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Abstract—Non-verbal communications such as kinesthetics,
or body language and posture are important codes used to
establish and maintain interpersonal relationships. They can also
be utilized for safe and efficient human robot interactions. A
correct interpretation of the human activity through the analysis
of certain spatio-temporal and dynamic parameters represent an
outstanding benefit for the quality of human machine commu-
nication in general. This paper presents an effective marker-
less motion capture system provided by a mobile robot for
sensing human activity, in non-invasive fashion. We present a
physical model based method exploiting the embedded Kinect. Its
performances are evaluated first comparing the results to those
obtained with a precise 3D motion capture marker based system
and to data obtained from a dynamic posturography platform.
Then an experiment in real life conditions is performed to assess
the system sensitivity to some gait disturbances.

I. INTRODUCTION

Social robots must be able to interact effectively with
humans, to understand their needs and to interpret theirs
orders. These challenging tasks can obviously benefit from
considering the human body language (posture, gestures, etc.).
Two thirds of communication between humans is non-verbal
[1]. The analysis of non-verbal cues provide access to a deeper
reading of emotions (e.g. boredom, interest , sadness, etc.) and
even intentions of the person. Body language creates a very
important part of the communication. The body then gives a
certain ”form” in mind. Beyond signs, being able to understand
and anticipate human activity directed towards a goal is an
important element to optimize, through interaction, the robot
perception and motor activity. To reach this understanding,
we can try to rely on how the brain generates predictions. A
hypothesis on the ”predictive coding” suggests that the brain
continuously generates expectations on sensory input from
motor activities. This hypothesis derives from the ideomotor
theory [2]. It considers that actions are cognitively represented
in terms of their perceived effects. This principle of ”ideomo-
tor” argues that during the execution of a particular action, a
motor model (reduced order model) is automatically associated
with the input of perception representing the perceptual effects
of the action [3]. Perception and action planning are considered
similar processes based on the characteristics of activation
codes that represent external events. Having such a model
must allow to design the robot functions (communication,
perception, action) in a form directed by the interaction as
any other form of human-machine interface.

We focus here on the analysis of human locomotor activity,
that is generally based on the spatio-temporal parameters
(Center of Mass (CoM) trajectory, step length, step frequency,
step width, walking speed, trunk acceleration etc.) considered
to be relevant for gait evaluation [4], [5], but also on the
parameters characterizing the state of dynamic balance of
the postural system. Typically we use the Centre of Pressure
(CoP) which is by definition identical to the to the Zero
Moment Point (ZMP) [6]. The CoP/ZMP is the point where
the Ground Reaction Force (GRF) vector intersects the plane
of Base Of Support (BOS) of the feet on the ground. This
reaction force represents the resultant of the contact force
distribution on the ground. In the last two decades, many
technical solutions were developed to access these different
parameters of human movement, e.g. treadmills, instrumented
surfaces such as force platforms or particular shoes [7], [8].
To capture the kinematics movement, the most reliable results
were achieved by systems such as Motion Capture (MoCap)
which exploits high speed digital cameras to capture the 3D
motion performed by a subject. Several systems can be used
but most commonly the subject is fitted with either passive
or active markers [10]. The passive markers are often covered
with an infrared reflective material and then attached to the
subject on predefined anatomical landmarks. The estimation
of 3D human motions has been recently considered by using
single or multi video cameras [9], [11] (for more details
about the motion capture methods we refer to the Poppe’s
review [12]). The collected data are used to animate a model
reproducing the anthropometric characteristics of the sub-
ject. The kinematic solver is formulated as a frame-by-frame
weighted least-squares problem that minimizes the differences
between the measured marker locations and the model’s virtual
marker locations. By introducing thus obtained joint motions,
the dynamic results from the multi-body motion with the
help of a forward dynamic model [13]. These technologies
are designed to be used in controlled laboratory conditions
(with specific environmental set-up or instrumented clothes
worn by the person) and cannot be employed for activity
assessment in real life environments. Gonzáles et al. [14]
proposed a non-invasive (marker-less) portable system based
on the combination of 2 sensors, a Wii balance board and a
Kinect to compute the CoM. This system is unsuitable for the
analysis of locomotion because of the use of the balance board.
During locomotion, the most challenging phases for postural
balancing system are beginning and end the walk, turning,



Fig. 1. Overall system architecture.

avoiding obstacles (changing the length of the pitch, changing
direction, stepping over objects, etc.) and bumping into people
and objects. A system able to quantify human responses to
perturbations induced by the daily life environment can have
a use-value. To our knowledge there is no system that can be
used for an in-depth analysis of human activity (especially of
posture balance and stability) in non controlled environmental
conditions, in a non-invasive fashion (marker-less method) and
with an accuracy comparable with marker based technologies.
We approach this need with a robot which can perceive and
track humans while moving and with the embedded Kinect
sensor to capture in real-time multi-segmental human motion
by using the Microsoft Kinect SDK.
The paper describes a system developed to analyze a person’s
activity by using a non-invasive (marker-less) motion capture
system. A method for determining the individual’s anatomi-
cal parameters and the algorithms developed for the digital
animation model based on the measurement of a number of
characteristic points obtained by a Kinect are described. These
algorithms are validated experimentally on different exercises
during which the positions of the CoP/ZMP, measured and
calculated using a posturography platform, are compared. The
proposed system is also assessed analyzing the gait of a subject
followed by the robot. It shows strong sensitivity to some
disturbances obtained manipulating artificially the lower limb
joints.

II. EXPERIMENTAL SYSTEM

The robot used for the implementation is a commercial
robot, Kompaı̈ (Figure 1) specifically designed for services in
private or public spaces. In order to raise the potential of this
platform, we added a Microsoft Kinect and an extra laptop for
computation. We developed and integrated a framework for the
synthesis of smart person following behavior composed of a
multimodal human detector and a fuzzy logic based decisional
engine (Figure 1). For more details we refer to our previous
work [15].

III. FILTERING METHOD

The Kinect sensor belongs to the class of devices known as
depth cameras. These cameras interpret 3D scene information

based on projected infrared light system called light coding
that generates a 3D point cloud. The Kinect sensor has an
approximate resolution of 0.013 m per pixel and works at
30 Hz. The 3D point cloud is converted into a depth map,
and from a single depth map, body parts are inferred using
a randomized decision forest-based approach, learned from
over 1 million training examples. A mean shift algorithm is
used to robustly compute 3D positions of body joints from
the modes of discrete probability distributions. More details
can be found in Shotton et. al ([10]). The accuracy of the
joints position provided by the Kinect skeletal detection
algorithm has been investigated in [16] where the inter-joint
distance (the limb length) variations have been estimated as
up to more than 0.1 m. For facing this issue an improved
skeletonization solution to a space-time constraint problem
is required. In previous works, the pose correction was
approached in different ways: according to physical-model
[17], by using Kalman-like filters [18], by adopting different
kinds of regressors (random forest regressor [19], nearest
neighborhood regressor [20], Gaussian process regression [21]
etc.). We propose a method for pose correction that takes into
account both the coherence of the anthropomorphic model
of the skeleton and the spatial-temporal motion consistency.
This method is composed of 3 steps (Figure 2):

Step 1: Initialization
When the person is in the Kinect field of view, his skeleton
is detected and the 3D positions of all his joints are provided
(Figure 6 left). During the initialization phase, we use a first
set of Kinect measurements to define a reference model of
the involved body. In particular, the system computes the
anthropometric kinematic model of the body according to the
mean distances between the consecutive joints.

Step 2: Physical model calibration
This step is required to keep the human physical skeleton
consistent with the reference model (in anthropomorphic point
of view). Our approach relies on a standard mathematical
solution, constrained optimization. It consist in minimizing
the scalar value quadratic objective function f(X) while
respecting a certain number of constraints g(X) (1).

minimize f(X)

subject to g(X) = 0
(1)

In the objective function f(X) (Equation 2), X is a vector
residing in (3∗nJ)-dimensional space (3D coordinates for nJ
joints), ai, bi, ci are the weights associated with the coordinates
of the joint i (in our case we consider equal weights on the 3
dimensions).

f(X) =

nJ∑

i=1

ai(x̄i − xi)
2 + bi(ȳi − yi)

2 + ci(z̄i − zi)
2 (2)

(x̄i, ȳi, z̄i) and (xi, yi, zi) are respectively the coordinates
of the joint i provided by the skeleton detector algorithm and
the coordinates that we are searching for to minimize the
objective function while respecting the constraints in Equation
3.

gj(X) = d2(Jj ; Jj+1)− d2(Mj ;Mj+1) =

= (xj − xj+1)
2 + (yj − yj+1)

2+

+ (zj − zj+1)
2
− d2j,j+1 = 0

(3)



with j = 1, ..., nJ − 1, (Jj ; Jj+1) consecutive detected
joints, (Mj ;Mj+1) consecutive joints in the model, and dj,j+1

the distance between Mj and Mj+1.

All the constraints are equality constraints and are fixed
according to the reference model (Initialization step). The
optimization of the objective function is made by using the
quadratic interior point method (QIPM), which is based on
the improvement of initial conditions (measurements) for
solving quadratic programming problems.

Step 3: Model Simulation and Parameters Analysis
Finally, the 3D trajectories of the kinect skeleton joints virtual
markers are used to animate a physical model of the subject
on a dynamic simulator Arboris-Python [23]. Arboris-Python
is an open-source constrained multibody dynamics simulation
software written in Python language. It includes a generic and
easily extensible set of joints (singularity-free multi-degree of
freedom joints, non-honolomic joints, etc.) for the design and
modeling of tree structure mechanisms with a minimal set of
state variables. It gives access to the completed mechanical
properties of the system as well as to the constraints and
to the controllers implemented to get the desired behavior
of the virtual human. Various control algorithms have been
implemented in the Arboris-Python software, from the
proportional-integral-derivative controllers to the predictive
model based controllers which are used for the control of the
locomotion and postural balance task or the interaction tasks
with adaptive impedance. The equations of motion of these
multibody systems are obtained with the Boltzmann-Hamel
formalism [22] from which the first-order approximation of
the model is computed. The resulting equations are then
integrated using a time-stepping method and a semi-implicit
Euler integration scheme. In this way, it is possible to
introduce and solve additional constraints, i.e. the kinematic
loops, which can be either unilateral (contact) or bilateral
(joint), with the help of a Gauss-Seidel algorithm [24]. For a
complete description of this software you may refer to [25].
Once the model of the subject generated from a generic virtual
human model (with 36 degrees of freedom) is instantiated
with the kinematic data retrieved from the calibration phase
and by inferring the anthropometric table Leva [26], the
simulation is ran using the 3D cartesian points as target
points for the selected joint axis through PID controllers. The
input torque vector producing the virtual human motion in
accordance with the one tracked by the Kinect are computed
by solving a Linear Quadratic Program (LQP) that optimizes
a set of weighted tasks (virtual joint marker trajectories and
postural control) subject to equality and inequality constraints
translating the physical limitations to implicitly satisfy the
human motion. For the LQP problem formulation we refer
to [27]. A number of parameters characterizing walking or
steady state of the person can be obtained from the simulation
of the virtual human (spatio-temporal gait parameters, energy,
postural balance etc.). In the experiments presented hereafter
we consider more particularly the CoP/ZMP. The CoP/ZMP
is computed as follows:

c̈ = Jcom(q)q̈ + J̇com(q, q̇)q̇

z = c−
h

g
c̈

(4)

Fig. 2. Example of pose correction for a person in standing position. From the
noisy data collected by the Kinect to the animation of the dynamic mannequin.

where Jcom is the Jacobian of the CoM, h is its height, z
and c are respectively the horizontal position vectors of the
CoP/ZMP and of the CoM, and g is the gravity value. These
equations directly refer to the Linear Inverted Pendulum Model
(LIPM), an unstable system whose control must consider
the prediction of the future states of the system. z and c
would respectively represent the foot of the pendulum and the
projection of the point mass onto the ground.
Others parameters such as ankles and knees trajectories are
proven be distinguishing factors useful to characterize the
postural balance and to detect deviations during walk.

IV. SYSTEM VALIDATION

A. Material and procedure

In order to assess the reliability of the system, a preliminary
set of experiments were made in a laboratory setting (Fig. 6
right). Five healthy subjects (see Table I for physical body data)
were asked to execute 3 different movements (arm movement,
rocking movement and side steps) on a posturography platform
while wearing 13 CodaMotion markers, to validate the consis-
tency of our system (see Fig. 6 center for marker placement).
The Kinect embedded in the robot was simultaneously used
for skeleton detection. The goal of this set of experiments
was to assess the CoP/ZMP trajectory provided by Arboris
by comparing it with the CoP/ZMP trajectory measured with
a posturography platform (ground truth). The CoP/ZMP was
chosen because it’s the only parameter that can be directly
measured by a posturography platform. Both CodaMotion and
Kinect data are collected and replayed by dynamic simula-
tion and the resulted CoP/ZMP trajectory was recorded and
compared with the posturography platform measurements. All
data was filtered using a second order lowpass Butterworth
filter with cutoff frequency of 10Hz. For Kinect data, the pose
correction method described in Section III was applied.

TABLE I. MAIN PHYSICAL BODY CHARACTERISTICS OF THE SYSTEM

VALIDATION EXPERIMENT PARTICIPANTS.

.

Subject Height (m) Weight (kg) Gender

P1 1.66 60 F

P2 1.78 78 M

P3 1.8 71 M

P4 1.75 88 M

P5 1.86 79.5 M

B. Results

To evaluate the consistency of our system with respect
to the ground truth, the CoP/ZMP trajectories computed by



Arboris replaying both the Kinect and the CodaMotion data,
and the CoP/ZMP trajectories measured by the posturography
platform were compared. In Figure 3, the 3 CoP/ZMP trajec-
tories related to arm movement executed by one subject are
shown. Figures 4 and 5 report the CoP/ZMP trajectories corre-
sponding to rocking movement and to lateral steps for the same
subject. The max mean error between the trajectories provided
by Arboris by using only the Kinect data (with the correction
pose algorithm) and the ground truth was lower than 0.08 m.
This result proves the accuracy of the system estimating some
important parameters related to human activity. Not only the
overall motion was well preserved during the simulation, but
also the posture assessment showed good results.

Fig. 3. CoP/ZMP trajectory results of arms movement for a subject. The
trajectories issued from Kinect and CodaMotion data are calculated by Arboris..

Fig. 4. CoP/ZMP trajectory results of rocking movement for a subject. The
trajectories issued from Kinect and CodaMotion data are calculated by Arboris..

Fig. 5. CoP/ZMP trajectory results of lateral steps movement for a subject.
The trajectories issued from Kinect and CodaMotion data are calculated by
Arboris. .

Fig. 6. The anatomical joints detected by the Microsoft Kinect SDK algorithm
(left), the CodaMotion markers placement on the subjects’ bodies (center) and
the experimental setting (right).

V. WALKING ANALYSIS DURING PERSON FOLLOWING

A. Material and procedure

System capabilities to extract some walking spatio-
temporal and dynamics parameters of a subject have been
evaluated in a real life situation. For this, the robot followed a
walking person and tracked him by using the on board sensors
under optimal conditions. The experiments were performed
with a subject walking normally, then the mobility of the lower
limb joint was artificially manipulated in a controlled way. The
objective of these experiments was to evaluate the sensitivity of
the system to the disturbances, aiming the analysis of patholog-
ical walking activities later. Three experiments were conducted
to produce permanent changes by mechanical effects on lower
limb:

1) Subject walked in his comfortable walking speed
(CWS) wearing his usual shoes;



Fig. 7. Mechanical disturbances on the subject: normal (left), right knee
immobilization (center) and ski boot on right foot (right).

Fig. 8. CoP/ZMP, COM trajectories and feet position during the support
phase of normal walking.

2) Subject walked in his CWS wearing a brace on the
right leg;

3) Subject walked in his CWS wearing a ski boot on the
right foot.

Experiments 1 was the reference for the normal gait to
which the results of the other experiments are compared.
Experiments 2 and 3 aimed to evaluate the system accuracy
in detecting anomalies in the cases of loss of mobility of
the knee and ankle joints, respectively. The experiments were
performed in the subject’s CWS to avoid the influence of
velocity constraints in the deviations effects. The mechanical
disturbances on the subject are shown in Figure 7.

The subject’s movements were sensed by using only the
Kinect embedded on the robot and running the skeleton
detector algorithm provided by the Microsoft Kinect SDK.
The collected data were then processed following the filtering
method described in Section III.

B. Results

The CoP/ZMP trajectory during walking is an important
parameter for postural balance assessment. In Figure 8 the
CoP/ZMP trajectory and the feet position during the normal
walk (Experiment 1) are shown. The CoP/ZMP trajectory is
computing by using the LIPM.

Overall, the results presented below show that the system
is accurate enough to detect both mechanically induced gait
disturbances. The 2 parameters that proved key factors to

label walking deviations were: the knees flexions and the
ankle lateral movement. As expected, when the subject walked
wearing his usual shoes, the average flexion of right and left
knees were almost equal (Figure 9). Wearing the brace in
the right leg, the mean flexion of the right knee during the
support phase was lesser than the mean flexion of the left
knee (−0.17 rad of right knee versus −0.24 rad of the left).
The use of the ski boot entailed a slight flexion difference as
well (−0.23 rad of right knee versus −0.21 rad of the left).

The 2 types of lower limb disturbances tested are dis-
tinguishable observing the side movement of the ankles, e.g.
the movement orthogonal to the CoM/ZMP during the swing
phase. As shown in Figure 10, in the case of normal gait, both
movements of right and left ankles were equal. The use of
the brace entailed an asymmetry of side movement. The mean
amplitude of the lateral movement observed for the right ankle
was bigger than the mean value observed for the left ankle
(0.07 m versus 0.12 m). The same phenomenon was observed
when the subject walked wearing the ski boot (0.07 m versus
0.13 m).

VI. CONCLUSION

This paper proposed a system for the analysis of human
activity in everyday life contexts using an autonomous robotic
system. We introduced a method for determining the individ-
ual’s anatomical parameters and the algorithms developed for
the digital animation model based on the measurement of a
number of characteristic points obtained by the Kinect embed-
ded in the robot. The system was assessed experimentally on
different exercises during which the positions of the CoP/ZMP,
calculated and measured using a posturography platform, were
compared. The potential of the system was also tested in real
life conditions exploiting the mobility of the robot and its
ability to track persons. These experiments were performed
with a subject walking normally, then the mobility of the lower
limb joint was artificially manipulated in a controlled way. The
system showed sensitivity to the disturbances meaning that it
can be exploited to detect pathological walking activities.
This research is partially supported by the project ANIPEV
funded by European Regional Development Fund (ERDF) and
the e-CareBot project funded the DREAM-IT Foundation.
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