playing compared to starting on the left or
starting on the right. Finally, we looked into the gold nuggets
locations (in figure 8c) and the enemy locations (in figure 8d),
we notice that both are wide spread all over the levels. The

only difference is the gold nuggets are more well distributed
than enemies, this goes back to the fact there is more gold in
a level than enemies.

VIII. CONCLUSION

This paper presented Lode Encoder, a novel take on AI-
assisted mixed-initiative game level design tool. While not
the first game design tool to be based on PCGML, it is as
far as we can tell the first to attempt the leverage the power
of self-supervised learning through autoencoders for assisting
game designers. More importantly, however, it proposes an
uncommon interaction paradigm. The suggestions are there
to empower and inspire the designer, but at the same time the
designer is constrained to only paint from the suggestions (and
the magic wand).

At the end of the paper, a question in the reader’s mind is
probably whether this was a successful tool, as this is often
what the user study sets out to test. It is safe to say that the
tool in its current form is not going to replace existing level
editors for various games. However, the formal and informal
feedback we have received strongly suggest that many who
have tried the tool appreciate its uncommon and game-like

(a) Heatmap of all the empty lo-
cations

(b) Heatmap of all the player lo-
cations

(c) Heatmap of all the gold loca-
tions

(d) Heatmap of all the enemy lo-
cations

Fig. 8: Heatmap of the empty locations, the player starting location, gold locations, and enemy locations over the 24 playable
levels

mode of interaction. One well-known indie game designer
remarked that trying to make a completable level was “was
an interesting and enjoyable task” and that Lode Encoder is
“more like a game than a tool”.

From another perspective, the paper tells the story of how
we ourselves have been trying to design around limitations,
namely the limitations of the autoencoder in generating com-
plete and playable levels. We do not know whether we could
make autoencoders or some other form of self-supervised
learning (e.g. GANs) learn to produce better levels based on
the limited number of available Lode Runner levels. However,
the Lode Encoder interaction mode is in itself a response to
trying to find a use for the imperfect output of our generative
models. For this application, it turns out that the slightly
and controllably broken levels, that in various ways warp the
partial level the user has already constructed, are perfect. We
hope that the interaction mode proposed and dissected here
can in turn inspire others.

REFERENCES

[1] O. A. Acar, M. Tarakci, and D. Van Knippenberg, “Creativity and
innovation under constraints: A cross-disciplinary integrative review,”
Journal of Management, vol. 45, no. 1, pp. 96–121, 2019.

[2] G. N. Yannakakis, A. Liapis, and C. Alexopoulos, “Mixed-initiative co-
creativity,” in Foundations of Digital Games, 2014.

[3] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: A mixed-initiative
level design tool,” in Foundations of Digital Games, 2010, pp. 209–216.

[4] M. Guzdial, N. Liao, J. Chen, S.-Y. Chen, S. Shah, V. Shah, J. Reno,
G. Smith, and M. O. Riedl, “Friend, collaborator, student, manager: How
design of an ai-driven game level editor affects creators,” in Proceedings
of the 2019 CHI conference on human factors in computing systems,
2019, pp. 1–13.

[5] A. Liapis, G. N. Yannakakis, and J. Togelius, “Sentient sketchbook:
computer-assisted game level authoring,” in Foundations of Digital
Games. ACM, 2013.

[6] K. Ferrell, “The commodore games that live on and on,” Compute’s
Gazette, pp. 18—-22, 1987.

[7] J. Pearson, “Why artificial intelligence researchers love
’super mario bros.’,” https://www.vice.com/en/article/8q84zz/
why-artificial-intelligence-researchers-love-super-mario-bros, 2015,
last Accessed: April 15, 2021.

[8] S. Snodgrass and S. Ontanón, “Learning to generate video game maps
using markov models,” IEEE transactions on computational intelligence
and AI in games, vol. 9, no. 4, pp. 410–422, 2016.

[9] S. Thakkar, C. Cao, L. Wang, T. J. Choi, and J. Togelius, “Autoencoder
and evolutionary algorithm for level generation in lode runner,” in 2019
IEEE Conference on Games (CoG), 2019, pp. 1–4.

[10] P. Bontrager, W. Lin, J. Togelius, and S. Risi, “Deep interactive
evolution,” in International Conference on Computational Intelligence
in Music, Sound, Art and Design. Springer, 2018, pp. 267–282.

[11] S. Snodgrass and A. Sarkar, “Multi-domain level generation and blend-
ing with sketches via example-driven bsp and variational autoencoders,”
in Foundations of Digital Games, 2020, pp. 1–11.

[12] K. Steckel and J. Schrum, “Illuminating the space of beatable lode runner
levels produced by various generative adversarial networks,” 2021.

[13] A. Liapis, G. Smith, and N. Shaker, “Mixed-initiative content creation,”
in Procedural content generation in games. Springer, 2016, pp. 195–
214.

[14] A. Sarkar and S. Cooper, “Towards game design via creative machine
learning (gdcml),” in 2020 IEEE Conference on Games (CoG). IEEE,
2020, pp. 744–751.

[15] A. Alvarez, S. Dahlskog, J. Font, and J. Togelius, “Empowering quality
diversity in dungeon design with interactive constrained map-elites,” in
2019 IEEE Conference on Games (CoG). IEEE, 2019, pp. 1–8.

[16] J. Secretan, N. Beato, D. B. D Ambrosio, A. Rodriguez, A. Campbell,
and K. O. Stanley, “Picbreeder: evolving pictures collaboratively on-
line,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 2008, pp. 1759–1768.

[17] J. Simon, “Artbreeder,” https://www.artbreeder.com/, 2019, last Ac-
cessed: April 15, 2021.

[18] J. Schrum, J. Gutierrez, V. Volz, J. Liu, S. Lucas, and S. Risi, “In-
teractive evolution and exploration within latent level-design space of
generative adversarial networks,” in Proceedings of the 2020 Genetic
and Evolutionary Computation Conference, 2020, pp. 148–156.

[19] F. Schubert, M. Awiszus, and B. Rosenhahn, “Toad-gan: a flexible
framework for few-shot level generation in token-based games,” IEEE
Transactions on Games, 2021.

[20] H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons
and singular value decomposition,” Biological cybernetics, vol. 59, no. 4,
pp. 291–294, 1988.

[21] M. A. Kramer, “Nonlinear principal component analysis using autoas-
sociative neural networks,” AIChE journal, vol. 37, no. 2, pp. 233–243,
1991.

[22] R. Jain, A. Isaksen, C. Holmgård, and J. Togelius, “Autoencoders for
level generation, repair, and recognition,” in Proceedings of the ICCC
Workshop on Computational Creativity and Games, 2016, p. 9.

[23] J. An and S. Cho, “Variational autoencoder based anomaly detection
using reconstruction probability,” Special Lecture on IE, vol. 2, no. 1,
pp. 1–18, 2015.

[24] A. Sarkar, Z. Yang, and S. Cooper, “Conditional level generation and
game blending,” arXiv preprint arXiv:2010.07735, 2020.

[25] A. Sarkar and S. Cooper, “Generating and blending game levels via
quality-diversity in the latent space of a variational autoencoder,” arXiv
preprint arXiv:2102.12463, 2021.

[26] A. J. Summerville, S. Snodgrass, M. Mateas, and S. Ontanón, “The vglc:
The video game level corpus,” arXiv preprint arXiv:1606.07487, 2016.

[27] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgård, A. K. Hoover,
A. Isaksen, A. Nealen, and J. Togelius, “Procedural content generation
via machine learning (pcgml),” IEEE Transactions on Games, vol. 10,
no. 3, pp. 257–270, 2018.

[28] A. Mikołajczyk and M. Grochowski, “Data augmentation for improving
deep learning in image classification problem,” in 2018 international
interdisciplinary PhD workshop (IIPhDW). IEEE, 2018, pp. 117–122.

[29] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48,
2019.

https://www.vice.com/en/article/8q84zz/why-artificial-intelligence-researchers-love-super-mario-bros
https://www.vice.com/en/article/8q84zz/why-artificial-intelligence-researchers-love-super-mario-bros
https://www.artbreeder.com/

	Introduction
	Lode Runner
	Mixed-initiative game design tools
	Autoencoder and Training
	Dataset
	Training

	Lode Encoder
	Level Manager
	Toolbox
	Suggestion Manager
	Auxiliary Functions
	Game Player
	Score Manager

	System Evolution
	System Evaluation
	Conclusion
	References

