
DL-DDA - Deep Learning based Dynamic Difficulty
Adjustment with UX and Gameplay constraints

Dvir Ben Or
Playtika Research
Herzeliya, Israel

dvirb@playtika.com

Michael Kolomenkin
Playtika Research
Herzeliya, Israel

michaelko@playtika.com

Gil Shabat
Playtika Research
Herzeliya, Israel

gils@playtika.com

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—Dynamic difficulty adjustment (DDA) is a process
of automatically changing a game difficulty for the optimization
of user experience. It is a vital part of almost any modern game.
Most existing DDA approaches concentrate on the experience of
a player without looking at the rest of the players. We propose
a method that automatically optimizes user experience while
taking into consideration other players and macro constraints
imposed by the game. The method is based on deep neural
network architecture that involves a count loss constraint that
has zero gradients in most of its support. We suggest a method to
optimize this loss function and provide theoretical analysis for its
performance. Finally, we provide empirical results of an internal
experiment that was done on 200, 000 players and was found
to outperform the corresponding manual heuristics crafted by
game design experts.

I. INTRODUCTION

Dynamic difficulty adjustment (DDA) is a process of
automatically changing a game difficulty for the optimization
of user experience. The difficulty of a game should be just
right so that a player does not get bored when the game is too
easy and does not get frustrated when the game is too hard.
DDA is usually applied to each player based on the player’s
abilities, skills and observed actions [1].

The inability of games to offer the right difficulty to
everyone is considered one of the main reasons for players
discontent [2]. Players need a constant challenge to stay
immersed in the game.

Recently, games have been moving from entertainment to
other areas, such as healthcare [3] and education [4]. A well
designed game is more than a way to spend free time and
to relax. It might be a doctor’s or a teacher’s tool. Thus, the
ability to dynamically adapt the game difficulty for each player
is becoming even more important.

DDA is a demanding task. Both industry and academia have
been working on it for several decades, but it has not been
completely resolved [1].

There are two major challenges in devising a good DDA
method. The first one is a precise formulation of user expe-
rience or user engagement. As stated in the first paragraph,
DDA is a process that optimizes user experience. We have to
define the user experience first before we can optimize it. The
definition should hold the properties of a loss function if we
want to utilize modern optimization tools [5] and should be
based on the data available in the game.

The second challenge is interpretability and controllability.
While DDA processes usually run automatically, games are
managed by humans. The option to monitor and control the
DDA output is vital for human operators.

In this work we present a DDA system that addresses
the aforementioned challenges. The system focuses on online
games with many concurrent users. Specifically, the contribu-
tion of our paper is threefold:

1) UX loss function. We introduce a novel formulation
of user experience. As opposed to previous methods,
our formulation leverages not only the experience of the
player for whom the difficulty is computed, but also the
experience of all other players. It requires that the player
difficulty fits both the style of the player and the style of
similar players. The formulation is generic and can be
utilized in various games. We successfully employ the
formulation as a loss function in a neural network that
learns how to define the optimal difficulty based on the
user state.

2) Completion rate constraint. We show how to use
completion rate in a neural network. Completion rate
is the percentage of players who finish a level or a task.
It is often employed as an outside input to control the
gameplay.
Neural networks are the standard of modern machine
learning. Thus, the ability to incorporate a mathemat-
ical constraint in a neural network is important for
the application of the constraint to real life problems.
Straightforward usage of the completion rate constraint
in a neural network is difficult since the constraint is
a piece-wise constant function and its gradient is zero
almost everywhere.
We propose to use the completion rate in a variation of
projection gradient descent algorithm [6]. The algorithm
projects the parameters of the neural network onto the
feasible set defined by the completion rate constraint.
We provide an alternation-based iterative procedure for
the projection and give theoretical insights for the con-
vergence of this procedure.

3) A real world DDA system. Finally, we present a DDA
system that was tested in an online game with millions
of daily users. The system is based on a deep neural

ar
X

iv
:2

10
6.

03
07

5v
1

 [
cs

.L
G

]
 6

 J
un

 2
02

1

network that optimizes the UX loss function mentioned
in Contribution (1) under the gameplay constraint (2).
We show that the system outperforms manually managed
DDA methods.

The paper continues as following: Section II depicts the re-
lated work. Section III describes the loss function. Section IV
explains how to integrate a common gameplay constraint -
completion rate - in a neural network based solution. Section V
outlines the general architecture and compares the results of
our approach with a manual method. Section VI provides
theoretical analysis including convergence analysis for the
method.

II. RELATED WORK

DDA has been an important research topic for the last
several decades [1]. The research can be roughly divided into
three main groups.

The first group searches for the optimal difficulty from
the player physical responses. For example, Stein et al. [7]
adjusted the difficulty according to the player EEG response
and Wang et al. [8] used facial expressions to infer and adapt
the experienced difficulty. While obtaining promising results,
those approaches require special environments and are hardly
applicable directly to existing games.

The second group concentrates on game states. The methods
of that group usually define an ideal number or order of states
in the game and adjust the game parameters so that the order
is preserved. For instance, Yannakakis and Hallam [9] define
the appropriate level of challenge as the variance of steps
required for the game engine to ”kill” the player in predator-
prey games. The higher the variance, the more interesting
the game is. The variance is computed over a set of games.
When the difficulty is too small, all the games last long.
When the difficulty is large, the games end quickly. When the
difficulty is right, some of the games end quickly and some
last long. Xue et al. [10] optimize the expected number of
rounds in the game, while Sekhavat [11] employs a similar
approach, by optimizing the difference between the number
of losses and the number of wins of a player in multiple
periods. Hamlet system embedded in the Half-Life game
engine [12], [13] assumes that the player should move between
states according to the flow model. The system modifies the
difficulty to increase the chance of relevant transitions, relying
on observed statistics. Another approach is to maximize the
speed of the player progress by a simulation reinforcement
learning mechanism [14] and then apply it to real players. The
game state approaches strive to achieve uniform movement of
players through the game. It is an appropriate choice for some
games, but a disadvantage for other, where each player may
want to advance on her own rate or where the optimal state
flow is difficult to define.

The third group deals with player skills. The general idea
is that better players should get harder games. The methods
of that group predict player’s abilities and performance and
set the difficulty accordingly. For example, a system for
Tower defence combines an estimation of player skills with

the enemy potential [15]. Zook and Riedl [16] developed
a method for predicting player performance in real time. A
stroke rehabilitation system uses partially observable Markov
model for estimating the player abilities [17].

The above approaches are capable of personalizing user
experience, however they are game specific and do not provide
a generic UX definition that can be applied to other games.

The approach presented here falls into the third category,
but in addition to utilizing data of a single player, we exploit
the data of all concurrent players. We verify that players with
similar styles get similar difficulties. Moreover, to the best
of our knowledge, our approach is the only one that offers
a way to integrate a global gameplay constraint in the UX
optimization process.

III. UX LOSS FUNCTION

Loss functions are central part of any optimization system. It
determines the error that the system minimizes. The proposed
loss function is called UX loss function, since it optimizes
the quality of user experience, or in other words, minimizes
UX error. User experience is complex, since it depends on
many factors, which are difficult to define [18]. In this paper,
the UX loss function is mostly focused on the difficulty
and can be thought of as a “DDA loss function”. Yet, for
general and theoretical reasons we continue with the term
“UX” throughout the paper.

A. Terminology and assumptions

The goal is to set the difficulty d̂i for each player i. We
assume that the difficulty for all players is set for the same
period of the game. Let’s call the period T . The duration of
the period can vary. The players do not have to participate in
the game simultaneously.

We assume that there exists one-to-one mapping between
the game difficulty and player performance and that the
mapping is known. Technically, it means that we know a one-
to-one function Pd = f(d) that maps the difficulty d to a game
parameter Pd measurable from the game data. For instance,
the difficulty may correspond to the number of objects a player
needs to find, amount of levels needed to pass, the strength
of the opponent needed to fight or any combination of them.
The assumption also means that the actual difficulty d can be
computed from the performance as f−1(Pd).

In addition, we assume that players can be clustered into ho-
mogeneous groups. The details of the clustering are explained
in Section V.

B. Loss definition

The loss function combines two components. The first com-
ponent ensures that the advancement in the game will fit the
player personally. The idea is that if the required performance
deviates too much from the actual performance, the player
will find the game as too hard or too easy. This can be
associated with positive experience. The second component is
that the requirements of resembling players should be similar.
The intuition is that correctly designed user experience should

not change much among players that are comparable to each
other. This can be associated with game fairness and algorithm
stability. Mathematically, the loss function is defined as:

UX Loss(D̂) = var(D̂) +
α

M

M∑
i=0

(
di − d̂i

)2
, (1)

where di is the actual difficulty of player i, d̂i is the difficulty
we aim to find, D̂ is the set of required difficulties of all
players in the cluster of player i:

D̂ = {d̂0, d̂1, . . . ˆdM},

where M is the size of the cluster and α is a parameter
that controls the relative weight of the two parts of the loss
function. In our experiments, we gave equal weights to both
parts, i.e. α = 1. Further investigation can be done in order to
determine the affect of α on the actual user experience.

C. Loss Optimization

Conceptually, the optimization of Equation 1 can be thought
of as a two-step process. The first step is to predict the actual
difficulties di. This can be done with a neural network. The
second step is to optimize the UX Loss given the difficulties.
The loss is a convex function and the optimization can be
performed with any gradient based method.

We use a single neural network for the two step process
above. The UX Loss is used as the loss function of the
network. The difficulties are not predicted explicitly. The
network learns to set the required difficulties that minimize
the loss given the actual difficulties provided in the training
process and given the player behaviour of some period T ′

before the relevant gaming period T . In our experiments, we
set the duration of T ′ to the duration of T . Formally, the
network is defined as:

D̂ = N(Θ,X), (2)

where N(Θ,X) represents the network, Θ represents network
parameters and X ∈ RMxZ represents input features of
dimension Z. The input features contain the states and the
actions of a player in each day during T ′.

Algorithm 1 summarizes the training procedure of the
network:

Algorithm 1 Train NN to minimize UX Loss
Require:

N(Θ; X) - neural network, Θ - initial network weights,
D = {d0, d1, . . . , dM} - difficulty per user during T , X -
input features during T ′.

Ensure:
D̂ - the set of required difficulties that optimizes Equa-
tion 1.
Θ̂ - optimized network weights for the required difficul-
ties.

1: Apply a stochastic gradient descent to train the network.
2: return Θ

At the inference time, the network computes the required
difficulties from the input features. More details of the network
appear in Section V.

IV. COMPLETION RATE CONSTRAINT

In this section we show how to apply the completion rate
constraint together with the neural network in Equation 2.

a) Completion rate: Completion rate is a percentage of
users that complete a certain goal or a series of goals in a
game. The goal might be a task, a level, a mini sub-game
or any game feature. Usually the completion rate is high for
the first levels (easier ones) and gradually decreases with the
advance in game levels. It can be thought of as a parameter
that determines how challenging is a game feature.

It seems natural to use completion rate as an optimization
constraint for a DDA process in general and the UX loss
function defined in Section III in particular. Indeed, it allows to
optimize user experience while providing additional gameplay
constraints.

However, employing completion rate directly in an opti-
mization is not trivial. Completion rate is a piece-wise constant
function of the game difficulty and, thus, its gradient is zero
everywhere except at a finite number of points. For instance,
assume that when the difficulty is zero, the completion rate is
one hundred percents, i.e. all players complete the given task.
Increasing difficulty has no impact on the completion rate until
the difficulty is high enough for one player to quit before
completing. Then it has no effect again until the following
player cannot complete and so on.

Optimization of functions with zero gradients is a complex
problem, especially for neural networks. For some problems,
it can be solved using Reinforcement Learning [19]. For
others, approximations and surrogate losses are used [20].
Both solutions introduce their own problems.

Instead, we suggest to use a variation of projected gradient
descent. The idea is that the weights of a neural network
can be projected onto the subspace where the completion rate
constraint holds. The projection is performed at each iteration
of the learning process. The projection itself is also an iterative
procedure described below.

b) Problem definition: Let P be the desired completion
rate, M be the number of players, di is the actual difficulty
(performance) from the training set and d̂i is the desired
difficulty (prediction) for player i as defined in Equation 1.
Then, the constraint is defined as:

P̂ ,
1

M

M∑
i=1

1[di ≥ d̂i] = P (3)

where 1[x] is an indicator function:

1[x] :=

{
1 if x is true
0 if x is false

and P̂ is termed the achieved completion rate, which is the
number of players who were able to complete the challenge
(a “count” function) divided by the number of players.

c) Projection: The goal of the projection is to change
the weights of the neural network N(Θ,X) so that the
Constraint 3 holds. The projection is performed during training
after each time the neural network converges. After the pro-
jection, the neural network is trained again from the projection
point.

The projection works by making the loss function of
N(Θ,X) roughly proportional to the absolute value of differ-
ence P̂−P in Constraint 3. When the difference is positive, the
achieved completion rate is higher than the desired completion
rate. Hence, the desired difficulties d̂i should raise. When the
difference is negative, d̂i should be lowered.

Practically, we saw that good results are obtained when the
loss function is equal to the average of the desired difficulties
d̂i at the previous iteration when P̂ − P is positive, and to
the minus average of d̂i when it is negative, though other
possibilities can be chosen, as long as the shift of the weights
is done in the right direction, i.e. to increase or decrease the
completion rate.

The average of d̂i is not guaranteed to be proportional to
‖P̂‖. For example, only the required difficulty of a single
player may raise all the time, keeping P̂ constant while
changing the average of the required difficulties. However, it is
hardly possible in practice, since the neural network is already
trained to compute all required difficulties. It is very difficult
to change the network weights so that only a few difficulties
will be influenced.

Algorithm 2 summarizes the projection method.

Algorithm 2 Projection to optimize completion rate
Require:

η - learning rate, P - desired completion rate, N(Θ; X)
- neural network, Θ - initial network weights, D =
{d0, d1, . . . , dM} - actual difficulty during T

Ensure:
Θ̂ - optimized network weights that achieve P

1: repeat
2: // compute model outputs

D̂ = N(Θ; X)
3: // compute hypothesized completion rate

P̂ = 1
M

∑M
i=1 1[di ≥ d̂i]

4: if P̂ < P then
5: // the computed rate is higher than desired

err = 1
M

∑M
i=1 d̂i

6: else if P̂ > P then
7: // the computed rate is lower than desired

err = − 1
M

∑M
i=1 d̂i

8: else
9: // The desired rate P is reached

return Θ
10: // update model parameters

Θ← Θ− η ∂err
∂Θ

11: until max iterations or convergence
12: return Θ

V. SYSTEM OVERVIEW

This section describes how the UX loss (Equation 1) and the
completion rate constraint (Equation 3) are combined into a
DDA system for online games with millions of daily users. The
system was used in an internal experiment on a specific feature
inside a game - and outperformed corresponding heuristic-
based manual difficulty settings.

The DDA system consists of two stages. The first one,
called Clustering divides players into homogeneous groups.
The second one creates an iterative mechanism for minimizing
the UX loss and applying the completion rate constraint.

a) Clustering: The variance part of Equation 1 represents
the user experience more accurately when the players resemble
each other. In general, players may differ significantly. There
are players who have just installed the game and there are
players who have been in the game for several years. The
players may have different tastes, preferences and gaming
styles. It makes more sense require similar difficulties for
similar users.

We assume that there exists a similarity function S(pi, pj)
between players i and j. The function defines distance between
players. The smaller the distance, the more similar the players
are to each other. The purpose of the similarity function is to
divide players into homogeneous clusters.

We cluster players with a K-Means algorithm, but any
other algorithm would do. We define similarity function as
a normalized Euclidean distance between the input features
X from Equation 2. We note that the precise definition of
similarity is unimportant as long as the players are divided in
smaller groups with comparable properties.

b) Iterative optimization: A single projection of the
network weights as described in Section IV is insufficient.
When the projection is done, the weights Θ are altered and
the neural network no longer achieves the minimal error. It
has to be retrained. The whole procedure is repeated until
convergence.

Algorithm 3 outlines the flow of the whole system.
Figure 1 provides an illustration of training procedure and

the convergence of our approach for a single cluster. The
longest part of the training procedure is the first optimization
cycle in which the UX loss is minimized. It can be seen
from the lower, zoomed-in part of the Figure, that the system
converges both when the batch values change and when the
loss switches from UX to projection.

A. Implementation details

We use a fully connected neural network with 5 hidden
layers. The dimension of the input is 40. The input vector has a
variety of aggregated player parameters for a two week period
before a small mini-game optimized using this approach.

We used 200 clusters and required that the minimal number
of players in a cluster is 5,000. The system runs on NVIDIA
DGX computer. The whole process for a million of users takes
around half an hour.

Algorithm 3 Full DDA system
Require:

K - Number of clusters, P - Desired completion
rate, N(Θ; X) - neural network architecture, D =
{d0, d1, . . . , dM} - actual difficulty at T

Ensure:
{D̂k}Kk=1 - the required difficulty for every player of
cluster k

1: Initialize neural network parameters Θk with Xavier [21]
2: for k in range(K) do
3: assign X with the kth cluster features data set
4: assign D with the corresponding actual difficulty
5: repeat // alternation cycles
6: // optimize UX loss

update Θk by applying N(Θk; X) to optimize
Eq. 1

7: // Project weight to ensure completion rate
update Θk by applying algorithm 2

8: until max iterations or convergence
9: compute D̂k = N(Θ; X)

Fig. 1. Training procedure illustration. Horizontal axis corresponds to
progressing training steps of the model. The red curve (corresponds to left
vertical axis) displays the l2 distance between the evaluated completion rate
and the desired one, while the blue curve (corresponds to right vertical axis)
describes the loss formulated in Eq. 1. Dashed black vertical lines indicate
the switch from UX Loss to Completion rate projection and vice versa. The
green bold vertical lines indicate the replacement of batch samples used for
optimization. For convenience, the lower chart provides a closer view of the
optimization trajectory described in the upper one, focused on the stage when
the optimized objectives converge.

B. Results

We performed an A/B test to verify the validity of our
approach. The output was compared to our system with the
difficulty levels set by a rule based method currently used by
game operators. The rule based system is a result of several
years of trial and error. It is a collection of if-else decisions
applied to a variety of game parameters. It incorporates a great
deal of knowledge about the game and generally provides
satisfactory results.

Our approach outperformed the rule based method as we
show below. In addition to being superior in accuracy, our
approach is automatic and saves time for game operators. Each
change in game mechanism requires manual adaptation of the
rule based system. The manual process is time consuming and

prone to errors.
The test was carried out on an eight day mini game (a

feature inside one of Playtika’s games) where the goal was to
optimize the number of points each player has to obtain. About
800, 000 players were in the control group and received rule-
based difficulties, while about 200, 000 players were in the
test group receiving machine learning-based difficulties.

Target Rule based Our approach
8-10% 12.0% 8.7%

TABLE I
COMPARISON OF THE TARGET COMPLETION RATE WITH THE RESULT

ACHIEVED BY THE RULE BASED METHOD AND OUR APPROACH

Table I compares the average completion rate achieved by
our approach and the rule based method with the target range
defined by the product team. The result of the rule based
method is fine by the practical standards of the game, but
our approach still outperforms it.

Fig. 2. A histogram of completion rate by clusters. X-axis is the completion
rate, Y-axis is the number of clusters that achieved the completion rate. Blue
is the control group - rule based method, orange is the test group - our system.

The difference between the methods is even more pro-
nounced when we look at the distribution of the completion
rates. This is where our approach really shines. Figure 2 shows
the histograms of the completion rate by clusters. Recall that
the clusters are the homogeneous groups of players computed
by K-Means algorithm. The variance of the completion rate of
the control group is much higher than that of the test group.

There are 200 clusters. The number 200 was chosen since it
created homogeneous clusters on one hand and yet contained
a relatively large numbers of players (around 1, 000) on the
other hand. In the control group 49 clusters had completion
rate higher than 16%. In the test group, only 5 clusters had
the completion rate higher than 16%.

The meaning is that while the rule based method achieves
satisfactory average completion rate, it fails to achieve it for
a large proportion of population. The ability to control the
completion rate of every sub group of players is another
advantage of our approach.

VI. THEORETICAL ANALYSIS

This section describes the condition for the convergence of
the algorithm and provides some theoretical insights and in a

sense the derivation is a bit similar to [22]. The convergence
does not assume convexity, but it does assume certain proper-
ties for the non-linear projection operators. Those properties
depend on the function determined by the structure of the
neural net and its loss function. The first projection operator
returns the nearest local minimum point.

Definition 1. Given a training dataset X, a neural net
N(Θ,X) with weights Θ and a set of local minima M, then
PMN(Θ,X) returns the closest weights of the nearest local
minimum:

PMN(Θ,X) = arg min
N(Θ̂,X)∈M

‖Θ− Θ̂‖2 (4)

The second operator returns the closest set of weights, that
satisfy the completion rate. Based on Eq. 3, it is possible to
define the set of valid solutions.

Definition 2. Let C be the set of all possible weights that given
a set of predicted difficulties {di}, desired completion rate P
and tolerance δ such that

C =
{

Θ| | 1

M

M∑
i=1

1[di ≥ N(Θ,X)]− P | ≤ δ
}

(5)

Definition 3. Given a training dataset X, a neural net
N(Θ,X) with weights Θ and a set of valid completion points
C (Definition 2), then PCN(Θ,X) returns the closest weights
in C:

PCN(Θ,X) = arg min
N(Θ̂,X)∈C

‖Θ− Θ̂‖2 (6)

The operators PM and PC are approximately implemented
by Algorithm 1 and Algorithm 2, respectively. The algorithms
return a local minimum (PM) or a completion-valid point (PC)
by the application of a stochastic gradient descent (or other
optimizer), but does not guarantee to return the closest point,
since it depends on the structure of the neural network, which
is typically high-dimensional non-convnex manifold. This is
different than the case in [22].

Optimizing the UX loss under the completion rate con-
straint, can be done by the following alternating scheme, which
is approximately implemented by Algorithm 3:

ΘM
i ← PMΘC

i (7)

ΘC
i+1 ← PCΘM

i (8)

starting from an arbitrary point (random initialization of the
weights).

Proposition 1. Let ΘC
i and ΘM

i (i ≥ 1) be a set of
points (weights) obtained by a consecutive application of the
alternation scheme (Eqs. 7 and 8) then the series ‖ΘC

i −ΘM
i ‖

converges.

Proof. Since i ≥ 1, then according to Eq. 8, ΘC
i ∈ C (Def.

2). By the definition of PM, ΘM
i is the closest local minima

to ΘC
i and by the definition of PC , ΘC

i+1 is the closest valid
count-constraint point to ΘM

i . Since ΘC
i ∈ C and ΘC

i+1 ∈ C
is the closest point to ΘM

i

‖ΘM
i −ΘC

i+1‖ ≤ ‖ΘM
i −ΘC

i ‖. (9)

By the definition of PM, ΘM
i+1 ∈ M is the closest local

minima to ΘC
i+1. Since ΘM

i ∈M

‖ΘC
i+1 −ΘM

i+1‖ ≤ ‖ΘM
i −ΘC

i+1‖ (10)

Combining Eqs. 9 and 10 gives

‖ΘM
i+1 −ΘC

i+1‖ ≤ ‖ΘM
i −ΘC

i ‖.

Since ‖ΘM
i −ΘC

i ‖ is monotonically decreasing and bounded
it converges, which completes the proof.

Proposition 1 states that the distance between a valid com-
pletion rate point and a local minima point is monotonically
decreasing and eventually converges. An interesting observa-
tion from the proposition is that it tells us where to look for
the next minima/valid completion rate point, which enables
to decrease the step size of the SGD proportionally to the
distance between the two points.

Fig. 3. The distance between the weights of a valid completion rate point to
the local minima followed by the application of PC to it

Figure 3 depicts the convergence of Algorithm 3 to illustrate
Proposition 1 on real data. The figure shows that the distance
between a local minima and its corresponding completion rate
valid point decreases with each iteration. Interestingly, the
algorithm achieves a monotonically decreasing curve even for
the last iterations, when the distance is small. This happens
even when the projection operators are only approximated and
do not satisfy the strict requirement of their definition for
finding the closest point.

Additionally, the following observations infer directly from
Proposition 1:
• Since the distance between a valid completion point and

a local minimum converges, then eventually it means
(excluding pathological cases of points having exactly the
same distance) that the algorithm iterates between one lo-
cal minimum and one valid completion rate point. There-
fore, it converges to a specific local minimum/completion
rate point.

• The difference in model’s performance between those two
points, depends on the distance and the Lipschitz constant
of the neural network [23]. So if the distance is small
(and hopefully the Lipschitz constant), then stopping in
completion rate point or in a local minimum should not
make a big difference.

For more details the reader is referred to [24].

CONCLUSION

This paper presents a system for dynamic adjustment of
game difficulty. The system was tried on an online game with
millions of daily users and significantly outperformed manual
heuristics used by the game developers. The system is based
on several innovations. First, it presents a formulation of user
experience that depends on all similar players. The formulation
exploits more information than the existing methods.

Second, it shows how to incorporate a completion rate
constraint in a neural network. The completion rate constraint
is important for creating a fun experience. Straightforward
application of the constraint to a neural network is difficult,
since the gradients of the constraint are piece-wise zero. The
paper also presents a theoretical analysis of the convergence
of the neural network.

While the system was applied to a specific game, it is very
flexible and can easily be adapted in other games. All that
one needs in order to employ our system is a definition of
difficulty that can be computed from the game data, such as
objects collected, monsters slayed, etc., and a definition of
a similarity between players. Then the system can learn the
appropriate difficulties for any required period of time.

A possible drawback of our approach is that it does not
allow to change the difficulties during the predefined period.
If the chosen difficulty is too hard and the player does not
advance in the game, it will stay hard. We plan to research
how to incorporate real time information into our approach.

REFERENCES

[1] M. Zohaib, “Dynamic difficulty adjustment (dda) in computer games: A
review,” Advances in Human-Computer Interaction, vol. 2018, pp. 1–12,
2018.

[2] R. Koster and W. Wright, A Theory of Fun for Game Design. Arizona:
Paraglyph Press, 2004.

[3] A. DeSmet, D. Thompson, T. Baranowski, A. Palmeira, M. Verloigne,
and I. De Bourdeaudhuij, “Is participatory design associated with the
effectiveness of serious digital games for healthy lifestyle promotion? a
meta-analysis,” Journal of medical Internet research, vol. 18, no. 4, p.
e94, 2016.

[4] T. M. Connolly, E. A. Boyle, E. MacArthur, T. Hainey, and J. M. Boyle,
“A systematic literature review of empirical evidence on computer games
and serious games,” Computers & education, vol. 59, no. 2, pp. 661–686,
2012.

[5] L. Rosasco, E. D. Vito, A. Caponnetto, M. Piana, and A. Verri, “Are
loss functions all the same?” Neural Computation, vol. 16, no. 5, pp.
1063–1076, 2004.

[6] A. N. Iusem, “On the convergence properties of the projected gra-
dient method for convex optimization,” Computational & Applied
Mathematics, vol. 22, no. 1, pp. 37–52, 2003.

[7] A. Stein, Y. Yotam, R. Puzis, G. Shani, and M. Taieb-Maimon,
“EEG-triggered dynamic difficulty adjustment for multiplayer games,”
Entertainment computing, vol. 25, pp. 14–25, 2018.

[8] Z.-X. Wang, H.-M. Lee, and W.-H. Lee, “Adjusting the difficulty
of running game with facial expression recognition technology using
convolutional neural network,” KoreaScholar - journal of information
systems, vol. 31, no. 2, pp. 39–46, 2018.

[9] G. N. Yannakakis and J. Hallam, “Towards optimizing entertainment in
computer games,” Applied Artificial Intelligence, vol. 21, no. 10, pp.
933–971, 2007.

[10] S. Xue, M. Wu, J. Kolen, N. Aghdaie, and K. A. Zaman, “Dynamic
difficulty adjustment for maximized engagement in digital games,” in
Proceedings of the 26th International Conference on World Wide Web
Companion. Republic and Canton of Geneva, Switzerland: International
World Wide Web Conferences Steering Committee, 2017, pp. 465–471.

[11] Y. A. Sekhavat, “Mprl: Multiple-periodic reinforcement learning for
difficulty adjustment in rehabilitation games,” in 2017 IEEE 5th
international conference on serious games and applications for health).
Perth, Australia: IEEE, 2017, pp. 1–7.

[12] R. Hunicke and V. Chapman, “AI for dynamic difficulty adjustment
in games,” Challenges in game artificial intelligence AAAI workshop,
vol. 2, 01 2004.

[13] R. Hunicke, “The case for dynamic difficulty adjustment in games,”
in Proceedings of the 2005 ACM SIGCHI International Conference
on Advances in Computer Entertainment Technology, ser. ACE ’05.
New York, NY, USA: Association for Computing Machinery, 2005, p.
429–433. [Online]. Available: https://doi.org/10.1145/1178477.1178573

[14] J. Togelius, R. De Nardi, and S. M. Lucas, “Making racing fun through
player modeling and track evolution,” Optimizing Player Satisfaction in
Computer and Physical Games, vol. 2, no. 1, p. 61, 2006.

[15] R. Sutoyo, D. Winata, K. Oliviani, and D. M. Supriyadi, “Dynamic
difficulty adjustment in tower defence,” Procedia Computer Science,
vol. 59, pp. 435–444, 2015.

[16] A. E. Zook and M. O. Riedl, “A temporal data-driven player model
for dynamic difficulty adjustment,” in Eighth Artificial Intelligence and
Interactive Digital Entertainment Conference. Atlanta, Georgia, USA:
AAAI Press, 2012, pp. 20–28.

[17] R. Goetschalckx, “Games with dynamic difficulty adjustment using
pomdps,” in ICML Workshop. San Francisco, CA, United States:
Morgan Kaufmann Publishers, 2010, pp. 8–14.

[18] J. McCarthy and P. Wright, “Technology as experience,” interactions,
vol. 11, no. 5, pp. 42–43, 2004.

[19] S. Xie, Z. Chen, C. Xu, and C. Lu, “Environment upgrade reinforcement
learning for non-differentiable multi-stage pipelines,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition.
New York, NY, USA: IEEE, 2018, pp. 3810–3819.

[20] J. Grabocka, R. Scholz, and L. Schmidt-Thieme, “Learning surrogate
losses,” arXiv preprint arXiv:1905.10108, vol. 1, no. 1, pp. 1–10, 2019.

[21] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics. United
States: Journal of Machine Learning Research, 2010, pp. 249–256.

[22] G. Shabat and A. Averbuch, “Interest zone matrix approximation,” The
Electronic Journal of Linear Algebra, vol. 23, 2012.

[23] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. Pappas, “Efficient
and accurate estimation of Lipschitz constants for deep neural networks,”
in Advances in Neural Information Processing Systems, 2019, pp.
11 427–11 438.

[24] D. B. Or, M. Kolomenkin, and G. Shabat, “Generalized quantile loss
for deep neural networks,” arXiv preprint arXiv:2012.14348, 2020.

https://doi.org/10.1145/1178477.1178573

	I Introduction
	II Related work
	III UX loss function
	III-A Terminology and assumptions
	III-B Loss definition
	III-C Loss Optimization

	IV Completion rate constraint
	V System overview
	V-A Implementation details
	V-B Results

	VI Theoretical Analysis
	References

