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Abstract

Quantitative measures of randomness in games are useful for game design and have impli-
cations for gambling law. We treat the outcome of a game as a random variable and derive a
closed-form expression and estimator for the variance in the outcome attributable to a player
of the game. We analyze poker hands to show that randomness in the cards dealt has little in-
fluence on the outcomes of each hand. A simple example is given to demonstrate how variance
decompositions can be used to measure other interesting properties of games.

1 Introduction

From game design studios to courtrooms, randomness in games has been the subject of extensive
discussion. Game designers use random game elements to protect players’ egos, increase gameplay
variety, and limit the efficacy of mental calculation [11]. In U.S. state law, the question of whether
Poker is predominantly a game of chance or skill is considered to be central to the legality of online
Poker [3, 14].

The question of how to measure the role of luck versus skill has proved difficult and produced
many answers [5, 4, 11, 14, 6, 7, 18]. For example, in USA v. Lawrence Dicristina, economic
consultant and high-level amateur poker player Randal Heeb testified that “statistical analysis of
poker hands confirms that skill predominates over chance.” His conclusion was based on a series
of heuristic data analyses combined with intuitive judgments [12]. Others have argued that the
strong association between player skill rating and future earnings constitute strong evidence that
poker should be considered a game of skill [14, 16].

A first step in assessing the role of chance in a game is to quantify sources of uncertainty. We
examine how variation in the outcomes of a game can be attributed to players or chance events
using a variance decomposition, a standard statistical method in which the variance of a random
variable is written as the sum of nonnegative terms corresponding to variation attributable to
different factors [1]. We express the total variation in game outcomes as the sum of variance
components associated with (i) the actions taken by a player of interest, and (ii) all remaining
sources of variation. By applying this decomposition to a conceptual “chance player,” we measure
the degree to which randomness inherent in a game biases the results in favor of a given player.

We derive an analytical expression for the variance components and use it to obtain estimators
which are model-free in the sense that they do not require access to an entire game model or other
players’ behavior. Our results apply to finite extensive-form games in general; they are not limited
to the two-player, zero-sum case. As an illustrative example, we analyze poker hands played by the
DeepStack poker AI against professional players [17] and find that chance events have very little
influence on the expected per-hand profit for a player relative to the total variation in per-hand
profit.
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Figure 1: An example of an extensive-form game. Each node in the tree is a state s ∈ S and is
annotated with the corresponding player, P-(s). The dashed line represents Player 2’s information
state; in this example, they cannot tell what move Player 1 played. Rewards for Player 1 are shown
below the terminal nodes.

2 Extensive-form games

An extensive-form game is a tree-based representation of a multi-agent system; Figure 1 displays a
simple example. In this representation, the game is played by traversing the tree from the root to
a leaf node, with a player’s action at each node determining the next node visited. Our notation is
based on [9] and [15], with some modifications.

Let S denote the set of possible game states which we assume is finite; each state is associated
with a node in the game tree. Define N = {1, . . . , n} to be the set of (non-chance) players and
let c denote the chance player. The player function P- : S → N ∪ {c} associates each state with
a player. At each state s ∈ S, there are a finite number of available actions A(s), such that each
a ∈ A(s) uniquely determines the next state visited in the tree [8].

A sequence of actions z = (a1, . . . , am) is a terminal history if it leads from the root to a leaf
of the game tree; let Z denote the set of all terminal histories. For each player i ∈ N and terminal
history z ∈ Z, a reward ri(z) ∈ R is obtained by player i upon reaching z. Each player i ∈ N
has a set of information states U i which represent collections of nodes which are indistinguishable
to the player. In particular, U i is a partition of {s ∈ S : P-(s) = i} with the additional condition
that A(s) = A(s′) if s and s′ are in the same information state. So, we can write A(u) for u ∈ U i
unambiguously. Define Uc = {{s} : P-(s) = c}. We consider games of perfect recall, so that for
every player i, each u ∈ U i can be uniquely identified with the a sequence of information states and
actions required to arrive there.

Finally, the behavior of each player i ∈ N ∪ {c} is described by a policy πi (also known as a
behavioral strategy), which is a function that maps each information state u ∈ U i to a distribution
over the allowable actions A(u). A policy profile is a tuple of player policies, π = (π1, . . . , πn). By
convention, the policy of the chance player πc is considered to be a fixed part of the extensive-form
game itself and not a part of any policy profile.

3 Variance decompositions for game outcomes

3.1 Extensive-form games with random variables

For convenience, we introduce random variables that represent the actions selected by players in a
single play of the game. For each i ∈ N ∪ {c}, and for each u ∈ U i, let A(u) be a random variable
taking values in A(u) which represents the action player i would take given information state u.

2



D
RA
FT

This variable always realizes a value, even if u is not reached in a particular play of the game.
Note that for u 6= u′ ∈ U i, it need not be the case that A(u) is independent of A(u′). This way
specifying player behavior is quite general and can account for different models of player action
selection. For example, a player may randomly precommit to a deterministic policy (this is known
as a mixed strategy in the game theory literature), or select actions independently at random at
each time step (a behavioral strategy) [2].

For each terminal history z ∈ Z and player i ∈ N ∪ {c}, let mi(z) be the number of actions
selected by player i along z, so that for each j ∈ {1, . . . ,mi(z)}, we can write uiz,j and aiz,j to denote
the jth information state observed and action selected by player i along terminal history z. Define
Iiz,j = 1[A(uiz,j) = aiz,j ] to be the Bernoulli random variable that indicates whether player i selects

aiz,j at uiz,j . Finally, define Iiz =
∏mi(z)
j=1 Iiz,j to be the Bernoulli random variable that indicates

whether player i selects all actions along z. (If mi(z) = 0, set Iiz ≡ 1.)
A terminal history occurs if and only if every action along it is selected. Therefore, for each

z ∈ Z, Iz =
∏
i∈N∪{c} I

i
z defines a Bernoulli random variable such that the success probability

P (Iz = 1) is the probability that terminal history z is realized. Let Z be a random terminal history
variable such that P (Z = z) = P (Iz = 1) for all z that represents a random play-through of the
game. This allows us to cast the outcome of an extensive-form game as

Y = [r1(Z), . . . , rn(Z)].

Write Y = r(Z) = ri(Z), the random reward for a particular player of interest i ∈ N ∪ {c} upon
a play of the game. Our goal is to express its variance, V (Y ) = E{[Y − E(Y )]2}, as a sum of
nonnegative terms corresponding to meaningful properties of a game.

3.2 Variance decomposition

Let i ∈ N ∪ {c} be a player of interest, and let Ai = [A(u)]u∈U i be the concatenation of all actions
for player i. By the law of total variance we can decompose the variance in game outcomes as

V (Y ) = V [E(Y |Ai)] + E[V (Y |Ai)]. (3.1)

The term E(Y |Ai) is the average game outcome upon many traversals of the game tree when player
i commits ahead of time to playing the actions in Ai. For example, E(Y |Ac) represents the average
outcome for a group of poker players who play the same hand from a deck with a particular card
order many times, or the average outcome for a pair of chess players who start with the same colors
every game. Then V [E(Y |Ac)] is the variation in this mean as the chance actions Ac vary, and
represents the variation in game outcomes due to chance events. The latter term of (3.1) has a
similar interpretation as the variation in game outcomes not explained by actions selected by player
i.

Let i ∈ N ∪ {c} be a player of interest. Suppose that player i plays according to a behavioral
strategy πi, meaning that A(u) is independent of A(u′) for all u 6= u′ ∈ U i and action probabilities
are given by a policy such that P (Aiz,k = 1) = πi(aiz,k|uiz,k) for all z ∈ Z and k ∈ {1, . . . ,mi(z)}.
No such assumption is required for the remaining players; we only require that their actions be
independent of the actions of player i.

For i ∈ N ∪ {c}, define ηi(z) = P (Iiz = 1), η−i(z) = P (
∏
i′∈N∪{c}\{i} I

i′
z = 1), and η(z) =

ηi(z) ηi(z) = P (Iz = 1). For each information state u ∈ U i, define Z(u) = {z ∈ Z : u is visited in z}
and for each a ∈ A(u), define Z(ua) = {z ∈ Z : u is visited in z and action a is selected at u.}.
Define q(u, a) = E[r(Z)|Z ∈ Z(u, a)] to be the expected outcome given that player i is at u and
takes action a; similarly, define v(u) = E[r(Z)|Z ∈ Z(u)].
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Our main result is an expression of the variance in game outcomes explained by player i’s actions
as a sum of weighted, squared action-value and value functions over all of player i’s information
states:

V [E(Y |Ai)] =
∑
u∈U i

( ∑
a∈A(u)

[q(u, a)]2 πi(a|u)− [v(u)]2
)
η−i(u) η(u). (3.2)

A proof is provided in Appendix A. Computing this requires traversing the game tree a fixed number
of times and hence is O(|S|). From this we obtain a formula for the other variance component by
observing that E[V (Y |Ai)] = V (Y )− V [E(Y |Ai)], where V (Y ) can be evaluated as

∑
z∈Z [r(z)−∑

z′∈Z r(z
′)η(z′)]2 η(z).

Assuming η−i, q, and v are known, given an i.i.d. sequence of ν playthroughs of the game,
each generating a sequence Uk = (Uk,1, . . . , Uk,lk) of observed information states in U i, then the
following is a consistent estimator for V [E(Y |Ai)] as proved in Appendix B:

ν−1
ν∑
k=1

lk∑
l=1

( ∑
a∈A(Uk,l)

[q(Uk,l, a)]2πi(a|Uk,l)− [v(Uk,l)]
2
)
η−i(Uk,l). (3.3)

In practice, q and v can be estimated by supervised learning and ηi = η/η−i can be estimated
with η̂(u) = ν−1

∑ν
k=1

∑lk
l=1 1(Uk,l = u) and ηi(u) = πi(u) (assuming the analyst does not have

access to opponent policies and observations). However, if there are many possible information
states, i.e. |U i| is large, η̂(u) will greatly overestimate the visit probability. An alternative is the
more straightforward regression-based estimator. The regression-based estimator works by fitting
a model for the conditional mean of the game outcome given a player’s actions, then computing
the empirical variance of the conditional mean estimator. The procedure is:

1. Specify a parametric model fθ that maps the collection of all actions for the player of interest
to a real number, fθ : ×u∈U iA(u)→ R.

2. For a each observed game k ∈ {1, . . . , ν}, record action-outcome pairs (Ai
k, Yk). For each k,

if an information state for the player of interest, u ∈ U i was not visited in game k, sample
A(u) ∼ πi(·|u) and include the sampled action in Ai

k.

3. Fit the model on the action-outcome pair data to find a θ̂ that minimizes the mean square
error, ν−1

∑ν
k=1[Yk − fθ̂(A

i
k)]

2, so f
θ̂
(·) estimates E(Y |Ai = ·).

4. Compute the empirical variance of f
θ̂
(Ai), which is ν−1

∑ν
k=1[fθ̂(A

i
k) − ν−1

∑ν
h=1 fθ̂(A

i
h)]2.

This is our estimate of V [E(Y |Ai)].

4 Analysis of professional poker players versus DeepStack

We analyze 150 thousand hands of heads-up no-limit poker played by different players against the
Poker AI Deepstack, including 45 thousand hands played by self-identified professional players. For
details on how the data were generated, see the supplemental materials of the DeepStack paper
[17]. Our goal is to understand the role chance has in influencing the per-hand profits of a human
playing against Deepstack, so we will estimate the variance component for chance for games played
by each human player indexed by j ∈ {1, . . . , 33}. We also include an algorithm used for poker
agent evaluation called Local Best Response (index j = 0), which we include as a form of transfer
learning in order to improve estimates of expected outcomes for the human players. Assume that
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Figure 2: The neural network architecture used for analysis of Deepstack hands. The input for
each card (shown in blue) is a concatenation of the rank and suit of the card. The rank and suit
are each assigned a vector embedding, with the same weights shared for all card inputs.

player j plays according to a policy πj and write Eπj (Y |Ac) to denote the expected per-hand
profit for player j against DeepStack given all chance events Ac. Then we would like to know
V [Eπj (Y |Ac)] for each j.

We use a neural network to estimate Eπj (Y |Ac) given a player and the realization of all chance
events:

• The player’s pocket cards (2 cards)

• Deepstack’s pocket cards (2 cards)

• The flop (3 cards)

• The turn (1 card)

• The river (1 card)

The neural network shares a representation of cards across all inputs: each card rank (e.g. Ace)
and suit (e.g. hearts) is associated with a learned vector embedding; a card is represented by the
concatenation of these embeddings. To capture the unordered nature of players’ pocket cards and
the flop, the card representations for each of those groups is summed. The architecture is depicted
in Figure 2.

Our model was trained by stochastic gradient descent with the Adam optimizer [13] with early
stopping based on cross-validation loss using a 90%/10% train-test split. If a hand ended before all
chance events were observed (for example, if a player folded before the river), the cards associated
with that chance event were randomly sampled from the remaining cards in the deck at that point
in the game. These cards were resampled in each epoch of training in order to decrease variance.
We present our results in Table 1. For each player, the empirical variance of the regression estimator
was computed over both the training and test data and is recorded in column “Chance var.”

Typical values for the percent of total variance “explained” by chance events fall between
0% and 2%. We conclude that the influence of chance events alone on per-hand outcomes is
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Player name Num. hands Mean profit Variance. Chance var. Chance var. %

Local best response 106221 -66.2 4711362.4 68577.4 1.5
Ivan Shabalin 3122 -33.5 3419341.6 26105.1 0.8
Pol Dmit 3026 -93.3 4992102.7 78447.3 1.6
Muskan Sethi 3010 -214.1 8069582.3 152633.7 1.9
Dmitry Lesnoy 3007 11.5 4422563.8 27593.1 0.6
Stanislav Voloshin 3006 6.4 3272512.8 19559.7 0.6
Lucas Schaumann 3004 -15.7 2585189.5 38743.3 1.5
Phil Laak 3003 -77.3 3576155.5 37342.1 1.0
Antonio Parlavecchio 3003 -108.8 7218296.0 116614.0 1.6
Kaishi Sun 3002 -0.5 4138381.9 36490.0 0.9
Martin Sturc 3001 51.3 2579614.6 26995.9 1.0
Prakshat Shrimankar 3001 -17.4 3468418.3 43344.5 1.2
Tsuneaki Takeda 1901 33.3 7458278.7 13850.9 0.2
Youwei Qin 1759 -195.3 14797348.3 118693.4 0.8
Fintan Gavin 1555 2.6 10967917.3 35274.5 0.3
Giedrius Talacka 1514 -45.9 11464541.4 69281.2 0.6
Juergen Bachmann 1088 -176.9 7804660.5 190849.5 2.4
Sergey Indenok 852 -25.3 13895176.8 44966.3 0.3
Sebastian Schwab 516 -180.0 6250606.2 25266.9 0.4
Dara Okearney 456 -22.3 3365433.0 30225.4 0.9
Roman Shaposhnikov 330 89.8 3951695.5 22054.5 0.6
Shai Zurr 330 -115.4 4148165.0 43651.8 1.1
Luca Moschitta 328 -143.8 4833549.3 76582.4 1.6
Stas Tishekvich 295 34.6 3904856.9 68538.0 1.8
Eyal Eshkar 191 -71.5 8773209.3 83846.6 1.0
Jefri Islam 176 -382.2 10558538.8 67446.8 0.6
Fan Sun 122 129.1 9265866.5 54513.5 0.6
Igor Naumenko 102 -85.1 611611.4 32192.0 5.3
Silvio Pizzarello 90 -513.4 10435348.4 96080.5 0.9
Gaia Freire 76 -13.8 92173.2 44686.1 48.5
Alexander Bös 74 -0.1 1286240.1 7153.1 0.6
Victor Santos 58 175.9 956344.0 24456.7 2.6
Mike Phan 32 1122.2 25579723.6 25381.5 0.1
Juan-Manuel Pastor 7 -728.6 1135714.3 26707.9 2.4

Table 1: Analysis of expected per-hand player profits for human professionals against the DeepStack
Poker AI.

quite limited. Rather, the large amount of variation in per-hand profits is mostly explained by
player randomization and the interaction between those actions and chance. We elaborate in the
Discussion section.

5 A three-way decomposition for assessing skillfulness of a game

As another example of using variance decompositions to analyze games, we present a concept for
measuring skill, chance, and non-transitivity that is inspired by prior work on decompositions
of games [10] and recent developments regarding learning in the context of complex games with
nontransitive elements [19] [20]. For simplicity, assume we are given a symmetric two-player zero-
sum game and a population of players represented by a finite set of policies Π, each with a skill
rating ρπ for π ∈ Π. One notion of the skillfulness of the game is the variance in outcomes explained
by players’ skill ratings alone, assuming two policies (π1, π2) are sampled uniformly from Π:

V (Y ) = V [E(Y |ρπ1 , ρπ2)] + E[V (Y |ρπ1 , ρπ2)]. (5.1)
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a1\a2 Rock Paper Scissors

Rock 0 -1 1
Paper 1 0 -1

Scissors -1 1 0

Table 2: The payoff function RPS(a1,a2).

Applying the law of total variance to the conditional variance V (Y |ρπ1 , ρπ2), we condition
on chance actions Ac as in (3.1) to obtain V (Y |ρπ1 , ρπ2) = V [E(Y |Ac, ρπ1 , ρπ2)|ρπ1 , ρπ2 ] +
E[V (Y |Ac, ρπ1 , ρπ2)|ρπ1 , ρπ2 ]. Using linearity of expectation and the tower rule, this allows us
to extend (5.1) to

V (Y ) = V [E(Y |ρπ1 , ρπ2)]︸ ︷︷ ︸
skill

+E{V [E(Y |Ac, ρπ1 , ρπ2)|ρπ1 , ρπ2 ]}︸ ︷︷ ︸
chance

+E[V (Y |Ac, ρπ1 , ρπ2)]︸ ︷︷ ︸
remaining variation

. (5.2)

We apply this formula to analyze a simple game parametrized by constants n ∈ N, c ∈ N∪{0},
and α ∈ [0, 1] that can be seen as an abstract model of a game with a skill component (some
strategies are strictly better than others), a nontransitive component (there exist cycles of pure
strategies), and chance (some games are decided by events entirely out of the players’ hands).
Skillful Rock Paper Scissors, or SkillRPS(n, c, α), is defined as follows: each player i ∈ {1, 2}
simultaneously selects a number Ni ∈ {1, . . . , n} and a move Ai ∈ {Rock, Paper, Scissors}. Player
1’s score is S = N1−N2+c ·RPS(A1, A2), where RPS is the payoff function for Rock Paper Scissors
depicted in Table 2.

The outcome of the game for player 1 is Y = (1−W )[1(S > 0)−1(S < 0)] +W (2Z−1), where
W ∼ Bernoulli(α) and Z ∼ Bernoulli(1/2) are chance events such that W determines whether the
game is decided by a fair coin flip Z. Note that when n = 1, c > 0, α = 0, the game is classic Rock
Paper scissors, when α = 1 it is a coin flip, and when c = 0 it is a transitive game. The game can
be represented in extensive form as shown in Figure 1, which depicts SkillRPS(2, 0, 0.5).

In Figure 3, the three-way decomposition is given across many values of the SkillRPS game
parameters, showing that the components correspond to meaningful properties of games: increasing
the probability that the game outcome is determined by a coin flip increases the chance variance
component to 1 as the other variance components decrease smoothly; increasing the bonus for
winning at Rock Paper Scissors decreases the skill component. In this case, the “remaining”
variation corresponds directly to the non-transitivity introduced by the RPS component of the
game.

6 Discussion

One might hope that the variance component for chance V [E(Y |Ac)] measures how lucky a game
is in the context of the players playing the game. We argue that this is not the case, and conclude
with thoughts on the applicability of variance component estimation for the analysis of games.

First, the variance component for chance does not measure how lucky a game is because by
design it avoids measuring variation introduced by random player actions. Consider the classic
version of Rock Paper Scissors (RPS) depicted in Table 2. A cautious player can guarantee an
expected payoff of 0 by assigning uniform probability to each action, causing the outcome of the
game to be uniformly random over {−1, 0, 1}. For this reason, it is natural to view RPS as a game
of luck— however, RPS as typically modeled does not have a chance player. All variation in RPS
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Figure 3: Three-way variance decompositions for SkillRPS with different game parameters under
the assumption that players selects moves independently and uniformly at random, i.e. for i ∈
{1, 2}, Ni ∼ Uniform({1, . . . , n}) and Ai ∼ Uniform({Rock, Paper, Scissors}) and are independent.
Details on the variance components for SkillRPS are included in Appendix C.

comes from randomness in player action selection. So, if we are to call RPS a game of luck, then a
notion of luck that only considers chance events is inadequate.

Second, the variance component for chance is conservative in that it only measures the marginal
(average) effect of chance actions on game outcomes. It does not capture the interaction between
chance events and player actions. For example, consider a variant of RPS in which one of the players
is replaced with a chance player. If the non-chance player employs a uniform random policy, then
the expected outcome is 0 regardless of action is selected by chance. Thus E(Y |Ac = a) = 0 for
each a ∈ {Rock,Paper, Scissors}. This means that for any chance policy, the variance component
for chance is 0, yet from the player’s perspective, against a uniform chance policy, it is as though
the game outcome is entirely determined by chance!

What the variance component for chance actually measures is the per-game amount that chance
biases the outcome in favor of a player. In both the examples given above, luck plays a significant
role in the game outcomes, but the realization of chance events alone does not tend to significantly
tilt the game in the favor of either player– so our measure evaluates to 0. Returning to the analysis
of DeepStack poker hands, we can see that despite the large amount of variation in per-hand profits
(of which any one realization could be called “lucky”) the game (as played at a high level) is in some
sense fair: on a hand-by-hand basis, the average amount that the random deck order advantages
or disadvantages a particular player is small.

Video game designers may find the variance component for chance helpful in assessing the
per-play advantage gleaned by a player due to chance events. We speculate that for a rewarding
game experience, the variance component should be kept low, or else players will a sense of limited
agency. Returning to the question of the legality of poker, our measure could represent a sufficient
(but not necessary) criterion for determining that a game is “predominantly due to chance:” if the
ratio of the variance component for the chance player to the total variation is greater than 50%,
then clearly the game outcomes could be said to be predominantly due to chance. The three-way
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variance decomposition in (5.2) offers a way to characterize meaningful properties of games that
arise in the context of multiagent reinforcement learning and presents new research challenges such
as (i) accounting for estimation error in the skill rating (however it is defined), and (ii) accounting
for the actual distribution from which policies are sampled to play each other, which is often not
uniform but rather skill-based, such that players with nearby skill ratings are likely to be placed
together.
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A Variance component formula derivation

Recall that Iz =
∏
i∈N∪{c} I

i
z =

∏
i∈N∪{c}

∏mi(z)
j=1 Iiz,j is the indicator that all actions along terminal

history z are selected, Y =
∑

z∈Z r(z) Iz, and uiz,j is the jth information state observed by player

i in terminal history z. Write Iiz,k: =
∏mi(z)
j=k Iiz,j , the indicator that player i selects all actions

in z at and after uiz,k. Let d(u) be the depth of u in its trajectory; for example, if u is the first

observation of a player in their trajectory, d(u) = 1. Define Wu =
∑

z∈Z(u) r(z) η
−i(z) Iiz,d(u): and

U id = {u ∈ U i : d(u) = d}. Then

V [E(Y |Ai)] = V

[∑
z∈Z

r(z) η−i(z) Iiz

]
= V

[ ∑
u∈U i

1

∑
z∈Z(u)

r(z) η−i(z) Iiz

]
= V

( ∑
u∈U i

1

Wu

)
. (A.1)

Note that histories z ∈ Z that contain no information states for player i have Iiz ≡ 1, so they
are constant inside the conditional expectation, which is why the second and third expressions are
equal.

By the perfect recall assumption, each information state u can be uniquely identified with
the sequence of information states and actions required to reach u. Furthermore, the behavioral
strategy assumption gives that A(u) is independent of A(u′) if u 6= u′ ∈ U i. Therefore if uiz,j 6= uiz′,j
for some j, then Iiz,h is independent of Iiz′,h′ for all h, h′ ∈ {j, . . . ,min[mi(z),mi(z′)]}. We conclude
that Wu is independent of Wu′ if u 6= u′. This allows us to split up (A.1):

V [E(Y |Ai)] = V

( ∑
u∈U i

1

Wu

)
=
∑
u∈Ui

1

V (Wu) =
∑
u∈U i

1

(
V {E[Wu|A(u)]}+ E{V [Wu|A(u)]}

)
. (A.2)

The last equality holds by the law of total variance. To evaluate the components of (A.2), write
Wua =

∑
z∈Z(ua) r(z) η

−i(z) Iiz,[d(u)+1]: for each a ∈ A(u) so we have that

Wu =
∑

z∈Z(u)

r(z) η−i(z) Iiz,d(u): =
∑

a∈A(u)

∑
z∈Z(ua)

r(z) η−i(z) Iiz,d(u)I
i
z,[d(u)+1]: =

∑
a∈A(u)

Wua1(A(u) = a).
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Now evaluate each variance component. We begin with:

V {E[Wu|A(u)]} = V

[
E

( ∑
a∈A(u)

Wua1(A(u) = a)

∣∣∣∣A(u)

)]

= V

[ ∑
a∈A(u)

E(Wua)1(A(u) = a)

]

=
∑

a∈A(u)

E2(Wua)π
i(a|u)−

[ ∑
a∈A(u)

E(Wua)π
i(a|u)

]2
.

Write r(u, a) = E{r(Z)1[Z ∈ Z(u, a)]} and r(u) = E{r(Z)1[Z ∈ Z(u)]}. Then

E(Wua) =
∑

z∈Z(ua)

r(z) η−i(z)
∏mi(z)
j=d(u)+1 π(aiz,j |uiz,j)

=
∑

z∈Z(ua)

r(z) η−i(z)
∏mi(z)
j=1 π(aiz,j |uiz,j)

[∏d(u)
j=1 π(aiz,j |uiz,j)

]−1
=

∑
z∈Z(ua)

r(z) η(z) [ηi(u)π(a|u)]−1

= r(u, a) [ηi(u)π(a|u)]−1.

Substituting these terms back into the expression for the variance component, we get that

V {E[Wu|A(u)]} =
∑

a∈A(u)

[r(u, a)]2 [ηi(u)]−2/πi(a|u)−
[
[ηi(u)]−1

∑
a∈A(u)

r(u, a)

]2
= [ηi(u)]−2

( ∑
a∈A(u)

[r(u, a)]2 πi(a;u)− [r(u)]2
)
.

For the second variance component, we find:

E{V [Wu|A(u)]} =
∑

a∈A(u)

V [Wu|A(u) = a] P [A(u) = a]

=
∑

a∈A(u)

V

( ∑
z∈Z(ua)

r(z) η−i(z) Iiz,[d(u)+1]:

)
πi(a|u).

Now take Y2 =
∑

z∈Z(ua) r(z) η
−i(z) Iiz,[d(u)+1]: and repeat the steps shown in (A.2) inductively to

obtain that:

V [E(Y |Ai)] =
∑
u∈U i

( ∑
a∈A(u)

[r(u, a)]2/πi(a|u)− [r(u)]2
)
/ηi(u).

Because r(u, a) = q(u, a) η(u)πi(a|u) and r(u) = v(u) η(u), this yields (3.2).
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B Proof of consistency

Let µ(u) = η(u)/
∑

u∈Ui η(u). Then

V [E(Y |Ai)] =
∑
u∈U i

( ∑
a∈A(u)

[q(u, a)]2 πi(a|u)− [v(u)]2
)
η−i(u) η(u)

=

( ∑
u∈Ui

η(u)

) ∑
u∈Ui

( ∑
a∈A(u)

[q(u, a)]2 πi(a|u)− [v(u)]2
)
η−i(u)µ(u)

=

( ∑
u∈Ui

η(u)

)
EU∼µ

[( ∑
a∈A(U)

[q(U, a)]2 πi(a|U)− [v(U)]2
)
η−i(U)

]
Note that∑
u∈Ui

η(u) =
∑
u∈Ui

∑
z∈Z(u)

η(z) =
∑
u∈U i

∑
z∈Z

η(z)1(u ∈ z) =
∑
z∈Z

η(z)
∑
u∈U i

1(u ∈ z) = E[di(Z)],

where di(Z) is the length of the trajectory for player i in terminal history Z. So, by the law of large
numbers, ν−1

∑ν
k=1 d

i(Zk)
a.s.→
∑

u∈Ui η(u) as ν →∞. Consider the Markov Chain {Ut}t∈N defined
by the information states for player i observed upon repeated independent playthroughs of the game
and let φ(u) = {

∑
a∈A(u)[q(u, a)]2 πi(a|u) − [v(u)]2} η−i(u). Then T−1

∑T
t=1 φ(Ut)

a.s.→ EU∼µ[φ(U)]
as T → ∞ by a Law of Large Numbers for Markov Chains since {Ut} is irreducible and positive
recurrent.

Converting both these results to the notation of the original statement of the estimator, we
have ν−1

∑ν
k=1 lk

a.s.→
∑

u∈U i η(u) and
(∑ν

k=1 lk
)−1∑ν

k=1

∑lk
l=1 φ(Uk,l)

a.s.→ EU∼µ[φ(U)] as ν → ∞.
Therefore their product converges to the estimand, as desired.

C SkillRPS decomposition details

Recall that in SkillRPS, the outcome is Y = (1 −W )[1(S > 0) − 1(S < 0)] + W (2Z − 1), where
S = N1 − N2 + c · RPS(A1, A2). In this case, a player’s selection of Ni is considered to indicate
their skill level, and Ac = (W,Z) is the collection of all chance actions. Adapting the three-way
decomposition equation (5.2) to SkillRPS yields

V (Y ) = V [E(Y |N1, N2)]︸ ︷︷ ︸
skill

+E{V [E(Y |W,Z,N1, N2)|N1, N2]}︸ ︷︷ ︸
chance

+E[V (Y |W,Z,N1, N2)]︸ ︷︷ ︸
remaining variation

.

Under the assumption that N1, N2
iid∼ Uniform({1, . . . , n}) and are independent of A1, A2

iid∼
Uniform({Rock, Paper, Scissors}), we can derive closed form expressions for each variance com-
ponent.

Using routine probability manipulations, one can derive the following term for the variance in
Y explained by the “skill” of the players in the case that the coin flip didn’t happen (W = 0),
for all n ∈ N and c ∈ N ∪ {0}. Begin by finding E(Y |N1 = n1, N2 = n2,W = 0) for arbitrary
n1, n2 ∈ {1, . . . , n}, which is easy since the only remaining source of variation is RPS(A1, A2) ∼
Uniform({−1, 0, 1}). Next, treat this term as a discrete random variable depending on N1 and N2

and compute its variance. This yields:

V [E(Y |N1, N2,W = 0)] =


1− 1

n if c = 0

1− 1
3n + 8c2+2c−16cn

9n2 if 0 < c < n

(1− 1
n)/9 if c ≥ n.
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Call this term ψ(n, c). From here one can find that:

V [E(Y |N1, N2)] = (1− α)2 ψ(n, c)

E{V [E(Y |W,Z,N1, N2)|N1, N2]} = α+ α(1− α)ψ(n, c).

Finally, we also get that

E[V (Y |W,Z,N1, N2)] =


0 if c = 0

(1− α) [1− 1
n + 2c

3n2 − ψ(n, c)] if 0 < c < n

(1− α) (89 −
2
9n) if c ≥ n.
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