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Abstract—This paper proposes Heuristic Sampling (HS) for
generating self-play trials for games with a defined state evalu-
ation function, with speeds comparable to random playouts but
game length estimates comparable to those produced by intelli-
gent AI agents. HS produces plausible results up to thousands
of times faster than more rigorous methods.

Index Terms—AI, Board Games, Game Length, Ludii

I. INTRODUCTION

This short note addresses a simple and practical question:
what is the fastest way to reliably estimate the average length
of games that will occur between humans playing a given rule
set? Game length – along with balance and decisiveness – has
emerged as a key indicator of abstract board game quality in
automated game evaluation [1], [2]. Overly short game lengths
indicate that the rule set may be trivial, flawed or subject
to easily obtained winning strategies, while excessive game
lengths indicate that the rule set may be poorly tuned, reward
stalling play, or simply not converge to a result.

Both extremes are usually warning signs of serious prob-
lems in a rule set (with some exceptions), and while game
length alone is not sufficient to estimate the quality of a game,
it provides a useful filter for quickly identifying flawed cases.

A. Context

This question is important for the Digital Ludeme Project,
which aims to reconstruct missing rules of ancient board
games based on historical evidence and automated evaluations
of potential rule sets that fit the known details [3]. The Ludii
general game system [4] implements over 1,000 ludemes
(game-related concepts) that can be combined in different
ways to define new rule sets, providing many thousands – or
millions – of plausible rule sets to test for each reconstruction
task. It is imperative to have fast and reliable game evaluation
metrics, which ideally operate at the millisecond level.

Potential rule sets are evaluated through automated self-play
trials between agents [2]. Random playouts provide the speed
required but produce unrealistic games involving poor move
choices that no intelligent player would make, hence can give
misleading results. Intelligent playouts by AI agents give more

This research is funded by the European Research Council as part of
the Digital Ludeme Project (ERC Consolidator Grant #771292) led by
Cameron Browne at Maastricht University’s Department of Data Science and
Knowledge Engineering.

realistic results but are orders of magnitude slower to generate
and too slow for practical purposes.

Specifically, we want a method that produces an observed
mean game length Lobs that approximates the expected mean
game length Lexp of a given rule set within a certain tolerance.
For the purposes of this exercise, a value of Lobs between
Lexp/2 and 2× Lexp is deemed to be acceptable.

In this paper, we present a simple method called Heuristic
Sampling that produces playouts with plausible game lengths
not far off those produced by intelligent play but with speeds
comparable to random play.

II. HEURISTIC SAMPLING

Heuristic Sampling (HS) applies when a heuristic state eval-
uation function is available. It involves successively choosing
for each state Si a high-reward action a from the set of
available actions Ai and applying it without lookahead search.
This may be described as a form of tournament selection
in which the maximal element is chosen from a randomly
selected subset of the available actions for each state.

We denote a HS search as HS1/n where 1/n is the fraction
of available actions to sample at each state. Specifically:

1. for each state Si

2. generate the set of available actions Ai

3. if |Ai| == 1 return Ai0

4. randomly select max(2, d |Ai|
n e) actions from Ai

5. for each selected action a
6. apply a to Si to give Sia

7. if Sia is a winning state then return a
8. else if Sia is a losing state then ignore a
9. else evaluate Sia with heuristic function
10. return action a with highest seen heuristic estimate

HS implicitly handles winning “mate-in-one” [5] or “deci-
sive” [6] moves, if such moves are among the randomly chosen
subset for their state. It also encourages greater exploration
of the game state space than traditional search methods, by
not following the same line of optimal play every time. This
can prove beneficial when the aim is to exercise rule sets for
evaluation purposes rather than outright playing strength.

A. Same-Turn Continuation

In Ludii, a turn is a consecutive sequence of actions by the
same player [4]. For example, making a line of three in Nine
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Fig. 1. White makes a line of three in Nine Men’s Morris, then captures a black piece to complete their turn.

Men’s Morris allows the mover to then capture an enemy piece
(Fig. 1); both actions are part of that player’s turn.

Same-Turn Continuation (STC) involves repeatedly apply-
ing HS to the current state while it is the same player’s turn
to move, so that the turn’s ultimate heuristic estimate is taken
at the end of the turn. That is, while ever it remains the same
player’s turn to move after an action has been applied, then
another action from the resulting state should be chosen and
applied. The resulting heuristic estimate at the end of the turn
should then be used as the value for the turn’s first action.

Without STC, only the first action in such chained sequences
would be considered, giving poor results for games in which
strong moves are contingent upon a (weaker) dependent move
being made first. STC is similar in principle to quiesence
search, in which the search continues beyond its nominal depth
for unstable states until a “quiet” state is reached [7].

III. EXPERIMENTS

The experiments were conducted using the Ludii general
game system.1 The heuristic state estimates for each game are
provided by a set of 15 general heuristics implemented for
Ludii, with weight vectors learnt per game through gradient
descent. The result is that Ludii provides competent but not
overly strong heuristic state evaluations for most games.

Experiments were run on the following games:
1) Tic-Tac-Toe (Lexp = 9 plies): Standard game on 3×3

board, game tree complexity ≈ 105.
2) Connect4 (Lexp = 36 plies): Standard game on 6×7

board, game tree complexity ≈ 1021.
3) English Draughts (Lexp = 70 plies): Standard game,

8×8 board, game tree complexity ≈ 1031.
4) Nine Men’s Morris (Lexp = 50 plies): Standard game,

nine pieces per player, game tree complexity ≈ 1050.
5) Halma (plies unknown): Two-player game on a reduced

6×6 board, game tree complexity unknown.
6) Lines of Action (Lexp = 44 plies): Standard game on

8×8 board, game tree complexity ≈ 1064.
7) Gomoku (Lexp = 30 plies): Standard game on 15×15

board, game tree complexity ≈ 1070.
8) Chess (Lexp = 70 plies): Standard game on 8×8 board

using FIDE rules, game tree complexity ≈ 10123.

1Ludii is available at: http://ludii.games

9) Shogi (Lexp = 115 plies): Standard game on 9×9 board,
game tree complexity ≈ 10226.

These games were selected to test the methods over a range
of game types and complexities. Expected game lengths Lexp

were taken from the “Game Complexity” Wikipedia page.2

Note that these expected game lengths are specified in terms
of plies whereas Ludii measures game length in terms of turns,
i.e. consecutive sequences of moves by the same player; these
will typically be identical but this is not guaranteed.

A. Playout Methods

The following playout methods were compared:
1) Random: Uniformly random playouts.
2) HS1/n: Heuristic Sampling with Same-Turn Continua-

tion, for sampling ratios 1/2, 1/4 and 1/8.
3) ABd: Standard Alpha Beta to depths of d = 1, 2 and 3.

AB1 is essentially equivalent to HS1/1 without STC.
4) UCT : Standard UCT search with a budget of 1,000

iterations per move using uniformly random playouts
and a default exploration constant of C =

√
2.

Each search method was applied to 100 trials of each game
where possible (Shogi involved fewer trials due to excessive
run times). A cap of 1,000 turns was applied for all trials
except for Random search; trials that exceeded this turn limit
were abandoned as draws and excluded from the sample.

IV. RESULTS

Table I shows the expected length of each game Lexp (in
plies) and the observed length Lobs (in turns) obtained for
each playout method, in addition to the number of completed
trials N , minimum and maximum observed lengths, standard
deviation (SD), standard error (SE) and average time per trial
in seconds.

Timings were taken on a standard consumer machine with
six 2.9 GHz i9 cores, similar to machines that Ludii users
performing reconstruction tasks will typically use. Timings are
therefore indicative only and can be multiplied by a factor of
around ×10 to estimate their serial equivalents.

Fig. 2 summarizes these results and highlights the perfor-
mance of each playout method against expected length Lexp

per game (dotted line). Additional comparisons between HS

2https://en.wikipedia.org/wiki/Game_complexity



Tic-Tac-Toe

R
a
n
d
o
m

H
S

  
  

1
/8

H
S

  
  

1
/4

H
S

  
  

1
/2

A
B

  1
 

A
B

  2
 

A
B

  3
 

U
C

T

0

2

4

6

8

10

Connect4

R
a
n
d
o
m

H
S

  
  

1
/8

H
S

  
  

1
/4

H
S

  
  

1
/2

A
B

  1
 

A
B

  2
 

A
B

  3
 

U
C

T

0

8

16

24

32

40

English Draughts

R
a
n
d
o
m

H
S

  
  

1
/8

H
S

  
  

1
/4

H
S

  
  

1
/2

A
B

  1
 

A
B

  2
 

A
B

  3
 

U
C

T

0

40

80

120

160

200

Nine Men’s Morris
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Fig. 2. Mean number of turns per playout for each method applied to each game (dotted lines show expected game length).

with and without STC reveal that HS without STC performs
almost no better than Random for games such as Nine Men’s
Morris with chained action sequences per turn.

V. DISCUSSION

As expected, the stronger searches (AB3 and UCT ) give
best results but are thousands of times slower than Random
and HS. HS performs almost as well as AB for most cases
– sometimes better! – and produces results in the acceptable
Lexp/2 to 2× Lexp range for all games tested except Chess.
Chess is unusual in that many if not most games between
human players end in a resignation before the game is fully
played out and recorded game lengths reflect this truncation.

HS1/2 generally outperforms HS1/4 and HS1/8 but not in
all cases. Smaller sampling ratios may be preferable in cases
where heuristic state evaluations are expensive to compute.

Note that Random playouts can be much longer than HS
playouts due to the undirected nature of purely random play.
HS can actually be much faster than Random in such cases!

Another surprise is that ABd can produce worse game
length estimates than ABd−1 in several cases. This may be
due to the “Odd-Even Effect” in AB search, in which odd
search depths (terminating on the owner’s ply) can give overly
optimistic results, while even search depths (terminating on the
opponent’s ply) can give overly pessimistic results.3

VI. CONCLUSION

The results of this experiment suggest that Heuristic Sam-
pling with Same-Turn Continuation can produce playouts
with acceptably plausible game lengths with the speed of

3https://www.chessprogramming.org/Odd-Even_Effect

random playouts – and often faster – thus offering a potential
approach for testing large numbers of reconstructed rule sets
for obvious flaws within a reasonable time. HS produced
results generally comparable to more rigorous search methods
but up to thousands of times more quickly.

Future work will include evaluating HS over a wider range
of games and looking more closely at exactly how reliable
its game length estimates are for identifying flawed rule sets.
Further, the question of what constitutes the range of desirable
game lengths for a given rule set remains open.

We will also investigate the use of HS as the playout policy
in a Monte Carlo Tree Search framework, to see whether the
improved playout quality (over uniformly random playouts)
can produce superior playing strength with fewer iterations.
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TABLE I
MEAN NUMBER OF TURNS PER GAME, PER PLAYOUT METHOD.

Game Method Lobs N Min Max SD SE Time per Trial
Random 7.62 100 5 9 0.142 0.278 0.000148s
HS1/8 6.88 100 5 9 0.132 0.259 0.000621s

Tic-Tac-Toe HS1/4 7.05 100 5 9 0.139 0.272 0.000640s
HS1/2 6.88 100 5 9 0.155 0.303 0.000769s

Lexp = 9 AB1 7.05 100 5 9 0.185 0.363 0.000583s
AB2 9 100 9 9 0.0 0.0 0.000929s
AB3 8.22 100 7 9 0.098 0.192 0.00312s
UCT 9 100 9 9 0.0 0.0 0.0294s
Random 20.46 100 7 37 0.729 1.428 0.000226s
HS1/8 20.02 100 7 42 0.719 1.41 0.000736s

Connect4 HS1/4 19.29 100 7 42 0.697 1.37 0.000709s
HS1/2 19.81 100 7 42 0.97 1.90 0.000996s

Lexp = 36 AB1 16.88 100 11 29 0.564 1.11 0.00109s
AB2 13 100 13 13 0.0 0.0 0.00250s
AB3 22.45 100 7 42 1.204 2.36 0.190s
UCT 32.75 100 17 42 0.601 1.178 0.403s
Random 71.3 100 37 161 3.12 6.12 0.00192s
HS1/8 70.5 100 35 145 2.54 4.99 0.00572s

English Draughts HS1/4 65.2 100 33 197 2.41 4.71 0.00606s
HS1/2 70.5 100 37 139 2.25 4.4 0.00943s

Lexp = 70 AB1 67.2 100 43 105 1.76 3.454 0.00948s
AB2 67.0 93 47 87 1.64 3.22 0.00784s
AB3 94.0 63 74 158 2.042 4.002 0.418s
UCT 194.0 92 53 879 16.424 32.19 13.9s
Random 183.2 100 56 790 11.801 23.13 0.00432s
HS1/8 101.0 100 36 431 6.22 12.2 0.00176s

Nine Men’s Morris HS1/4 95.9 100 36 273 4.57 8.96 0.00215s
HS1/2 58.9 100 30 173 2.44 4.78 0.00349s

Lexp = 50 AB1 170.6 100 43 532 10.2 19.9 0.00491s
AB2 41.9 100 20 65 0.909 1.78 0.00481s
AB3 175.2 84 44 963 19.9 39.1 0.377s
UCT 54.8 100 31 149 2.22 4.34 6.86s
Random 333.0 100 77 923 15.22 29.83 0.00435s
HS1/8 70.84 100 36 140 2.09 4.10 0.00163s

Halma 6×6 HS1/4 46.1 100 26 97 1.19 2.33 0.00135s
HS1/2 37.8 100 20 71 1.011 1.98 0.00133s

Lexp not known AB1 20.9 100 14 26 0.272 0.532 0.00116s
AB2 23.2 45 17 36 0.653 1.28 0.0463s
AB3 31.4 23 20 70 2.69 5.27 0.470s
UCT 134.83 88 29 922 16.9 33.1 45.5s
Random 208.3 100 49 417 7.734 15.158 0.00896s
HS1/8 66.6 100 32 150 2.518 4.94 0.00424s

Lines of Action HS1/4 38.5 100 23 77 1.02 2.00 0.00353s
HS1/2 30.6 100 23 43 0.418 0.82 0.00440s

Lexp = 44 AB1 28.1 100 22 38 0.307 0.602 0.00762s
AB2 43.8 97 22 163 2.13 4.181 0.200s
AB3 38.8 98 23 73 0.778 1.53 1.24s
UCT 161.0 100 30 518 10.6 20.7 184.4s
Random 112.2 100 52 171 2.64 5.17 0.000353s
HS1/8 28.1 100 10 57 0.862 1.69 0.00360s

Gomoku HS1/4 24.6 100 10 43 0.708 1.39 0.00736s
HS1/2 20.8 100 10 43 0.608 1.19 0.0105s

Lexp = 30 AB1 20.9 100 13 45 0.653 1.28 0.0125s
AB2 26.5 100 13 81 1.35 2.65 0.141s
AB3 56.9 100 11 113 2.73 5.36 2.28s
UCT 41.47 100 20 70 1.12 2.20 0.904s
Random 429.5 100 54 739 13.2 25.9 0.0243s
HS1/8 309.1 100 5 516 10.7 21.0 0.0317s

Chess HS1/4 238.0 100 16 471 11.1 21.7 0.0376s
HS1/2 248.6 100 16 435 10.8 21.2 0.0800s

Lexp = 70 AB1 216.8 100 12 459 10.2 20.1 0.020s
AB2 142.3 100 22 501 9.58 18.8 0.564s
AB3 144.8 100 24 402 7.92 15.5 6.93s
UCT 149.8 100 9 532 11.4 22.3 25.7s
Random 756.4 100 100 2501 68.5 134.3 0.172s
HS1/8 187.9 100 75 587 9.5 18.6 0.593s

Shogi HS1/4 171.4 100 31 459 8.80 17.3 1.18s
HS1/2 155.0 100 22 533 9.14 17.9 2.50s

Lexp = 115 AB1 161.1 100 38 871 10.8 21.2 5.17s
AB2 172.3 96 30 728 10.9 21.3 60.1s
AB3 94.0 10 38 114 8.26 16.194 751.5s
UCT 140.1 10 77 218 14.2 27.7 4,790.9s


