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Abstract—Decades of research have been invested in making
computer programs for playing games such as Chess and Go.
This paper introduces a board game, Tetris Link, that is yet
unexplored and appears to be highly challenging. Tetris Link
has a large branching factor and lines of play that can be very
deceptive, that search has a hard time uncovering. Finding good
moves is very difficult for a computer player, our experiments
show. We explore heuristic planning and two other approaches:
Reinforcement Learning and Monte Carlo tree search. Curiously,
a naive heuristic approach that is fueled by expert knowledge
is still stronger than the planning and learning approaches.
We, therefore, presume that Tetris Link is more difficult than
expected. We offer our findings to the community as a challenge
to improve upon.

Index Terms—Tetris Link, Heuristics, Monte Carlo tree search,
Reinforcement Learning, RL Environment, OpenAI Gym

I. INTRODUCTION

Board games are favorite among AI researchers for ex-
periments with intelligent decision-making and planning. For
example, works that analyze the game of Chess date back
centuries [1], [2]. Already in 1826, papers were published
on machines that supposedly played Chess automatically [3],
although it was unclear whether the machine was still operated
somehow by humans. Nowadays, for some games, such as
Chess [4] and Go [5], [6], we know for sure that there are
algorithms that can, without the help of humans, automatically
decide on a move and even outplay the best human players.

In this paper, we want to investigate a new challenge, Tetris
Link, that has not yet received attention from researchers
before, to the best of our knowledge (see Section II). Tetris
Link is a manual, multiplayer version of the well-known video
game Tetris. It is played on a vertical “board”, like Connect-
4. The game has a large branching factor, and since it is not
immediately obvious how a strong computer program should
be designed, we put ourselves to this task in this paper. For
that, we implement a digital version of the board game and
take a brief look at the game’s theoretic aspects (Section III).
Based on that theory, we develop a heuristic that we also test
against human players (Section IV-A). Performance is limited,
and we try other common AI approaches: Deep Reinforcement
Learning (RL) [7] and Monte Carlo tree search (MCTS) [8]. In
Subsection V-A, we look at MCTS agents, and in Subsection
V-B, we look at RL agents and their performance in the game.
In our design of the game environment for the RL agent, we

assess the impact of choices such as the reward on training
success. Finally, we compare the performance of these agents
after letting them compete against each other in a tournament
(Section V-C). To our surprise, humans are stronger.

The main contribution of this paper is that we present to
the community the challenge of implementing a well-playing
computer program for Tetris Link. This challenge is much
harder than expected, and we provide evidence (Section III-B)
on why this might be the case, even for the deterministic
2-player version (without dice) of the game. The real Tetris
Link can be played with four players using dice, which will
presumably be even harder for an AI.

We document our approach, implementing three players
based on the three main AI game-playing approaches of
heuristic planning, Monte Carlo Tree Search, and Deep Re-
inforcement Learning. To our surprise and regret, all players
were handily beaten by human players.1 We respectfully offer
our approach, code, and experience to the community to
improve upon.

II. RELATED WORK

Few papers on Tetris Link exist in the literature. A single
paper describes an experiment using Tetris Link [9]. This
work is about teaching undergraduates “business decisions”
using the game Tetris Link. To provide background on the
game, we analyze the game in more depth in Section III.
The authors are aware of a similar game called Blokus [10].
It is an interesting game as the branching factor is so large
(≈32928 for Blokus Duo on a 14x14 board) that specialized
FPGA’s have been applied to build good AI for it [11],
[12]. Although visually similar, the gameplay is completely
different, so Blokus strategies or heuristics do not transfer to
Tetris Link.

The AI approaches that we try have been successfully
applied to a variety of board games [13]. Heuristic planning
has been the standard approach in many games such as Hex
[14], Othello [15], Checkers [16], and Chess [4], [17]. MCTS
has been used in a variety of applications such as Go and
General Game Playing (GGP) [8], [18], [19]. Deep RL has
seen great success in Backgammon [20], Go [5], and Othello
[21]. Multi-agent MCTS has been presented in [22].

1Humans only played against the Heuristic, not MCTS or DRL. The
Heuristic is our strongest AI as can be seen in Figure 6.978-1-6654-3886-5/21/$31.00 ©2021 IEEE



Fig. 1: A photo of the original Tetris Link board game. The
colored indicators on the side of the board help to keep track
of the score.

III. TETRIS LINK

Tetris Link, depicted in Figure 1, is a turn-based board game
for two to four players. Just as the original Tetris video game,
Tetris Link features a ten-by-twenty grid in which shapes
called tetrominoes2 are placed on a board. This paper will
refer to tetrominoes as blocks for brevity. The five available
block shapes are referred to as: I, O, T, S, L.3 Every shape
has a small white dot, also in the original physical board game
variant, to make it easier to distinguish individual blocks from
each other. Every player is assigned a color for distinction and
gets twenty-five blocks: five of each shape. In every turn, a
player must place precisely one block. A block fits if all of its
parts are contained within the ten-by-twenty board. A player
is skipped if they are unable to fit any of their remaining
blocks. A player can never voluntarily skip if one of the
available blocks fits somewhere in the board even if placing
it is disadvantageous. The game ends when no block of any
player fits into the board anymore.

The goal of the game is to obtain the most points. One point
is awarded for every block, provided that it is connected to a
group of at least three blocks. Not every block has to touch
every other block in the group, as shown in Figure 2a.

The I block only touches the T but not the L on the far right.
Since they together form a chained group of three, it counts
as three points. Blocks have to touch each other edge-to-edge.
In Figure 2b, the red player receives no points as the I is only
connected edge-to-edge to the blue L.

A player loses one point per empty square (or hole) below
block that was placed, with a maximum of two minus points
per turn. Figure 2c shows how one minus point for red would
look like. Moreover, the Figure underlines a fundamental
difference to video game Tetris. In video game Tetris, blocks
slowly fall, and one could nudge the transparent L under the S

2A shape built from squares that touch each other edge-to-edge is called a
polyomino [23]. Because they are made out of precisely four squares, these
shapes are called tetromino [24].

3The S and L blocks may also be referred to as Z [25] and J [26].

(a) Three points for red (b) No points. (c) Minus point for red.

Fig. 2: Small examples to explain the game point system.

to fill the hole by precise timing of an action. In Tetris Link,
one can only throw blocks into the top and let them fall straight
to the bottom. In the original rules, a dice is rolled to determine
which block is placed. If a player is out of a specific block,
then the player gets skipped. Since every block could turn
into one point, being skipped means potentially missing out
on it. Although not a guaranteed disadvantage, as the opponent
might also be skipped, the authors have abandoned the dice in
their own matches as it resulted in too many games that felt
unfairly lost.

The dice roll also makes Tetris Link a non-deterministic
perfect information game. In this paper, there is no dice
roll, so we analyze the deterministic version of Tetris Link.
Note that we also focus on the two-player game only in this
work. The three- and four-player versions are presumably even
harder. In multiplayer games without teams, people might
temporarily team up against the current leading player, which
creates an unfair disadvantage [10]. Nevertheless, our web-
based implementation for human test games4 can handle up
to four players and can provide an impression of the Tetris
Link gameplay.

A. Verification that all games can fill the board

Each game of Tetris Link can be played to the end, in the
sense that there are enough blocks to fill the whole board
without leaving any empty squares. This is easy to see by
the following argument: The board is ten squares wide and
twenty squares high, so it can accommodate 200 individual
squares. Every player has twenty-five blocks, each consisting
of four squares. There are always at least two players playing
the game, so they are always able to fill the board.

playerBlocks ∗ squaresPerBlock ∗ playerAmount
= 25 ∗ 4 ∗ 2 = 200

(1)

B. Game complexity

An essential metric for search algorithms is the so-called
branching factor, which specifies the average number of pos-
sible moves a player can perform in one state [27]. In order to
compute this number, we look at the number of orientations
for each block. The I block has two orientations as it can be

4https://hizoul.github.io/contetro



used either horizontally or vertically. The O block has only
one orientation because it is a square. The T block has four
different orientations for every side one can turn it to. The
L and S are special cases as they can be mirrored. The L
has four and the S two sides one can rotate it to. Mirroring
them doubles the amount of possible orientations. Hence, in
total, nineteen different shapes can be placed by rotating or
mirroring the available five base blocks. Since the board is ten
units wide, there are also ten different drop points per shape.
In total, there can be up to 190 possible moves available in
one turn. However, the game rules state that all placed squares
have to be within the bounds of the game board. Twenty-eight
of these moves are always impossible because they would
necessitate some squares to exceed the bounds either on the
left or right side of the board. Therefore, the exact number
of maximum possible moves in one turn for Tetris Link is
162. Since the board gets fuller throughout the game, not all
moves are always possible, and the branching factor decreases
towards the end. In order to show this development throughout
matches, we simulate 10,000 games.

We depict the average number of moves per turn in Figure 3.
For the first eight to ten turns, all moves are available on
average. Not depicted in the Figure but based on the data,
this only holds true until turn 6. After that, the number of
plays may already decrease. Tetris Link is a game of skill:
random moves perform badly. A game consisting of random
moves ends after only thirty turns. Many holes with many
minus points are created, and the game ends quickly with a
low score. The heuristic bars show that simple rules of thumb
fill the board most of the time by taking more than forty turns.
Furthermore, the branching factor in the midgame (turn 13-30)
declines slower and hence offers more variety to the outcomes.
Another thing that can be seen in Figure 3 is that only very
few select plays can actually lead to positive points. Most
of the turns will leave the score unchanged or even decrease
it. A player would only consider taking minus points if it
would cost the opponent even more points than the player
loses, or there are no other options. To further underline this,
we did an exhaustive tree search until depth 5, which is the
first turn player one is able to achieve points. Of the over 111
Billion possibilities (111577100832), only ≈ 14.36% allow
for an increase in points. Moreover, only ≈ 3.06% allows
the optimal three-point gain, which the first player aims for.
≈ 69.08% of the outcomes result in a point disadvantage, and
in ≈ 16.55% of the cases, no points have been gained nor lost
due to blockage by the opponent or lack of connectivity.

We are now ready to calculate the approximate size of the
game tree complexity for the deterministic variant of Tetris
Link, in order to compare it to other games. On average, across
all three agents shown in Figure 3, a game takes 37 turns and
allows for 74 moves per turn (7437 ≈ 1.45 ∗ 1069). The game
tree complexity is similar to Chess (10123) [28] but smaller
than in Go (10360) [29].

Agent Random Random-H User-H Tuned-H
Win Rate 48.16% 47% 71.65% 70%

Unique Games 10,000 10,000 7 50

TABLE I: First move advantage, over 10,000 games. All
turnsare compared for uniqueness to see whether the same
games keep repeating. The -H in the agent name stands for
Heuristic (see Section IV-A). Draws are not counted towards
wins.

C. First move advantage

An important property of turn-based games is whether
making the first move gives the player an advantage [30]. To
put this into numbers, we let different strategies play against
themselves 10,000 times to determine if the starting player
has an advantage. All moves are recorded and checked for
uniqueness.

As can be seen in Table I, the win rate for random heuristic
as starting player is almost 50%. Although the win rate for the
first player is higher for the tuned heuristics, these numbers
are not as representative because the heuristic repeats the same
tactics resulting in only seven or twenty-nine unique game
starts. If we repeat the same few games, then we will not
truly know whether the first player has a definite advantage.
Especially considering that at least until turn six, all moves
are always possible, there are around 1013 or 18 Trillion
(BranchingFactorTurns = 1626 = 18, 075, 490, 334, 784)
possible outcomes. Since the random heuristic has more
deviation and plays properly as opposed to random moves,
we believe that it is a good indicator of the actual first player
advantage. Note that 47% is close to an equal opportunity.
Different match history comparisons of Chess measure a
difference of around two to five percent in win rate for the
first player [30]. However, since neither Tetris Link nor Chess
have been mathematically solved, one cannot be certain that
there is a definite advantage.

IV. AI PLAYER DESIGN

In this section, we describe the three different types of AI
players that we implemented, based on heuristics, MCTS, and
RL, respectively. For the experiments (Section V), the game
is coded in Rust and JavaScript (JS). The Rust version is
written for faster experiments with MCTS and RL, and the
JavaScript version is written to visually analyze games and
also do a human play experiment. Both implementations share
a common game log format using JSON in order to enable
interoperability. To underline the importance of a performance-
optimized version, we measured the average time it takes to
simulate one single match where always the first legal move
is made. The Rust implementation requires 590µs for that,
whereas the JavaScript implementation needs 82ms.

A. Heuristic

We now describe the design of our heuristic player. A
heuristic is a rule of thumb that works well most of the
time [31]. For Tetris Link, we identify four heuristic measures:
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Fig. 3: This graph underlines the game’s difficulty, especially for search algorithms, by showing the average number of possible
moves and their associated effect on the player’s score. The agent name abbreviations stand for: R = Random, H-R = Random
Heuristic, and H = User Heuristic. See Section IV-A for an explanation of how the heuristic agents work.

the number of connectable edges, the size of groups, the
player score, and the number of blocked edges. The number of
blocked edges is the number of edges belonging to opponents
that are blocked by the current players’ blocks. From our
experience these heuristic values are positively related to the
chance of winning.

Each parameter is multiplied by a weight, and the overall
heuristic score is the sum of all four weighted values. For every
possible move in a given turn, the heuristic value is calculated,
and the one with the highest value is chosen. If multiple
moves have the same maximum value, a random one of these
best moves is chosen, which is why in Table I, the heuristics
play more than one single unique repeating game. The initial
weights were manually set by letting the heuristic play against
itself and detecting which combination would result in the
most points gained for both players. We refer to this as user
heuristic. We then use Optuna [32], a hyperparameter tuner, to
tune a set of weights that reliably beat the user heuristic. This
version is called tuned heuristic. To achieve a greater variety in
playstyle, we also test a random heuristic which at every turn
generates four new weights between zero to fifteen. To have
an estimate on the performance of the heuristic, we let actual
human players (n=7) familiar with the game play against the
heuristic via the JavaScript implementation (Figure 4). The
random heuristic achieved a win rate of 23.07% across 13
matches. and the user heuristic a win rate of 33.33% across
six matches. The sample size is very small, but it still indicates
that the heuristic is not particularly strong. This is supported by
a qualitative analysis of the game played by the authors, based
on our experience. We conclude that our heuristic variants play
the game in a meaningful way but are not particularly strong.

B. MCTS

For applications in which no efficient heuristic can be
found, MCTS is often used, as it constructs a value function
by averaging random roll-outs [8]. Our MCTS implementa-
tion uses the standard UCT selection rule [33]. As further

Fig. 4: The web interface to measure the effectiveness of our
Heuristic agent against actual human players familiar with the
game.

enhancements, we also use MCTS-RAVE [8] and MCTS-
PoolRAVE [34] to see whether the modifications help in im-
proving the quality of results. Furthermore, we experimented
with improving the default (random) policy by replacing it
with the heuristic. However, the heuristic calculation is so slow
that it only manages to visit ten nodes per second. We want
to stress that this is only the MCTS heuristic that is slow as
it was not optimized for speed at all. The game simulation
itself is fast processing a full match of random actions in on
average 590µs, so up to around 1694 matches per second.

MCTS is well-suited for parallelization, leading to more
simulations per second and hence better play [8]. We im-
plemented tree parallelization, a frequently used paralleliza-
tion [35]. In tree parallel MCTS, many threads expand the
same game tree simultaneously. Using 12 threads, we visit
16258 nodes per second on average with a random default
policy. To put this into perspective, this is 1.63e−9% of all



1013 possibilities in the first six turns. Thus, only a small part
of the game tree is explored by MCTS, even with parallel
MCTS.

C. Reinforcement Learning Environment and Agent

A reinforcement learning environment requires an observa-
tion, actions, a reward [36], and an RL agent with an algorithm
as well as a network structure. To prevent reinventing the
wheel, we use existing code for RL, namely OpenAI gym [37]
and the stable-baselines [38], which are written in Python. To
connect Python to our Rust implementation, we compile a
native shared library file and interact with it using Pythons
ctypes. As RL Algorithm, we exclusively use the deep re-
inforcement learning algorithm PPO2 [39]. For the network
structure, we increase the number of hidden layers from two
layers of size 64 to three layers of size 128 because increasing
the network size decreases the chances of getting stuck in
local optima [40]. We do not use a two-headed output, so
the network only returns the action probabilities but not the
certainty of winning as in AlphaZero [6].

The observation portrays the current state of the game field.
Inspired by AlphaGo, which includes as much information as
possible (even the “komi”5), we add additional information
such as the number of blocks left per player, the players’
current score, and which moves are currently legal. For the
action space, we use a probability distribution over all moves.
The probabilities of illegal moves are set to 0, so only valid
moves are considered. For the reward, we have three different
options.

1) Guided: score+groupSize
100 − scolding

2) Score: score
100

3) Simple: ±1 depending on win/loss
The Guided reward stands out because it is the only one that
reduces the number of points via scolding. If the move with the
highest probability is illegal, then the reward will be reduced
by -0.004, and the first legal move with the highest probability
is chosen. This should teach the agent to only make valid
moves. This technique is called reward shaping, and its results
may vary [41].

In order to detect which one of the three options is the most
effective, we conduct an experiment. Per reward function, we
collect the averages for the number of steps it took, the average
reward achieved, and what the average score of the players was
in the results. Our results, shown in Table II, indicate that the
Guided reward function works best. It only takes around 3183
steps on average to reach a local optimum, and the average
scores achieved in the matches are the highest. We define a
local optimum as the same match repeating three times in a
row. The Score reward function also lets the agent reach a local
optimum, but it takes twice as long as the Guided function, and
the score is slightly lower as well. The simple reward function
seems unfit for training. It never reached a local optimum in
the 10,000 steps we allowed it to run, and it got the lowest
score in its games.

5Komi refers to the first turn advantage points [5].

Reward Type Steps Episode Reward Score
Guided 3183.49 -0.17 -5.6
Simple 10000.0 -0.0 -12.25
Score 6214.45 -0.09 -6.88

TABLE II: Results of self-play with different reward types
until either a local optimum or 10,000 steps have been reached.
Step, Reward and Score show the average of all seeds.

V. AGENT TRAINING AND COMPARISON

For our experimental analysis, we first look at the perfor-
mance of the MCTS agent (Section V-A) and the training
process of the RL agents (Section V-B). Finally, we compare
all previously introduced agents in a tournament to analyze
their play quality and determine the currently best playing
approach.

A. MCTS Effectiveness

1) Setup: Initial test matches of MCTS against the user
heuristic resulted in a zero percent win rate, and a look at
the game boards suggested near-random play. We use a basic
version of MCTS with random playouts because using our
heuristic as guidance was too slow. AlphaZero has shown that
even games with high branching factors such as Go can be
played well by MCTS when guided by a neural network [6].
However, without decision support from a learned model or
a heuristic, we rely on simulations. In order to see if this
guidance is the reason for bad MCTS performance, we abuse
the fact that the user heuristic plays very predictably (Section
III-C). We use the RAVE-MCTS variant (without the POOL
addition), pre-fill the RAVE values with 100 games of the user
heuristic playing against itself, and then let the MCTS play
100 matches against the user heuristic. We repeat this three
times and use the average value across all three runs. We run
this experiment with different RAVE-β parameter values. This
parameter is responsible for the exploration/exploitation bal-
ancing and replaces the usual UCT Cp parameter. The closer
the RAVE visits of a node reach RAVE-β, the smaller the
exploration component becomes. Furthermore, we employ the
slow heuristic default policy at every node in this experiment.
We simulate one match per step because otherwise, the one-
second thought time is not enough for the slow heuristic policy
to finish the simulation step.

2) Results: Our MCTS implementation can play well with a
decent win rate against the user-heuristic, as shown in Figure
5. This result underlines that in games with high branching
factors, MCTS needs good guidance through the tree in order
to perform well. Figure 3 also supports this as there are very
few paths that will actually lead to good plays. The declining
win rate with a higher RAVE-β value suggests that exploration
on an already partially explored game tree worsens the result
because the opponent does not deviate from its paths. The
rise in win rate for a β value of 5000 after the large drop
in 2500 underlines the effect of randomness involved in the
search processes.

Even though the heuristic-supported playout policy works
well, we will still use a random playout policy for the
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tournament (Section V-C). Pre-filling the tree is very costly
and would provide an unfair advantage to the MCTS method.

To underline that we believe the bad performance stems
from the large branching factor and few paths that lead to
positive points, we test our implementation on the game of
Hex. In different board sizes (2x2 to 11x11) of Hex, our MCTS
plays against a shortest path heuristic. The result is striking:
as long as the branching factor stays below 49 (7x7), MCTS
wins up to 90% of the matches. For larger branching factors,
the win rate drops to 0% quickly.

B. RL Agents Training

1) Agents: We define an RL agent as the combination
of reward type, algorithm, and training opponent. We use
the guided reward function because it worked best in our
experiment and call this agent RL-Selfplay. (This is a neural
network only RL, without MCTS to improve training samples,
that plays against itself [Selfplay].)

In addition to this rather simple agent, we introduce the
RL-Selfplay-Heuristic agent. It builds on a trained RL-Selfplay
agent where we continue training by playing against the
heuristic. Observation and reward are the same as for RL-
Selfplay.

From the first turn advantage experiment, we know that the
heuristic plays well even with random weights. That is why
we also introduce an agent called RL-Heuristic. This agent
outputs four numbers that represent the heuristics weights
(Section IV-A). We use a modified version of the guided
reward function:

(ownScore− opponentScore) + groupSize

100
(2)

Group size stands for the total number of blocks that are
connected with at least one other block. This is added because
we want the algorithm to draw a connection between the
number of points gained and the number of connected blocks.
However, mainly the difference in points between itself and the
opponent is used as a learning signal, so it aims to gain more
points than the opponent. Scolding is not necessary anymore
as we do not have to filter the output in any way.

2) Setup: In this section, we detail the training process of
the RL agents. Each training is done four times, and only the
best run is shown. Agents are trained with the default PPO2
hyperparameters, except for RL-Heuristic, which uses hand-
tuned parameters.

When playing only against themselves, the networks still
quickly reached a local optimum even with increased layer
size. This optimum manifested in the same game being played
on repeat and the reward per episode staying the same. This
repetition is a known problem in self-play and can be called
“chasing cycles” [42]. To prevent these local optima, we train
five different agents against each other in random order. To
be able to train against other agents, we modified the stable-
baselines code.

3) Results: The training process for RL-Selfplay peaked
around 1.5 million steps. For RL-Selfplay-Heuristic we use
the two best candidates from RL-Selfplay, namely #3 after one
million steps with a reward of 0.04 and #1 after 1.5 million
steps with a reward of 0.034. The training of RL-Selfplay#1-
Heuristic reaches its peak after 3.44 and RL-Selfplay#3-
Heuristic after 3.64 Million steps with a reward of 0.032 and
0.024. These are our first RL agents that can achieve a positive
reward while playing against the heuristic.

The RL-Heuristic training worked well, achieving mostly
a positive reward. However, looking at the output values, we
realize the reward function design was unfortunate. It sets all
weights to zero, except for the enemy block value to fifteen
and the number of open edges between four and seven. So
by negating the player’s score with the opponent’s score, we
have unwillingly forced the heuristic to focus on blocking the
opponent over everything else. Needless to say, with these
weights, the RL-Heuristic rarely wins. Although it manages
to keep the opponent’s score low, it does not focus on gaining
points which leaves it with a point disadvantage.

C. Tournament

1) Setup: In the tournament, all presented AI approaches
play against each other. Every bot will face every other bot in
100 matches. We have five different RL bots, three MCTS bots,
and three heuristic bots. Each agent gets at most one second
of time to decide on their move, and they are not allowed to
think during the opponent’s turn. Every bot will play half of its
matches as first and the other half as second player. The bot’s
skill will be compared via a Bayesian Bradley Terry (BBT)
skill rating [43]. The original BBT [43] ratings range from 0
to 50. By adjusting the BBT-β parameter, we change this to
represent the ELO range (0 to 3000) [44].

2) Results: The final skill rating is portrayed in Figure 6.
The three heuristic agents take the top 3, followed by RL
and MCTS. Remarkably, the tuned heuristic performed best,
even though it is only optimized to play well against the user
heuristic, but yet it performs best across all agents.

Seeing RL-Heuristic as the best RL approach shows that the
other RL agents are far from playing well. Yet all RL agents
consistently beating MCTS with random playouts proves that
the agents definitely learned to play reasonably.
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Fig. 6: The skill rating of the agents that participated in the
tournament. MCTS uses a non pre-filled tree, resulting in bad
performance (Section V-A2).
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Fig. 7: Visualisation of the scores that agents achieved in the
tournament. Agents are sorted by the skill rating in Fig. 6.

It is interesting to see that the MCTS-UCB (14% win
rate) variant performed best because the other two variants
[RAVE (0.02%), PoolRAVE (0.04%)] were conceived in order
to improve the performance of UCB via slight modifications
[34]. Please note that this poor performance in Figures 6 and
7 is caused by the tree not being pre-filled as it was in Figure
5 (Section V-A2). This shows the importance of pre-filling
MCTS in Tetris Link due to the few paths that result in positive
points (see Figure 5).

The skill rating omits information about the quality of the
individual moves. To gain further insight into that, we provide
Figure 7. Here, we can see that every agent manages at least
once to gain 8 points or more. This means that every agent
had at least one match it played well. Looking at the lowest
achieved scores and average scores, we find that every agent,
except for the pure heuristic ones, plays badly, considering
that they only make ±3 points on average.

VI. CONCLUSION AND FUTURE WORK

Board game strategy analysis has been done for decades,
and especially games like Chess and Go have seen countless
papers analyzing the game, patterns, and more to find the best

play strategies [6]. We contributed to that field by taking a
close look at the board game Tetris Link. While the strategy
is key to winning, some games, such as Hex, give the first
player a definite advantage. We have experimentally shown
that there is no clear advantage for the starting player in Tetris
Link (Section III-C).

We have implemented three game-playing programs based
on common approaches in AI: heuristic search, MCTS, and
reinforcement learning. Despite some effort, none of our rule-
based agents was able to beat human players.

In doing so, we have obtained an understanding of why it
may be hard to design a good AI for Tetris Link:

• Especially at the beginning, the branching factor is large,
staying at 162 for at least the first six turns.

• The majority of possible moves result in minus points
(see Figure 3 and Section III-B).

• In our experience, mistakes/minus points can hardly be
recovered from. The unforgivingness for these moves
may make it harder to come up with a decent strategy,
as generally postulated by [45].

• Many rewards in the game stack — they come delayed af-
ter multiple appropriate moves because groups of blocks
count and not single blocks.

All this holds true for the simplified version we treat here:
no dice, only two players. Adding up to two more players and
dice will also make the game harder.

With a solid understanding of the game itself, we investi-
gated different approaches for AI agents to play the game,
namely heuristic, RL and MCTS. We have shown that all
tested approaches can perform well against certain opponents.
The best currently known algorithmic approach is the tuned
heuristic, although it can not consistently beat human players.

Training an RL agent (Section V-B) for Tetris Link has
proven to be complicated. Just getting the network to produce
positive rewards required much trial and error, and in the
end, the agent did not perform well even when consistently
achieving a positive reward. We believe the learning difficulty
in Tetris Link comes from the many opportunities to make
minus points in the game. One turn offers usually offers
one plus to three points, or six at most if two groups are
connected, but that means that multiple previous turns that
were well planned and gave zero points if not even more minus
points had to be made. Hence recovering from minus points is
difficult, meaning small mistakes have graver consequences.

Although MCTS performed poorly in our tournament, we
have shown that with proper guidance through the tree, MCTS
can perform nicely in Tetris Link and Hex (Section V-A).
This suggests that MCTS extensions like progressive bias and
progressive unpruning are good candidates for future experi-
ments [46]. Alternatively, a combination where RL guides an
MCTS through the tree might work well, e.g., AlphaZero [6]
or MoHex v3 [47].

As computer game researchers, we found ourselves chal-
lenged to create a good agent to play the game Tetris Link.
We tried a large variety of classic approaches and were not



able to achieve the results we hoped for. We invite the research
community to use our code and improve upon our approaches.6

REFERENCES

[1] F. D. Philidor, Analysis of the Game of Chess. P. Elmsly, 1790.
[2] T. Sprague, “On the different possible non-linear arrangements of eight

men on a Chess-board,” Proceedings of the Edinburgh Mathematical
Society, vol. 8, pp. 30–43, 1889.

[3] G. Bradford, The History and Analysis of the Supposed Automation
Chess Player of M. de Kempelen: Now Exhibiting in this Country, by
Mr. Maelzel. Hilliard, Gray & Company, 1826.

[4] F.-h. Hsu, “Computer chess, then and now: The Deep Blue saga,” in
Proceedings of Technical Papers. International Symposium on VLSI
Technology, Systems, and Applications. IEEE, 1997, pp. 153–156.

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[6] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[7] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Second Edition. MIT press, 2018.

[8] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[9] P. Orenstein, “Does experiential learning improve learning outcomes
in an undergraduate course in game theory–a preliminary analysis,”
Northeast Decision Sciences Institute, 2014.

[10] C. Chao, “Blokus Game Solver,” in Computational Engineering Com-
mons. California Polytechnic State University, 2018.

[11] A. Jahanshahi, M. K. Taram, and N. Eskandari, “Blokus Duo game
on FPGA,” in The 17th CSI International Symposium on Computer
Architecture & Digital Systems (CADS 2013). IEEE, 2013, pp. 149–
152.

[12] E. Qasemi, A. Samadi, M. H. Shadmehr, B. Azizian, S. Mozaffari,
A. Shirian, and B. Alizadeh, “Highly scalable, shared-memory, Monte-
Carlo tree search based Blokus Duo Solver on FPGA,” in 2014 Interna-
tional Conference on Field-Programmable Technology (FPT). IEEE,
2014, pp. 370–373.

[13] A. Plaat, Learning to Play: Reinforcement Learning and Games.
Springer Nature, 2020.

[14] J. Van Rijswijck, “Search and evaluation in Hex,” Master of science,
University of Alberta, 2002.

[15] J. Schaeffer, J. van den Herik, and T.-s. Hsu, “Games, computers and
artificial intelligence,” Chips Challenging Champions: games, computer
and Artificial Intelligence, pp. 3–9, 2002.

[16] A. Plaat, J. Schaeffer, W. Pijls, and A. De Bruin, “Best-first fixed-depth
minimax algorithms,” Artificial Intelligence, vol. 87, no. 1-2, pp. 255–
293, 1996.

[17] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited, 2016.

[18] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in International conference on computers and games.
Springer, 2006, pp. 72–83.

[19] B. Ruijl, J. Vermaseren, A. Plaat, and J. v. d. Herik, “Combining
simulated annealing and Monte Carlo tree search for expression sim-
plification,” arXiv preprint arXiv:1312.0841, 2013.

[20] G. Tesauro, “Neurogammon: A neural network backgammon learning
program,” Heuristic Programming in Artificial Intelligence: The First
Computer Olympiad, Chichester, England, 1989.

[21] N. J. van Eck and M. van Wezel, “Application of reinforcement learning
to the game of Othello,” Computers & Operations Research, vol. 35,
no. 6, pp. 1999–2017, 2008.
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