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Abstract—Drafting in Magic the Gathering is a sub-game
within a larger trading card game, where several players pro-
gressively build decks by picking cards from a common pool.
Drafting poses an interesting problem for game and AI research
due to its large search space, mechanical complexity, multi-
player nature, and hidden information. Despite this, drafting
remains understudied, in part due to a lack of high-quality,
public datasets. To rectify this problem, we present a dataset
of over 100,000 simulated, anonymized human drafts collected
from Draftsim.com. We also propose four diverse strategies
for drafting agents, including a primitive heuristic agent, an
expert-tuned complex heuristic agent, a Naive Bayes agent, and
a deep neural network agent. We benchmark their ability to
emulate human drafting, and show that the deep neural network
agent outperforms other agents, while the Naive Bayes and
expert-tuned agents outperform simple heuristics. We analyze the
accuracy of AI agents across the timeline of a draft, and describe
unique strengths and weaknesses for each approach. This work
helps to identify next steps in the creation of humanlike drafting
agents, and can serve as a benchmark for the next generation of
drafting bots.

Index Terms—Drafting games, MTG, AI

I. INTRODUCTION

AI agents have recently achieved superhuman performance
in several challenging games such as chess, shogi, go, and
poker [1]–[3], as well real-time strategy games such as Star-
Craft II and multiplayer online battle arenas (MOBAs) such as
Dota 2 [4], [5]. These successes open opportunities to branch
out and to create game-playing AI for other complex games.
Much like strategy and MOBA games, collectible card games
(CCGs) such as Hearthstone and Magic: the Gathering (MtG)
present challenging milestones for AI, due to their mechanical
complexity, multiplayer nature, and large amount of hidden
information [6]. Although some studies investigate AI for
Hearthstone [7]–[10], relatively little work exists on building
game-playing AI for MtG [11], [12].

In this paper, we focus on a game mode known as “drafting”
that involves progressive deck-building, where players take
turns to select cards for their collection from given initial
sets of cards [13]. From their final collections, each player

builds a deck and plays games against each other to determine
the winner of the draft. We focus on drafting in Magic: the
Gathering. MtG features one of the most complicated and
popular drafting environments, where eight players each open
a pack of 15 semi-random cards, select one card from that
pack, and pass the remainder of the pack to an adjacent
player. This process is repeated until all cards are drafted,
and then is repeated twice over for two additional packs (with
the second pack passed in the opposite direction). By the end
of the draft, each player possesses a pool of 45 cards from
which they select 20-25 cards to build a deck. Critically, each
player’s current pick and growing collection is hidden from
other players.

While the core idea of building a deck by progressively
selecting cards is shared by all drafting games, other key
aspects of drafting are variable. On the simpler end of the
spectrum, Hearthstone’s drafting game - known as Arena -
presents a single player with three semi-random cards from
which they choose one to add to their deck. While drafting in
MtG and Hearthstone both involve progressive deck-building
from randomly-assorted cards, unlike Hearthstone, MtG draft-
ing is complicated by its competitive multiplayer nature, larger
search space, and substantial amount of hidden information. It
is therefore likely that successful MtG drafting agents will rely
on strategies that generalize to other, simpler drafting games
like Hearthstone Arena. A summary of key aspects in which
popular drafting games vary is listed in Table 1.

These attributes of drafting games present interesting chal-
lenges for AI agents, and are further complicated by the large
search space of a single draft. When evaluating a single pack of
cards to decide which card to pick, a successful MtG drafting
agent must take into account the individual strength of each
card, the synergies between each card and the cards already
in the player’s collection, and the strategies their opponents
may be pursuing. In a full draft, a drafting agent sees a total
of 315 cards and makes 45 consecutive decisions of which
card to take, bringing the total number of direct card-to-card
comparisons to 7,080. In addition, the agent could potentially
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TABLE I
PROPERTIES OF POPULAR DRAFTING GAMES

Game Drafting Mode Hidden Info? # of Players? Multiplayer? Asynchronous?

MTG Draft Yes 8 Yes Both
Eternal Draft Yes 12 Yes Yes

Hearthstone Arena No 1 No Yes
Gwent Arena No 1 No Yes

Legends of Runeterra Arena No 1 No Yes
DotA Team Formation No 10 Yes No

League of Legends Team Formation No 10 Yes No
Autochess Autobattler Very little 8 Yes No

Teamfight Tactics Autobattler Very little 8 Yes No

compare the distribution of cards it receives from its opponents
to an expected distribution, as well as note which cards were
not drafted after each pack of 15 cards traveled around the
table of 8 players for the first time. Overall, for a set of
250 different cards, the full landscape of a draft comprises
about 10700 starting conditions and roughly 1040 potential
deck-building trajectories, rendering brute-force approaches
infeasible.

A central goal for AI drafting agents is, rather than to
draft optimally, to emulate human drafting. As online CCGs
such as MtG Arena frequently pit players against drafting
bots and not against other players, the creation of human-
like agents could benefit both players and game development
teams. While drafting bots currently employed in games such
as MtG Arena enable asynchronous play, they seem to rely
on simple heuristics that draft predictably and can result in
negative gameplay experiences for players [14], [15]. Human-
like drafting bots could provide a better experience and allow
human players to build decks with more varied strategies.

Here, we design, implement, and compare several strategies
for building human-like MtG drafting agents. Because we do
not aim to construct agents that draft optimally and because
deck-building algorithms for completed drafts are beyond the
scope of this work, we do not evaluate the quality of decks
drafted by agents. Instead, we directly evaluate agents’ ability
to emulate human drafting strategies by measuring their pre-
dictions of human choices in a dataset of simulated MtG drafts
performed by anonymous users of the website draftsim.com.
We benchmark several drafting strategies, including a neural-
network approach and a Bayesian approach, against simple
heuristic-based approaches, and show that they predict human
choices with relatively high accuracy.

Our work contributes the following:
• We present the first large-scale public dataset of human

MtG drafts, enabling the study of drafting for the AI and
game development communities. This is downloadable at
draftsim.com/draft-data.

• We frame drafting as a classification problem with the
goal of creating drafting agents that accurately predict
human card choices, and perform detailed evaluations
of drafting agents to identify their relative strengths
and weaknesses in addition to measuring their overall
accuracy.

• We show that a deep neural-network approach best pre-
dicts human card choices, and suggest that similar ap-
proaches can help game developers interested in building
new drafting agents.

II. RELEVANT WORK

Several papers investigated constructed deck-building in
Hearthstone and MtG [6], [9], [11], [16], [17]. These works
framed deck-construction as a combinatorial optimization
problem, where the goal is to select cards to add to a deck
that maximize the win rate of the completed deck against
a set of known decks. Evolutionary algorithms, Q-learning,
and a utility system were employed to address this problem.
Similar work applied evolutionary or quality-diversity algo-
rithms towards deck-building in Hearthstone and Dominion
with the aim of investigating or evolving game balance [18]–
[20]. However, these approaches are difficult to apply to MtG
drafting [11], due to the inherent variability of the game and
the large amount of hidden information involved. Moreover,
the scarcity of public data from actual drafts makes the
evaluation of drafting agents challenging.

Unfortunately, previous research on constructed deck-
building cannot be directly reapplied to building human-like
drafting bots. To leverage this body of work, assumptions
would have to be made about decks to optimize against before
the draft is completed. This is a potentially difficult problem
in its own right: even disregarding the high variability of drafts
within a specific format, players only select roughly half of the
cards they draft to put into their deck. Assuming that players
use exactly 17 basic lands in their deck and thus choose 23
cards from their total pool of 45 cards to complete a 40-card
deck, there are well over 1012 possible ways to construct a
deck from a single draft. Accordingly, a crucial prerequisite
for framing drafting as a combinatorial optimization problem
is the existence of an efficient algorithm for building a realistic
deck from a completed draft pool, which is beyond the scope
of this work.

Outside of online CCGs, a small body of research examines
drafting in multiplayer online battle arenas (MOBAs) such
as League of Legends and DotA 2 [21]–[24]. MOBAs task
players with sequentially choosing a team of in-game avatars
that have different skillsets and synergies with each other,
alternating choices with the opposing team which they aim

http://draftsim.com/draft-data


to beat during a subsequent game. Much like drafting in MtG,
MOBA drafting involves sequentially choosing heroes from
a depleting pool. Previous research on this topic aimed to
build recommender systems for hero choices [21], [22], or
to predict hero choices as drafts progress [23], [24]. Like
the work presented here, these authors typically use machine
learning techniques to predict the next chosen hero or the
optimal combination of heroes based on training datasets of
actual drafts.

Drafting games seen in MOBAs as well as the autobattler
genre likely benefit from existing research on team formation
problems. Previous work has formulated fantasy football as
a sequentially-optimal team formation problem [25]. The key
distinctions between selecting players in fantasy football and
selecting heroes during MOBA drafts are the gameplay phases
that occur after each fantasy football draft (MOBAs only
have one gameplay phase, which occurs after the draft is
completed), the fact that MOBA heroes are limited resources
(unlike fantasy football players, which can be chosen by
multiple human players), and the economy system in fantasy
football that assigns prices to players (MOBA drafting lacks
an economy system). Autobattlers are perhaps more similar
to fantasy football, because they also feature an economy
system and alternate drafting phases and gameplay phases.
However, heroes selected in autobattlers, like heroes in MOBA
drafts, are a limited resource. While it may be possible to
build drafting agents for MOBAs and autobattlers that treat
the games as team formation problems, further research is
necessary to enable the adaptation of previous team formation
work to these games or to MtG drafting [26]–[28].

Although little previous work exists on drafting in online
CCGs, a recent study applied evolutionary algorithms towards
arena drafting in a CCG named Legends of Code and Magic
[13]. While the evolutionary strategy applied may be ap-
plicable towards other arena drafting modes, in addition to
the aforementioned issues adapting constructed deck-building
work to MtG drafting, the authors’ simplifying assumption
that card choices do not depend on prior choices is likely
inappropriate for a synergy-driven game like MtG (discussed
below). Other existing work on drafting in online CCGs con-
sists of an early offshoot of this project that since developed
independently [29], as well as several other websites that allow
users to perform simulated drafting against bots [30], [31].

III. MTG TERMINOLOGY

Here we describe terminology for drafting games in general,
and for MtG in particular.

A. Drafting games

We define drafting games as games which include drafting
as a core mechanic. Drafting is defined as sequential deck-
building from a rotating, limited resource. Drafting games
typically include one or more drafting phases, where players
build or improve their decks, and gameplay phases, where
players pit their deck against other players’ decks. These
phases are nearly always discrete.

B. MtG overview

MtG (Magic: the Gathering) is a card game in which two
or more players use their decks to compete against each
other in one or more matches. A player wins by reducing
their opponent’s life total from the starting value of 20 to 0.
Each player starts with a hand of seven cards and draws one
additional card each turn. Players use “land” cards to generate
mana, which can then be used to play other cards. Mana comes
in five different colors (white, blue, black, red, and green), and
is used to cast “spell” cards at the cost of some combination
of different colors of mana. While most cards are limited to
four copies per deck, a deck can have an unlimited amount of
special lands known as “basic lands.”

C. Domain complexity

MtG’s comprehensive rules are approximately 200 pages
long [32], and judges are employed at every significant
tournament to resolve frequent rule-based misunderstandings.
Moreover, previous work has shown that the set of MtG rules
is Turing-complete [33], and the problem of checking whether
or not a single MtG action is legal can be coNP [34].

In total, there are over 17,000 MtG cards. However, a given
set used for drafting typically contains somewhere between
250 and 350 unique cards. On occasion, drafts may include
multiple packs from different sets.

D. Card features

Magic cards are distinguished by a variety of categorical
features. Each card belongs to one or more of the seven major
types: creature, sorcery, instant, artifact, enchantment, land,
planeswalker, and tribal. Each non-land card has a mana cost,
which represents the amount of mana required to play it. This
mana cost may include both colored mana and colorless mana
(which can be of any color).

IV. DATA DESCRIPTION AND EXPLORATORY ANALYSES

A. Data description

The website draftsim.com offers a simulated drafting expe-
rience, and has collected anonymized draft data from its users
from spring 2017 onwards. Draftsim allows human players
to draft against 7 bots that each follow the same manually
tuned heuristic strategy, which is described in detail below
(the “complex heuristic” bot). At the beginning of a draft, the
user picks a set of cards to draft from. Each set typically
contains around 250-300 different cards and is specifically
balanced around drafting. From the chosen set, booster packs
are randomly generated with a card frequency distribution
matching that of real booster packs. In total, 11/15 cards are
“common” rarity, 3/15 are “uncommon”, 7/120 are “rare”, and
1/120 are “mythic.” After drafting, the user’s choices as well
as choices made by the 7 bots they draft against are recorded
anonymously and saved in an SQL database. Draftsim does
not record player IDs, their IP or location, or the time it took
them to make individual picks. As of summer 2020, Draftsim
holds data for all sets released after Jan 2018 (14 at the time
of writing), with about 100,000 completed drafts for popular



sets. Each full draft (one data point) consists of 45 consecutive
decisions made by one player.

B. Training and testing data

All drafting agents presented below were trained and evalu-
ated on drafts of a single MtG set, Core Set 2019 (abbreviated
as M19). This set contains 265 mechanically different cards:
16 mythic rare cards, 53 rare cards, 80 uncommon cards, 111
common cards, and 5 basic lands. We obtained a total of
107,949 user M19 drafts and split these into a training set of
86,359 drafts and a testing set of 21,590 drafts (an 80/20 split).
As each draft contains 24 unique packs of cards, a total of
2,072,616 packs were seen by drafting agents during training,
and a total of 518,160 packs were used to evaluate the drafting
agents’ performances.

C. Analysis and visualization of the data

Cards of every MtG set form a complex network of interac-
tions. Some cards are designed to “synergize” with each other,
either because they require similar resources to be played (such
as mana of the same color), or because one card changes its
behavior when another card is present in the game. Certain
pairs of cards can also complement or compete with each
other in terms of optimizing the distribution of mana costs
within a deck. The goal of drafting is thus typically not
to pick the “objectively best” card from a pack, as drafting
instead resembles a stochastic descent towards powerful deck
configurations where players try to pick cards that are both
individually strong and synergize with each other. These deck
configurations are explicitly created in each set by the game’s
developers and are unique for each drafting environment.

To inform the creation of AI agents and to visualize this
multidimensional optimization landscape, for each pair of
cards (i, j) in our data we looked into whether they were likely
to be drafted together by human players. We calculated the fre-
quency of pairs of cards ending up in the same collection Pij ,
and compared it to the probability that these cards would be
drafted together by chance if drafting was completely random
(PiPj). Two cards may be called synergistic if Pij > PiPj ,
and the ratio of two probabilities Sij = Pij/PiPj can be used
as a measure of this synergy.

To visualize synergies within each set, we considered a
weighted graph, defined by a distance matrix D, that placed
cards closer to each other if they were often drafted together,
with card-to-card distances given by a formula: Dij = (1 −
Sij/maxij(Sij)). We projected this graph to a 2D plane using
a linear multidimensional scaling algorithm that maximized
Pearson correlation coefficients between the “true” distances
Dij and the Euclidean distances within the 2D projection D̂ij .
Visual profiles, or “synergy plots,” for several MtG sets are
shown in Fig. 1, with each card represented by a point and
the color of each point matching the color of mana required
to play that card.

Synergy plots also illustrate why a good drafting AI al-
gorithm is crucial for making virtual drafting compelling for
human players. It is clear from the synergy plots that cards

indeed form clusters based on whether users believe they can
be used together in a viable deck. For M19 these clusters are
primarily defined by card colors, whereas XLN was designed
to emphasize relatively color-independent strategies as a so-
called “tribal set” (Fig. 1) [35]. As eight players engage in a
draft, they are competing for synergistic decks, and are each
trying to settle into deck archetypes represented by one of
these clusters. As a result of this competition, final decks can
be expected to be most streamlined and powerful if each player
commits to a certain archetype, freeing cards that belong
to other archetypes to other players. This interplay between
competitive and collaborating drafting explains the demand for
difficult-to-exploit drafting bots that is expressed by players in
online discussion venues [14], [15].

V. DRAFTING AGENTS

A. Goals for drafting agents

Using the data described above, we designed drafting agents
that approximate the behavior of human players. In other
words, we trained and evaluated bots on their ability to predict
the card that was actually picked by a human player at each
stage of a draft, given the choice of cards in the pack and
cards already in the player’s collection.

VI. AGENTS

We constructed five different drafting agents which im-
plement different drafting strategies. Two of these agents,
RandomBot and RaredraftBot, serve as baselines to compare
other bots against. They implement, respectively, random card-
picking and card-ranking based on simple heuristics. Draft-
simBot ranks cards based on heuristic estimations of their
strength and whether their color matches the color of cards
already in the agent’s collection. BayesBot ranks cards based
on estimated log-likelihoods of human users picking cards
from a given pack, given the current collection. NNetBot ranks
cards based on the output of a deep neural network trained to
predict human choices (Table 2). The agents are described in
detail below.

A. RandomBot: random drafting

This baseline agent ranks all cards in a pack randomly.

B. RaredraftBot: simple heuristics

As a more realistic baseline, RaredraftBot emulates a draft-
ing strategy used by inexperienced human players by drafting
the rarest card in each pack. It breaks ties between cards of
the same rarity by randomly choosing between all cards whose
color matches the most common color in the bot’s collection.

C. DraftsimBot: complex heuristics

The drafting algorithm currently employed on draftsim.com
and implemented here ranks cards based on approximations of
individual card strength provided by a human expert, as well
as on whether each card matches the most common colors
among the stronger cards in the bot’s collection. These strength
ratings are set in the 0-5 range by a human annotator, with



Fig. 1. Synergy plots for Draftsim data collected from Ixalan (XLN), Dominaria (DOM), Core Set 2019 (M19), and Guilds of Ravnica (GRN).

higher numbers assigned to stronger cards. The DraftsimBot
agent aims to approximate the behavior of human drafters:
it first chooses stronger cards based on these human-provided
annotations, and as the draft progresses it develops an increas-
ing tendency to draft cards “in-color,” until at some point it
switches to a strict in-color drafting strategy.

The rating for a card c is given by the scalar output of the
function rating. The bot’s collection is represented as a vector
of card names, d. Rating is computed as the sum of a strength
rating, strength(c), and a color bias term, colorbias(c)|d.

rating(c)|d = strength(c) + colorbias(c)|d (1)

A card’s colored mana costs are expressed in the vector
colors. The ith component of the 5-dimensional color vector
represents the required number of mana of the ith color.

colors(c)[i] = required mana of ith color (2)

The pull of a card, pull(c), is the amount that its strength
exceeds a threshold for minimum card strength (2.0). For M19,
the weakest 20% of the set (53 cards) does not meet this
threshold. This excludes the weakest cards effects’ on drafting.

pull(c) = max
(
0, strength(c)− 2.0

)
(3)

A player’s commitment to a color, colorcommit, is calcu-
lated by summing the pull of cards in that player’s deck D
containing that color. The color bonus, C(i), is a heuristic
computed from colorcommit that balances picking powerful
cards and committing to a two-color pair. This bonus is
calculated differently early in the draft (the “speculation”
phase) and later in the draft (the “commitment” phase).

colorcommit[i]|D = Σc∈D | colors(c)[i]>0 pull(c) (4)

bonus(c) = max(0.257 ∗ colorcommit[i], 0.9) (5)

bonus(c) = Σ(bonus(on)− bonus(off))− 0.6 (6)

The agent starts in the speculation phase, where one-
color cards of color i are assigned a bonus proportional to
that player’s colorcommit for this color and capped at 0.9,
as shown in Equation (5). Colorless cards are assigned a

bonus equal to the maximum color bonus of 1-color cards.
Multicolored cards with 2-3 colors are assigned a rating equal
to the bonus of the card’s colors, subtracting off the bonus
of other colors and a multicolored penalty of 0.6 as shown in
Equation (6). Multicolored cards with 4+ colors are ignored
by the model and assigned a bonus of 0. This phase lasts until
the playing agent is committed to 2+ colors, or until the fourth
pick of the second pack, whichever comes first.

The agent is considered committed to a color i when
the summary colorcommit[i] exceeds 3.5, and it can be
committed to 0, 1, or 2+ colors. If the agent is committed
to 2+ colors, the two colors with the greatest colorcommit
values are referred to as that agent’s primary colors. During
the committed phase, on-color cards are assigned a large bonus
of +2.0, while off color cards are assigned a penalty of −1.0
for each off color mana symbol beyond the first.

D. BayesBot: Bayesian card-ranking

This agent explicitly relies on the co-occurrence statistics
of the training drafts, and gives priority to pairs of cards that
were drafted together more frequently than by chance.

The BayesBot agent employs one strategy to pick the first
card within a draft and another to pick all other cards. For
the first card, it looks for the card that was most often picked
first by human players in the first pack. In practice, for all
picks made by human players in the training set, it counts
cases mij when both cards i and j were present in the pack
and sub-cases mi>j when card i was picked earlier than card
j, to calculate the probability that card i is picked over card
j. Then it employs the Naive Bayes approximation, assuming
independence of probabilities P (i > j) and relying on pre-
calculated log-likelihood values, to find the card with the
highest probability of being picked first in Equation (8).

P (i > j) = mi>j/mij (7)

i = argmaxi
∏
j

P (i > j) = argmaxi
∑
j

log(mi>j/mij)

(8)
For all subsequent cards, the agent maximizes the “synergy”

between a newly picked card and cards already in the collec-
tion. In practice, it counts all cases nij when card i was present



in the pack and card j was already in the collection, and all
sub-cases when after that the card i was actually drafted, ni→j .
The ratio of these two numbers gives a marginal probability
that card i is drafted when card j is already collected in
Equation (9).

P (i→ j | i ∈ pack ∧ j ∈ collection) = ni→j/nij (9)

P (i) =
∏
j

P (i→ j|i, j) =
∏
j

ni→j/nij (10)

i = argmaxi
∏
j

ni→j/nij = argmaxi
∑
j

log(ni→j/nij)

(11)
In the Naive Bayes approximation, the probability of draft-

ing a card i given a full collection of cards {j} is equal
to a product of probabilities P (i → j|i, j) across all cards
in {j}, as these probabilities are (naively) assumed to be
independent. Therefore, the full probability P (i) of drafting a
card i is assumed in Equation (10). The card with the highest
total probability is drafted, and the top-ranked card is also
calculated using log-likelihood values in Equation (11).

In practice, these formulas are vectorized as P = Q · c,
where Qij = log(ni→j/nij) is a matrix of log-transformed
probabilities of drafting card i from the pack to join card j
already in the collection, and c is the indicator vector of all
cards in the collection (cj is the number of cards of type j
present in the collection). Note that while Q seems to quantify
“attraction” between the cards, it also indirectly encodes the
rating of each card, as the values of Qij are larger when the
card i is strong and the probability of it being drafted P (i→ j)
is high.

E. NNetBot: deep neural network card-ranking

This agent applies a naive deep learning approach to emulate
human drafting. From vector representations of the pack, the
current collection, and each actual pick, the card picked by the
human player is represented as the target variable y: a one-hot
encoded vector of length S, where S is the number of cards
in the set (S = 265).

The independent variable x is constructed from a vector
encoding the collection (with each element xi representing
the number of copies of the card i in the collection). This
collection information x of length L is fed into the input
layer of a network with 3 dense layers, each L elements wide,
with leakyReLu activation (a=0.01), batch normalization, and
dropout (p=0.5). The final layer is linear and projects to a
one-hot-encoded output vector ŷ of length S.

We also defined a pack vector [xpack] to represent cards
present in the current pack. The model did not use the pack
vector as an input, but rather used the current collection to
predict the best cards in the entire set that could be picked.
The output of the model was then element-wise multiplied by
the pack vector to enforce the constraint that only cards in the
pack can be selected in Equation (12).

pick = argmax(ŷ � xpack) (12)

To evaluate the model’s performance on the training dataset,
the network was trained for 20 epochs using cross entropy loss
with 3-fold cross-validation. All cross-validation accuracies
stabilized at roughly 64.5% after a handful of epochs, indicat-
ing that 20 epochs was sufficient training time. After cross-
validation, a model was trained for 20 epochs on the entire
training dataset and similarly stabilized at 64.7% accuracy on
the testing set. This model’s card rankings were used as the
output of the NNetBot.

VII. COMPARISONS OF BOT PERFORMANCE

To evaluate whether our agents drafted similarly to human
players, we measured each drafting agent’s top-one accuracy
for predicting actual user choices across all 21,590 drafts in the
testing set (Table 2). While all complex agents outperformed
the baseline Random and RaredraftBot agents, the deep neural-
network agent NNetBot outperformed the DraftsimBot and
BayesBot agents. All differences between groups for both top-
one accuracy were significant (Tukey test p < 2e-16).

In addition to measuring the overall accuracy of each agent,
we also measured their top-one accuracy for each turn of the
draft (from 1 to 45). Because pack size decreases as packs
are depleted, from 15 cards to 1 card for picks 1 to 15, 16
to 30 and 31 to 45, per-pick accuracy could better reflect the
players’ shifting goals during the draft compared to overall
accuracy. The first card of each pack, for example, is often
picked based on its rarity or its strength. Cards in the middle of
each pack are more likely to be picked based on their synergy
with existing collections, while the last cards of each pack are
typically not desirable to any player. Per-pick accuracy for all
bots on the testing set is shown in Fig. 2.

Per-pick accuracies further highlight the differences be-
tween each agent. First, the NNetBot consistently outper-
formed all other bots, while the DraftsimBot and BayesBot
performed similarly. All three complex bots outperformed the
two baseline bots. Second, all bots except for the RandomBot
performed better at the beginning than during the middle of
every pack. This supports the assumption that players’ goals
shift throughout the draft: players are more likely to pick cards
based on estimated strength or rarity early on in each pack,
and are more likely to pick cards for other reasons (such as
synergy with their collection) during the middle of each pack.
Third, the RaredraftBot performed better than the RandomBot
across all picks, showing that agents with simple heuristics
make a far more compelling baseline for assessing drafting
agents than a randomized agent.

Lastly, we also compared each card’s estimated strength,
based on the expert-provided ratings of each card used by
the DraftsimBot, to each agent’s accuracy in picking that card
across all drafts (Fig. 3). Fig. 3 shows that the average pick
accuracy varied greatly across different card strengths and
different drafting agents. The RandomBot only successfully
picked weak cards, as these cards were the last to be drafted.
The RaredraftBot and BayesBot agents accurately picked both
weak cards and strong cards, but struggled to pick medium-
strength cards. The DraftsimBot and especially the NNetBot



TABLE II
IMPLEMENTED DRAFTING AGENTS

Agent Type Needs
training?

Mean testing
accuracy (%)

RandomBot Random No 22.15
RaredraftBot Heuristic No 30.53
DraftsimBot Heuristic No 44.54

BayesBot Bayesian Yes 43.35
NNetBot Deep neural

network
Yes 48.67

Fig. 2. Per-pick accuracies for five bots.

Fig. 3. Pick accuracy vs. card strength for five bots.

outperformed all other agents for medium-strength cards, but
performed slightly worse for weak and strong cards.

The most probable explanation for this surprising under-
performance of the two best AI agents for edge-case cards
lies in a social phenomenon known as “raredrafting.” A small
share of cards in every set are designed to be weak for
drafting environments, but are much sought after for other
formats. In real drafts, players are tempted to take these weak
but expensive cards instead of cards that could help them
within the draft. While all drafts in the dataset were virtual,
it seems that many players still raredrafted and picked weak

rares instead of stronger common or uncommon cards as their
first or second picks. This raredrafting behavior threw off
the top performing NNBot and DraftsimBot agents but was
recapitulated by the BayesianBot, that directly learned these
signals, as well as the RaredraftBot (by definition).

VIII. DISCUSSION

In this report, we present a large-scale dataset of hu-
man MtG drafts and compare several approaches to building
human-like drafting agents for that set. We suggest that
human-like drafting agents should be evaluated based on how
well they approximate human choices in a set of testing drafts.
We show that a neural network-based agent outperforms other
agents, including a random agent, agents that implement sim-
ple or expert-tuned heuristics, and a naive Bayesian approach.

Our approach has some limitations. First, as both the
training and testing data were produced by humans drafting
in a simulated environment, it is possible that our data does
not approximate competitive MtG drafting. Some players
might have randomly clicked through cards in a draft. Some
might have ranked cards using the “suggestions” function that
displays expert card ratings which are similar to those used
by the DraftsimBot. Some might have drafted suboptimally on
purpose, trying to explore the flexiblity of the set or to pick
cards that represented only a single strategy. These limitations
should not impact the bots’ ability to emulate human drafting,
but could hamper the bots’ ability to generalize to competitive
drafting environments. Second, because deck-building algo-
rithms for MtG are outside the scope of this work, we do not
evaluate the strength of decks built from completed drafts in
simulated matches. This may also impact how well the agents
generalize to competitive environments. Lastly, we performed
all analyses on data from a single set. Future work could
investigate how well bots perform on different MtG sets.

One important contribution of our paper is the benchmark-
ing of more advanced agents against heuristic-based bots.
As for [13], who benchmarked their proposed evolutionary
deck-building strategies for the card game Legends of Code
and Magic against both random strategies and card rankings
from top players, we observe a substantial performance benefit
for deck-building based on simple heuristics compared to
random chance. We hope that our agents, or similar neural
network, Bayesian and heuristic-based agents may serve as
useful benchmarks for future drafting and deck-building work.

Our work also outlines several avenues for the development
of future drafting bots. One is to develop agents that can gen-
eralize to diverse MtG sets, tolerate the inclusion of previously
unseen cards, and work with mixtures of cards from different
sets [29]. Another opportunity is to create agents that address
cooperation and competition between players during a draft.
Human players are known to make guesses about what their
neighbors might be drafting, based on the statistics of packs
that are handed to them (a strategy known as “signaling”), and
use these guesses to inform their picks. Some players may
also take cards that don’t benefit them but might benefit their
opponents (a strategy known as “hate-drafting”). Neither of



these behaviors is addressed by agents presented in this paper.
Finally, future work should also tackle algorithms for building
decks from completed drafts. This step is a prerequisite for
testing the strength of draft pools in simulated MtG games,
and thus is required to close the loop and enable reinforcement
learning through self-play.

IX. CODE AND DATA AVAILABILITY

The collection of M19 drafts is available under a CC
BY 4.0 International license at draftsim.com/draft-data. All
code used to implement and test drafting bots is available at
github.com/khakhalin/MTG.
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O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps,
and D. Silver, “Grandmaster level in StarCraft II using multi-agent
reinforcement learning,” Nature, vol. 575, pp. 350–354, 11 2019.

[5] OpenAI, :, C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dȩbiak,
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