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Abstract—Can language models learn grounded representa-
tions from text distribution alone? This question is both central
and recurrent in natural language processing; authors generally
agree that grounding requires more than textual distribution.
We propose to experimentally test this claim: if any two words
have different meanings and yet cannot be distinguished from
distribution alone, then grounding is out of the reach of text-
based models. To that end, we present early work on an online
game for the collection of human judgments on the distributional
similarity of word pairs in five languages. We further report early
results of our data collection campaign.

Index Terms—Semantic Grounding, Distributional Semantics,
Gamification

I. INTRODUCTION

Semantic grounding is a central question in Natural Lan-
guage Processing. Studies on grounding try to see how words
and sentences can be linked to real-world objects. This ques-
tion has recently gained prominence through Bender & Koller
[1], who specifically set out to disprove that large language
models like BERT [2] or GPT-3 [3] are capable of building
semantically coherent representations. The thought experiment
of Bender & Koller echoes previous works such as Harnad’s
Symbol Grounding Problem [4] or Searle’s Chinese Room
Argument [5].

The prominence of thought experiments, rather than exper-
imental procedures, shows how elusive this question is. That
is not to say that no experimental approach has been adopted:
multimodal evaluation benchmarks exist [6], and authors have
proposed semantically grounded models of language [7]-[9].
Yet most researchers seemingly adopt without discussion the
position that something more than text is required to coher-
ently describe the world. Here, we propose an experiment to
test this claim. If there are pairs of words that humans cannot
distinguish from distribution alone, then in principle text-
based models cannot consistently and systematically use words
in semantically appropriate contexts—because even perfectly
grounded semantic representations as we expect to find in
humans do not suffice to solve the task. This can also be seen
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as an investigation of the limits of the distributional hypothesis
[10]: we are looking into documenting cases where distribution
is not enough to infer meaning.

We first study how to formulate a task that will be natu-
ral both for humans and distributional semantics models in
Section II. We then detail our game-based data collection
campaign in Section III. We present early results in the form of
usage statistics in Section I'V. Lastly, we give some concluding
remarks in Section V.

II. DISTRIBUTIONAL MODELS OF WORD MEANING

Most modern language models and embedding architectures
used in NLP can be linked to Zellig Harris’ distributional
hypothesis [10]. These models, while they all differ in archi-
tecture, share the common feature that they can exhibit which
of two words they prefer in a specific context, or formally:

PI‘(t1|C) > Pr(t2|c) @))
Some distributional models directly model P(¢|c). In par-
ticular, we can quote sequence denoising objectives [2], [11]
or multinomial classification objectives like CBOW [12]. Other
architectures like skip-gram [12] model P(c|-). In such cases,
finding some equation corresponding to eq. (1) can be done
by a straightforward application of Bayes’ rule:
P(C‘tl)P(tl) P(C|t2)P(t2)
P(c) P(e)
= P(C‘tl)P(tl) > P(C|t2)P(t2) 2)

P(t1]c) > P(talc) =

A third family of architectures that can be linked to this
framework concern negative sampling approaches [13], [14],
which are trained to estimate P(t € c¢). To arrive exactly
at the previous eq. (1), we can re-normalize this probability

distribution with respect to the entire vocabulary:
1
Pr(tilc) = —=—————"-
r(tile) = < P(t; € o)

t; eV

P(ti S C)

The above does sum to 1 over the full probability space of
the vocabulary V, is defined with respect to the context c.

As % is constant for a given context c, negative
tjEV
sampling models therefore yield the following formulation:

Pr(tl\c) > Pr(t2|c) = P(tl S C) > P(tQ (S C) 3)
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Which word has been blanked out from the following
sentences?

in her later years she appeared in several walt disney films,
including that darn cat!, the love bug, the shaggy d.a., freaky
, and no deposit, no return.

i do not have any amendments relating to , or for the
wednesday or thursday of the mini-part-session in brussels.

it was probably someone from the brussels lobby who stole his
card, because they are always keen to demonstrate that
should no longer be a sitting day in brussels.

These two words are synonyms

2= English v

Fig. 1: Game Annotation Interface

Lastly, generative models like [3], [15] yield the probability
of t; being the next token: P(t;|c1..;,—1). Hence, works like
[16] derive the comparison given the full context c;. , as:

P(cpler.i-1, t1, Cig1.n—1)
> P(cpler.im1s t2, Cigl.n—1) €]

This Context-Specific Term Preference (CSTP) therefore al-
lows us to evaluate all these models using a united framework,
specifically by answering which of two words is preferable
in a given context. This entails that we can compare various
architectures on this task. Crucially, the task is also easily
understood by humans, and we therefore can collect humans
judgments to compare distributional models to.

III. GAME INTERFACE

We propose to collect such human judgments through a
game interface, as displayed in Figure 1. This game is available
online at https://blankcrack.atilf.fr/.!

There are two aspects in which human knowledge can be
useful to our enterprise:

(a) How hard is it to distinguish terms from contexts alone?
(b) Are there terms indistinguishable from context alone?

These two related questions lead to two distinct series of
data to collect. To answer (a), we would need to run the
CSTP task, but substituting distributional models with human
annotators. To answer (b), we would instead require human
participants to suggest word pairs that they expect to be

ICode for the interface will be made public at a later date.

difficult to distinguish. These two collection procedures lead
us to an adversarial data collection project, where annotators
can play either of two roles: proposing word pairs to answer
(b) (henceforth (b)-annotators), or distinguishing word pairs
proposed in (b) to answer (a) (likewise (a)-annotators).

Once the data are collected, we will be able to compare
the performance of language models and distributional models
on the very same task (as outlined in Section II). Pairs that
humans find challenging should be difficult for neural models
as well—as long as contexts are not attested in these models’
training data. We expect these collected data to constitute a
strong human benchmark for distributional models.

A. Sentence Corpora

As we are interested in establishing a widely applicable
benchmark, we collect data for multiple languages: English,
French, Italian, Spanish and Russian.” The first element re-
quired for our game is a list of distributional contexts, or
sentences. We further wish our data to be broadly comparable
across languages: we therefore select a comparable number
of sentences from comparable but varied corpora. We chose
to select 4M sentences per language, equally drawn from
four genres of corpora: Wikipedia dumps, books corpora
(Gutenberg Project, WikiSource, LiberLiber.it), parliamentary
debates (EuroParl [17] & UN Corpus [18]) and subtitles
(OpenSubtitles [19]).

B. Initial Word Pairs Set

The second type of data we require is a set of word pairs
to bootstrap our data collection process, so that both (a)-
annotators and (b)-annotators can immediately start. To do so,
we consider two strategies. The first “manual” strategy consists
in manually constructing pairs that one initially expects to
be challenging, such as months, days of the week, numbers
(cardinal and ordinal) and colors. Any pair of terms from
one of these series can constitute a word pair to annotate.
The second strategy, which we call “w2v-based”, consists in
automatically discovering distributionally similar items given
our corpus of sentence. We train distinct word2vec models
for each of our five language-specific corpora.> We randomly
sample 1M word pairs, and narrow down to the 250 items
whose vectors maximize cosine similarity.*

C. Annotation Items

From these word pairs and sentences, we can then automati-
cally construct annotation items. We present each (a)-annotator
with two words w, and w;, from a given word pair (w,, wp),
and k sentences® randomly selected such that all sentences
contain the target w, and none contains a word with the same

These five languages were chosen on criteria of high data availability. We
intend to facilitate adding new languages to the interface in future releases.

3We select hyperparameters with Bayesian optimization [20], using perfor-
mance on a formal analogy dataset as the objective to maximize.

4We considered alternative strategies, such as using ontologies like WordNet
to select initial word pairs, but distributional similarity proved the most
efficient during a short pilot study.

3(a)-annotators can set k € {1, 3,5}; by default, k = 5.



word stem as the foil w;,. We replace all occurrences of w, by
a blank token before presenting them to the (a)-annotator. The
annotator is then tasked with retrieving which of the target w,
or the foil wy corresponds to these blank tokens. Word pairs
(wq,wp) can correspond either to our initial set of word pairs,
or to items proposed by (b)-annotators.

D. Player Engagement

At its core, our game is score-based, with two distinct scores
per user corresponding to performances as (a)-annotators and
(b)-annotators. The (b)-annotator score corresponds to the
success rate (as a percentage) of the user’s proposed word
pairs, i.e., how often (a)-annotators failed to solve riddles
constructed using the (b)-annotator’s word pairs, and selected
the foil wy instead of the target w,. The (a)-annotator score
is a running tally of points: (a)-annotator get between 0.1
and 3 points per correctly solved annotation item (where the
(a)-annotator selected the target w,, rather than the foil wy),
depending on whether the item was solved under 3 minutes,
was based on a known difficult pair, or whether the (a)-
annotator had set a lower number k of example sentences.

The possibility to set the number k of sentences per riddle is
presented in-game as a difficulty level setting. Aside from this
setting, we further implement several mechanisms to attempt
to keep players engaged. First, we include a competition mode,
whereby users compete against one another; this competition
mode is based on a “friends list”. Second, we ensure that word
pairs newly suggested by (b)-annotators get presented to (a)-
annotators in priority, so that (b)-annotators receive feedback
as early as possible. Third, we also include some materials to
share on social media, e.g., when (a)-annotators successfully
retrieve the blanked-out word in their annotations multiple
times in a row, or at the end of a competition session. Thus
far, sharing on social media and competitions have not been
used much often by our users.

We also note that users tend to connect only once. One
explanation may lie in that “manual” word pairs from our
initial set (cf. Subsection III-B) are felt to be very hard to
solve. We are currently investigating mechanisms to combat
this trend such as high-score leader-boards displaying user-
name, language and score for top players; our intuition is that
it may motivate players to return to the platform to ensure they
still appear on the leader-board. Another possibility would be
to provide users with a way to opt-out of these word pairs.

IV. USAGE STATISTICS

Thus far, we have collected slightly over 7000 annotations in
the first month of widespread advertisement. We take this as an
encouraging response, although improvements in the interface
and game engagement mechanisms can be made.

A more precise breakdown is displayed in Figure 2. Sub-
figure 2a displays the number of annotations we collected,
whereas Subfigure 2b provides an estimate of the success
rate of (a)-annotators. Each subfigure is broken down further
according to the type of word pairs: “manually constructed”
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Fig. 2: Overview of collected (a)-annotations

and “W2v-based” both come from our initial set (see Sub-
section III-B) whereas “(b)-annots” have been proposed by
(b)-annotators. The first obvious trend we can observe from
Subfigure 2a is that the number of Italian and Russian an-
notations is severely lacking, with respect to English, French
and Russian. For these two languages, word pairs from (b)-
annotators have yet to be annotated. This low number of anno-
tations indicates that percentages from Subfigure 2b are most
likely off. This is a consequence of our current advertisement:
we have not yet reached out to Italian and Russian audiences.

On average, 80% of all items are correctly annotated by (a)-
annotators. This suggests the task is in itself rather simple,
which would entail that in principle, most words can be
distinguished from distribution alone. On the other hand, this
also entails that humans do not invariably solve the task
with perfect accuracy, and we intend to strongly focus on
incorrect (a)-annotations in future research. Likewise, note that
a random baseline would already entail a rate of 50%.

If we compare (a)-annotator success rates on word pairs
from (b)-annotators and on our two strategies for constructing
of word pairs (Subfigure 2b), we see that the latter are
generally found more difficult than the former, corroborating
users’ feedback (see Subsection III-D). Another interesting
trend to note is that Spanish, French and English annotators
seem to differ from one another: word pairs from Spanish
(b)-annotators are found to be generally easier than what we

6No data collected for (b)-annotators word pairs in Italian and Russian.
Russian and Italian percentages are unreliable, owing to the too few items
collected.
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Fig. 3: Number of distinct word pairs per (a)-annotators
success rate, all languages combined.

observe in other languages, whereas “manual” word pairs are
found to be harder across the board, but with varying degrees:
Spanish pairs are found to be easier than English pairs, which
in turn are easier then French pairs, while our “w2Vv-based”
strategy yields the opposite ordering. At this stage of our
experiments, we cannot rule out an effect of sample selection,
especially given the surprisingly low, barely above chance (a)-
annotator success rate for Spanish ‘W2v-based” word pairs.

Lastly, Figure 3 summarizes the number of distinct word
pairs for various bins of (a)-annotators success rate. To mit-
igate noise, we ignore word pairs that have been annotated
less than three times: for such pairs, the associated average
success rate can only be either 0, 1 or 0.5 if it has been
seen twice, which would inflate values at these specific peaks.
We can see that the vast majority of our 1656 distinct word
pairs is found to be rather simple to distinguish: 588 pairs
are solved correctly 9 times out of ten or more, and 804 are
solved correctly 8 times out of ten or more. This leaves us
with a significant number of word pairs with low scores, some
around chance level, which we plan to focus on in future
experiments. It is important to note that this illustration is
not entirely reliable: the average number of (a)-annotations
per word pair is 4.6, meaning that (a)-annotators success rates
are often not statistically reliable. In any event, more data
collection and curating is necessary.

V. CONCLUSIONS

We have presented an online game platform for collecting
human judgments on the distributional hypothesis. We have
outlined theoretical motivations based on a formal approach
subsuming many different distributional models (Section II).
We have discussed the implementation of our games and the
mechanism we set in place to attract users (Section III). We
detailed early results in the form usage statistics (Section IV).

While we are still in early stages of development and
advertisement, the data we have already collected suggest that

while the majority of word pairs can be reliably distinguished,
some pairs may indeed prove to be challenging. To give
an anecdotal overview of what such pairs could be, we can
highlight that in all the following word pairs the target has been
correctly identified only 2 out of 6 times: Spanish “cilantro”
and “cebollino”, French “chenapan” and “polisson”, English
“hyena” and “jackal”. These encouraging results strongly sug-
gest our experimental design has intrinsic worth: for instance,
it has already reliably demonstrated how user-provided word
pairs are generally less challenging than manually constructed
ones.

On the other hand, further data collection is required before
any strong conclusion can be reached. In future work, we
intend to focus more keenly on the data we collect to identify
hard-to-distinguish word pairs, as well as study the impact
of the various strategies used to create word pairs. We also
plan to compare human behavior to that of large language
models and distributional models, both semantically grounded
and ungrounded.
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