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Abstract—Labeling real-world datasets is time consuming but
indispensable for supervised machine learning models. A common
solution is to distribute the labeling task across a large number
of non-expert workers via crowd-sourcing. Due to the varying
background and experience of crowd workers, the obtained labels
are highly prone to errors and even detrimental to the learning
models. In this paper, we advocate using hybrid intelligence,
i.e., combining deep models and human experts, to design an
end-to-end learning framework from noisy crowd-sourced data,
especially in an on-line scenario. We first summarize the state-of-
the-art solutions that address the challenges of noisy labels from
non-expert crowd and learn from multiple annotators. We show
how label aggregation can benefit from estimating the annotators’
confusion matrices to improve the learning process. Moreover,
with the help of an expert labeler as well as classifiers, we cleanse
aggregated labels of highly informative samples to enhance the
final classification accuracy. We demonstrate the effectiveness of
our strategies on several image datasets, i.e. UCI and CIFAR-10,
using SVM and deep neural networks. Our evaluation shows that
our on-line label aggregation with confusion matrix estimation
reduces the error rate of labels by over 30%. Furthermore,
relabeling only 10% of the data using the expert’s results in
over 90% classification accuracy with SVM.

Index Terms—crowd-sourcing, label aggregation, active learn-
ing, confusion matrix estimation

I. INTRODUCTION

Many artificial intelligence applications rely on supervised
learning and labeled datasets, such as image classification
[1], activity recognition [2], and sentiment analysis [3]. The
dataset size and quality directly affect the performance of
learned models [4] making labeling a daunting task. Crowd-
sourcing [5] aims to curtail the labeling effort by submitting
the data to a large crowd for labeling. Different from traditional
labeling campaigns which assume the presence of (few) ex-
pensive experts providing the labels, crowd-sourcing relies on
several cheap annotators with highly varying knowledge and
level of interest [6]. While the labels can be easily gathered
from the crowd, the quality of crowd-sourced labels is still an
outstanding issue.

Label aggregation is an efficient method to distill the
noise of crowd data by finding the consensus among all
workers. The main algorithms in this area can be categorized
in three directions: Majority Voting, probabilistic models via
EM algorithms, and Annotators’ Expertise Estimation [7]. In
Majority Voting, the label with the highest consensus among
the workers, is selected as the aggregated label for the data [8].
Although some studies rely more on accurate workers [9],
they require a (small) set of golden standard data with known

ground truth labels. Most studies treat the problem as an
unsupervised learning task. EM based studies maximize the
data likelihood to infer the unknown true labels [8], [10]. Some
works also estimate the expertise of workers either via their
confusion matrix [11], [12], [13] or reliability parameter [14],
as well as the difficulty of items [15]. The common objective
among them is to infer the true labels, independently from the
subsequent supervised learning.

While these methods try to estimate the true label in an
unsupervised manner, they exclude the information in the
data samples themselves, e.g., features and informativeness
of data. Active learning techniques [16] are designed to query
extra information from an oracle for the data whose (true)
labels are not readily available. Such an oracle is assumed
to know the ground truth, but at high costs, e.g. a human
expert. Hence, only the most informative/uncertain data is
queried within a given query budget. The majority of active
learning approaches focuses on off-line scenarios with constant
budgets, except [17], [18], [19] that explore active learning on
one by one drifting streaming data, however, their focus is on
single label scenarios.

The efficiency of active learning relies on identifying the
most informative instances to be labeled. Several measures
have been proposed in the active learning literature e.g., based
on class probability [20], entropy value [21] or posterior
predictive densities [22]. Moreover, some methods try to
identify the samples that cause the highest expected gain in
the learning performance once they are labeled [23].

While crowd-sourcing studies have leveraged informative
sample selection [14], [24], [25], the labeling quality of crowd
workers remains a challenge. Usually none of the crowd
workers is an expert in the problem field. Hence, it can be
beneficial to leverage active learning with an expert labeler
to assist the learning process [26]. Moreover, the connection
between label aggregation and training classification models
seems to neglected in many crowd-sourcing studies, as they
only focus on label information and exclude information
lying in the data features, where active learning can play an
important role.

The prior art in both crowd sourcing and label aggregation
focus on off-line scenarios where all the data is available at
once. However, in some applications the data is collect the data
over time in a streaming setting [27]. The challenges in such
on-line setting are small training data in each time step and
concept drift [28]. The small sample set in on-line scenarios
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prevents the learning process from convergence especially in
deep learning [29]. Moreover, concept drift, i.e. the change
in the statistical properties of the data, require on-line models
to be adaptive to the change [28]. There are on incremental
learning algorithms to train models progressively from new
data [30], [29]. Only few consider noisy stream data [31], [32].
However these studies consider ensembles of several classifiers
to detect noisy labels which is not scalable to large datasets
used in deep learning.

In this paper we bring our end-to-end vision to marry crowd-
sourcing with active learning for increased efficiency, e.g.
higher accuracy at lower number of queries. [33] has been a
pioneer for off-line scenario. We go beyond by discussing the
challenges arising in on-line scenario, where data collection
happens continuously, and proposing a solution to address
label aggregation in an on-line manner. We show the gain
of human experts in further improving the quality of learning
systems and elaborate the benefit of employing a small clean
set of data to estimate the annotators’ confusion matrix.
Finally, we perform a comparative evaluation against the off-
line version of the proposed label aggregation method.

II. STATE OF THE ART

In this section we discuss the state of the art in the area
of noisy crowds, dividing them into three categories. First we
give an overview of the related works on annotators’ confusion
matrix estimation, then we review the existing research in
offline label aggregation, and in the end, we discuss the works
tackling noisy annotators with active learning.

A. Off-line Confusion Matrix Estimation

The label confusion matrix is a good indicator to determine
the noise pattern and ratio. The diagonal elements represent the
probability of the correct label while the off-diagonal elements
indicate the probabilities to flip the correct label with a wrong
one. Estimating the confusion matrix can help to correct noisy
labels. Some estimation methods rely on a (small) set of clean
samples with known ground truth. For instance, GLC [34]
estimates confusion matrix assuming a small proportion of
trusted data is available. This clean fraction of the dataset
improves the estimation accuracy significantly [35], [36].
Furthermore, the study in [37] approximate the matrix of noisy
labels stochastically by using correct labels. In addition, they
improve the robustness of DNNs using forward loss correction.
A few methods approximate the confusion matrix by using
Generative Adversarial Networks (GAN) [38]. These works
try to produce noise similar to the noise pattern in the dataset.
The generated data is then used to identify the pattern and
estimate the confusion matrix.

Some works estimate the confusion matrix by leveraging
the prior knowledge in the field. For instance, Forward [39]
assumes a known noise transition matrix/estimates and tries
to minimize the distance between classification outputs and
transition matrix. Masking [40] uses human cognition to
estimate noise and build a noise transition matrix. Goldberger
et al. [12] on the contrary, estimate confusion matrix using an

additional softmax layer in the DNNs. SELFIE [13] proposes a
correction method regarding making high precision for unclean
samples, then improves the estimated confusion matrix. The
work in [11] estimates the annotators confusion matrix and
the true labels simultaneously. As the network predicts the
true label distribution, one can achieve the estimated noisy
labels. Here, we investigate estimating the confusion matrix
for multiple annotators, which is not studied well in the
prior art [11]. In the case of multi annotators, which there
is no access to correct them [12], [13], we can estimate each
labeler’s confusion matrix. After estimation, and combining
each matrix knowledge, we can assess the quality of annotators
and correct the noisy labels during training by using them in
the loss function optimization.

B. Off-line Label Aggregating

Different works address label aggregation to distill the true
label from redundant noisy labels posed as an unsupervised
learning task. They differ in the estimation techniques as well
as the latent variables on which the model relies.

One of the earliest works was proposed by Dawid and
Skene [41]. They use the concept of confusion matrix to
model the expertise of labelers estimated via an EM algorithm
maximizing the data likelihood. BCC [42] is a probabilistic
graphical model version of Dawid&Skene’s EM. To learn the
model parameters, the authors design a Gibbs sampler. During
the learning process, the conditional distributions of the model
parameters must be computed. This requires traversing all
noisy labels in each iteration. Zhou et al. [43], [44] propose
a minimax entropy estimator and its extensions to label ag-
gregation. The authors set a separate probabilistic distribution
for each worker-sample pair. Zhou and He [45] design a
label aggregation approach based on tensor augmentation and
completion. In these works [43], [44], [45], noisy labels are
reorganized as a three-way label tensor. The aforementioned
models can be regarded as off-line label aggregation. They
target the data at hand and can not readily be adapted to learn
incrementally to on-line scenarios. Here the data are collected
periodically batch by batch. Off-line label aggregation needs
to aggregate all batches together to achieve good performance
on all labels. This is time consuming and not scalable, because
the off-line model must wait to have all data at once to
start or retrain on the whole accumulated data at each new
batch arrival. Researchers [46], [47] have demonstrated that
people’s attention, fatigue and behaviors change over time.
Therefore, we need on-line label aggregation algorithms which
can continuously update the aggregation model according to
the new observed labels to accurately infer the true labels.

C. Active Learning from Multiple and Noisy Annotators

Active learning aims to identify informative and represen-
tative unlabeled data samples and label them by an expert
to increase the efficiency of the training procedure [16]. Tra-
ditional active learning methods consider an oracle knowing
the ground truth for all the data readily available during the
learning process [48]. However, this assumption does not apply



to real-world applications. A common solution is employing
several labelers, weak or strong, in the form of crowd-sourcing.
Therefore, leveraging active learning in crowd-sourcing has
become an interesting topic.

While [49] considers imperfect labelers that may abstain
from labeling, [9] assumes having multiple labelers with dif-
ferent costs and qualities. It actively selects both samples and
labelers considering sample usefulness and labeler’s accuracy
and cost, assuming that all the labelers are prone to make
mistakes. [50] focuses on the selection of informative samples
in the presence of several non-expert labelers via majority
voting of the labelers. Considering the same framework, an
extension to unbalanced labels is studied in [51]. However,
they fail to leverage the labelers based on their expertise in
labeling. In contrast, [11] considers several noisy annotators
with unknown expertise and jointly estimates the confusion
matrix of the annotators and the true label distribution by
minimizing the cross entropy function between predicted noisy
labels and given noisy labels. To estimate the workers’ ex-
pertise, [14] uses a low rank representation for the workers’
skills and estimates this representation using EM algorithm.
A bayesian neural network is used in this study to model the
uncertainty in the data to choose the most uncertain samples
for labeling by the expert crowd.. Asking the workers to
provide their confidence level while labeling has been studied
in [24], although relying on the user provided information
seems challenging. Similarly, [25] asks workers to chose the
option unsure if applicable, which is similar to the abstention
of labelers in [49]. Moreover, a few studies consider annotators
with various costs and adjust their active learning algorithm to
select annotators with balanced cost/accuracy [52], [53], [54].

III. CHALLENGES

In this section, we discuss the challenges arising from label
aggregation for online data streams with multiple annotators.

A. On-line Label Aggregating

On-line learning requires label aggregation algorithms to
continuously aggregate the labels of a data stream. Because
of storage limits, regulation constraints or other factors, data
batches are available for a limited duration. Therefore on-line
aggregating is different from traditional label aggregation tasks
which process all observed noisy labels at once. Therefore, the
design of a new learning framework for on-line scenarios is
essential.

The first challenge is how to make use of the knowledge
of the old received batches when aggregating a new observed
batch. The knowledge of the old batches is valuable for the
label aggregation algorithm to precisely evaluate the behaviors
of the non-professional crowd workers. However, the old
batches are missing when we get the new batch. So our
model must be capable to continuously update its parameters
according to the knowledge learned from every observed
batch.

The second challenge is to design a suitable learning
method and optimization goal for the aforementioned appli-

cation scenario. EM algorithms [41], Gibbs samplers [42] and
tensor completion methods [45] have been proposed for label
aggregation. However, they usually need to travel and count
all noisy labels in each iteration. Therefore, these methods
are not applicable for the on-line data arrival setting. The
challenge then is to find an optimization method which can
update the label aggregation model in the presence of a data
stream. Besides, it is vital to design a reasonable optimization
goal for the model to accurately aggregate the observed noisy
labels.

B. Multiple Annotators

Having multiple annotators with different expertise rises
the question of which annotator to choose for labeling each
data sample. Although methods like label aggregation try to
overcome this issue by combining the opinion of all anno-
tators, there is still no guarantee that the aggregated labels
are accurate. The challenges are: annotators having different
level of knowledge for the task, some annotators could be
malicious or simply not willing to put effort for the task, or
there could be a relation between the data category and the
annotator’s expertise level [55]. Also, there might be some
prior knowledge about each annotator, their skill and cost
[25], [24], [56]. As mentioned earlier, majority voting is one
of the simplest ways to combine the annotators’ knowledge.
However, in difficult cases where most of the annotators could
make mistakes, majority voting or other label aggregation
methods can fail [57]. Another category of methods tries to
estimate the expertise of the annotators to select the most
skilled ones [55], [14]. Taking steps further, selective majority
voting [58] applies majority voting to the D most reliable
voters based on their estimated expertise. These views, fail to
consider the difficulty of the samples as well as the change in
the expertise over time.

One could use an expert opinion to verify the aggregated
labels. However, since the expert opinion is expensive [56],
another challenge is to reduce this cost by efficiently choosing
important samples to be relabeled by the expert [56]. Fur-
thermore, as mentioned above, in the cases where there is a
relation between the annotators’ expertise and the data sample,
it is vital to identify those samples for further investigation.
In this case, expert knowledge could be used to label these
informative samples [59].

IV. DEEP OFF-LINE LABEL AGGREGATION

In this section we introduce a method to estimate the
confusion matrix of the workers, to select high quality labeler
in an off-line manner, benefiting from a small clean set with
known true labels.

A. Off-line Multi-Annotator Confusion Matrix Estimation:
MCE

In many real-world applications, a small set of correctly
labeled data is available. In these cases, an effective estimation
method is to extract the annotators’ confusion matrix proba-
bilities by using a small proportion of trusted data.



Consider that each image in dataset xi ∈ Rn×m has a set
of of labels from different annotator Yi = {y1i , y2i , . . . , yKi }
where y

(k)
i ∈ {1, 2, . . . , C} denotes the ith annotated label

from kth annotator. Also, n, m and K are number of images,
features and annotators, respectively. The confusion matrix of
each annotator C(k) is estimated by training a DNN on the
dataset D = {(x1,Y1), . . . , (xn,Yn)} which is labeled by
annotators.

1) Confusion Matrix Estimation: To achieve a robust DNN
training with images labeled by multiple annotators, we lever-
age additional information from a small set of clean samples
to estimate the confusion matrix which is introduced by [34].
The noise confusion matrix guides DNNs to recover the true
label of each image. They can either derive the true labels
directly, then train DNNs with new cleansed data or correct the
loss function implicitly. The proposed method by [34] starts
with training an image classifier on the noisy label data. We
train f(k)(·,Θ) on the dataset D(k) ⊂ D which denotes the
dataset annoatetd by annotator k. In other word, each annotator
generates D(k) = {(x1, y

(k)
1 ), . . . , (xn, y

(k)
n )} for training

corresponding DNNs f(r)(·,Θ). After training each network,
the elements of confusion matrix C(k)

i,j are approximated via a
small fraction of trusted data D′ including true label y′. Given
Ai ⊂ D′ the subset of trusted data, each elements of C(k)

i,j can
be estimated by:

Ĉ
(k)
i,j = P (y(k) = j|y′ = i) ≈ 1

|Ai|
∑
x∈Ai

f(k)(y
(k) = j|x,Θ)

(1)
where f(y(k) = j|x,Θ) denotes the probability of predicted
label of x having class j. Hence, estimated confusion matrix
Ĉ

(k)
i,j is the mean predicted probability of class j for true

label of class i for the trusted data samples. The estimation
depends on the annotator’s skills and the number of clean
labels in trusted data for each class. Annotators skills include
the number of incorrect labels assigned to each instance, also
in many cases, the pattern of wrong labels follows a specific
transition function.

As mentioned in Eq. 1, a trained DNN is used to extract the
elements of the confusion matrix. In this method, not only the
quality of input dataset is essential, but also the architecture
of DNN plays a crucial role in approximating a useful noise
confusion matrix.

2) Multiple Annotators Multiple Confusion Matrices
(MCE): After estimating the noise confusion matrix, we need
to find the best annotator among them. Ĉ(k) is our metric
to identify the most accurate one for each annotator k. The
diagonal elements of the matrix Ĉ(k)

i,i indicate the probability
that a label is correctly annotated. Generally, we can find
the least noisy datasets based on the confusion matrix by
calculating the average of trace(.) for each matrix Ĉ(k). We
first define a set T consisting of the average value of trace(.)
for each k. The set can be written as:

T = { 1

C
trace(Ĉ(1)),

1

C
trace(Ĉ(2)), . . . ,

1

C
trace(Ĉ(K))}

(2)

where trace(Ĉ(k)) =
∑C

i=1 Ĉ
(k)
i,i . To choose the most clean

dataset, we consider T as a reference to illustrate average noise
ratio for each annotator. The selected dataset can be written
as the following:

DS = {(xi, y
(k)
i )|k = index(min

j∈T
j)} (3)

where index(.) describes the index of an element in a set.
Next, we can train a DNN with the selected dataset DS , which
contains less corruption than other labeled datasets. In other
word, we choose the most accurate annotator, and as a result
the obtained labels will be more reliable than the rest. The
aforementioned method works based on the diagonal elements
in each annotator’s confusion matrix.

V. PROPOSED ON-LINE LABEL AGGREGATION

With increasing practise of on-line data curation, the label
set is continuously updated or may not be possible to store for
all applications. Moreover, training a neural network can be
expensive in some cases and requires the dataset to be available
ahead of time. Intelligent selection of the clean labeled data
could be more efficient for the learning process. In this section,
we introduce a novel end-to-end framework to aggregate labels
of the data annotated by crowd workers in an on-line streaming
data setting. To further improve the quality of the aggregated
labels, benefiting from a classifier, we leverage active learning
to cleanse/relabel informative samples by an expert and train
the model on high quality data.

A. Problem Definition

We focus on an on-line data arrival setting that consists
of two steps: i) label aggregation, and ii) active learning.
Consider data which periodically streams into the classifier
in small batches D for training. The instances of the training
data are labeled by the crowd, as each instance takes the form
(xj , ỹj,1, ..., ỹj,K), where ỹj,k means the potentially noisy
label provided by worker k for sample j. xj represents the
feature inputs. Therefore, we have the feature inputs together
with multiple potentially noisy labels in an instance. Our task
is to train a classifier with this data stream.

The data stream will be processed by label aggregation first.
The label aggregation algorithm can give an aggregated label
(the predicted true label) ỹj for each instance j according
to the corresponding noisy labels Yj = {ỹj,1, ..., ỹj,K}. The
label aggregation aims to lower the noise rate in the labels.
However, since the label aggregation algorithm is not perfect,
the aggregated labels can be wrong. Therefore, active learning
is essential to clean the aggregated labels. In contrast to label
aggregation, in active learning, the information of the machine
learning classifier is also used to detect informative/useful
samples to relabel. Note that it is expensive to verify every
sample because of the limited budget. Therefore, the label
aggregating process before active learning is useful to increase
the quality of the labels. The goal of the active learning
step is to identify samples potentially mislabeled by the label
aggregation step and relabel them by an oracle to reach
the ultimate goal of high classification accuracy. Finally, the



Label Aggregation

1. Confusion matrices
2. Predicted labels

Filtering

Classifier
（Θ）

Active 
Learning

Non-informative

Suspicious
data

Limited 
validity

Θ𝒕"𝟏

Clean data

tt+1t+2

Information ranking

Expert Relabeling

Fig. 1. The Workflow of the End-to-End On-line NN-MC with Active Learning

classifier will be trained by high quality data in a supervised
manner. Figure 1 shows the full framework of our algorithm.
The details of each step will be discussed in the following
sections.

B. On-line Label Aggregating

1) Basic Setting: In our online learning setting, the main
task of label aggregating is to choose one label ỹj for each
sample j according to its noisy labels Yj = {ỹj,1, ..., ỹj,K}.
In this online case, for each batch of samples, our label
aggregation model will give the corresponding aggregated
labels in real time.

2) Algorithm Framework: We use p to denote our label
aggregation model. In order to update the model in our online
learning setting, we use stochastic optimization methods like
SGD and RMSProp [60]. These methods are easy to apply for
mini-batch learning which fits our on-line learning setting well.
Then, we need to choose an optimization goal for the optimiza-
tion method. Our goal is to maximize the data likelihood of
the noisy labels. The optimization function of this algorithm is
designed according to variational inference. We use an implicit
distribution q as the approximate distribution. Then we set
minimizing the Kullback-Leibler divergence between p(ỹ|Y )
and q(ỹ|Y ) as the optimization function, where minimizing
the Kullback-Leibler divergence is equivalent to maximizing
the evidence lower bound of the log data likelihood log p(Y ).

3) Neural Network based Multi Class Aggregation (NN-
MC): According to the algorithm framework, we can define
our model by specifying the forms of p and q. In order to
apply stochastic optimization methods in the label aggregation
model, the loss function must be differentiable with respect to
the model parameters of p and q. The definition of our NN-MC
model is discussed below. p is defined using the concept of
confusion matrix [41]. C(k) represents the confusion matrix
of worker k, where its element C(k)

i,j is the probability that
worker k gives a label j when the true label of the item is
i. That is to say, C(k)

i,j = p(ỹj,k = c|yj = t). In NN-MC, q
is a neural network which represents a distribution q(ỹj |Yj).

Then, according to the definition, we can calculate the loss
function and apply mini-batch stochastic learning for NN-MC.

In on-line learning scenarios, at the beginning, NN-MC
uses the noisy labels of some samples to initialize the model
parameters. After the initialization, the data batches will be
input into NN-MC one by one. For each batch of noisy
labels, NN-MC uses them to update the model parameters
(e.g., confusion matrices, neural network parameters) and then
estimates the most confident labels (aggregated labels) for
the corresponding samples. After learning the values of the
confusion matrices, it is easy to compute the aggregated labels
by maximizing the data likelihood of the observed noisy labels.
NN-MC can also be applied to off-line cases by updating the
model parameters with all noisy labels and aggregating all the
noisy labels using the learned parameters together.

It should be note that as the introduced off-line confusion
matrix estimation MCE aims to estimate the confusion matri-
ces, we can modify the confusion matrix estimation step of the
NN-MC based on the proposed MCE, and leverage the rest of
NN-MC approach by using maximum likelihood to extract the
aggregated labels. In other words, in the applications where
a small clean data is available, MCE can assist NN-MC to
estimate the expertise of the workers, however, only in an off-
line setting.

C. Active Label Cleansing

After getting the aggregated labels for each batch of data,
we aim to use the expert knowledge to further cleanse the
potential wrongly aggregated labels, i.e. noisy labels. This step
uses the relationship between a classifier and the features of
the data samples. Our framework is based on streaming data
where the data arrives in small batches, is used in the training
process and then discarded. Each data instance (xj , ỹj) in the
upcoming batch D contains feature inputs xj ∈ X ⊂ Rm

and a potentially noisy aggregated label ỹ ∈ Y := {1, ..., N}.
The goal is to relabel informative wrongly annotated samples
by their true label y. Our algorithm consists of three steps: i)
filtering, ii) informative sample selection, and iii) relabeling.



1) Filtering: The first step is to identify the samples that
have been annotated with a wrong label during the label
aggregation process. One way is to leverage the classifier’s
prediction. By comparing the classifier’s prediction ŷj with
the aggregated label ỹj , we consider a sample to be clean if
the predicted label and the aggregated label are the same, i.e.
ŷj = ỹj , and add them to the clean set C = {(xc

j , yj)}. The
rest of the samples are considered suspicious U = {(xu

j , ỹj)}.
2) Informative Sample Selection: The next step is to iden-

tify the informative samples among the suspicious set U to
query their true label from the expert. The purpose of this
step is to avoid the cost of relabeling the whole suspicious set,
due to the expensiveness of the expert. We use two methods
to measures informativeness and rank the samples: Least
Confident(LC) and Best-versus-second-best (BvSB) [61]. Both
of these methods consider the samples highly informative,
if the classifier’s uncertainty in their classification is high.
Consider the classifier’s prediction probability vector for the
data sample xj as p(xj), therefore, pbest and psecond−best
represent the most likely and the second most likely class
to assign for that data sample. LC compares samples based
on how least confident the model is to classify them, i.e.
I(xj) = pbest(xj). Whereas, BvSB compares samples based
on how much the model is confused between the two most
probable classes, i.e. I(xj) = pbest(xj) − psecond−best(xj).
The value I(xj) shows the informativeness of the data sample
xj . The lower the I(xj) is, the more difficult and confusing
the sample is, therefore the sample is highly informative and
useful to be relabeled.

To select highly informative samples, we rank them based
on their I(xj) value in an increasing order.

3) Relabeling: After ranking the samples based on their
informativeness, we select the top r samples to relabel by
the expert labeler, i.e. the oracle. We add the relabeled clean
samples to the samples filtered as clean in the filtering step
and re-train the classifier with the clean dataset for the current
batch. This process is repeated at each batch arrival.

VI. PRELIMINARY EVALUATION

In this section we evaluate our off-line confusion matrix
estimation MCE, as well as the proposed end-to-end on-line
NN-MC with active learning, on two classifiers. First, we
compare our proposed off-line confusion matrix estimation
and label aggregation methods using convolutional neural
networks. Second, we present our experimental results for
end-to-end on-line label aggregation with active learning using
SVM.

A. Experimental Setup

1) Datasets: We evaluate the introduced frameworks on
two types of datasets. The first type represents less complicated
smaller sized data, with fewer and handcrafted features that
are suitable to train standard ML approaches. The second
type instead uses directly the pixels values and represents
the deep learning approach which integrates feature selection

TABLE I
SUMMARY OF THE MAIN PROPERTIES OF EVALUATED DATASETS.

Dataset letters pendigits usps optdigits CIFAR-10
# classes k 26 10 10 10 10
# features d 16 16 256 64 32x32x3
# train 15000 7494 7291 3823 50000
# test 5000 3498 2007 1797 10000

into the training process. For the first type we use four multi-
class datasets with different sizes and features from the UCI
machine learning repository [62]: letters, pendigits, usps and
optdigits. The letters dataset tries to identify the 26 capital
letters of the English alphabet with 20 different fonts. The
remaining three target the recognition of handwritten digits
via different handcrafted features and from different number of
people. These datasets are used to evaluate NN-MC and active
relabeling. For the second type we use the well-known CIFAR-
10 dataset [63]. This dataset consists of colored 32 × 32-
pixel images divided into ten categories. This dataset is used
for the comparison between MCE and NN-MC for confusion
matrix estimation. This dataset is selected since MCE uses
deep neural networks that are successful in classifying more
complex datasets like CIFAR-10. Table I summarises the
characteristics of both groups of datasets. Since these datasets
contain only one label per data, we need to synthesize the
noisy crowd, where each worker assigns a noisy label to the
data using the procedure in following section.

2) Annotation Noise: To model imperfect annotators (work-
ers), we use four noise pattern with noise rate ε. Worker k with
noise rate ε assigns the ground truth label for each data point
with probability of 1−ε and makes a mistake (assigns another
class) with probability ε. The wrong class can be selected in
various ways that are associated with different noise patterns
as follows:
• truncnorm: uses a truncated normal distribution
N T (µ, σ, a, b) motivated by [64]. We scale
N T (µ, σ, a, b) by the number of classes C and
center it around a target class c̃ by setting µ = c̃ and
use σ to control how spread out the noise is. a and b
simply define the class label boundaries, i.e. a = 0 and
b = C − 1. We set µ = 3 and σ = 1 in our experiments.

• bimodal: is an extension of truncnorm. This pattern
combines two truncated normal distributions. It has two
peaks in µ1 and µ2 with two different shapes controlled
by σ1 and σ2. The peaks are centered on two different
target classes µ1 = c̃1 and µ2 = c̃2. We use µ1 = 3,
σ1 = 1, µ2 = 7, and σ2 = 0.5.

• flip: considers partial targeted noise where only a subset
of classes, {2, 3, 4, 5, 9} in our example, are affected
by targeted noise, i.e. swapped with a specific other
class [65].

• uniform: uniformly selects one of the wrong labels.
Figure 2 illustrates the confusion matrix of an annotator

with the introduced noise patterns using ε = 0.6.
3) Training Parameters for UCI Datasets: As NN-MC

needs an initial training phase, we use an initial set of 50
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Fig. 2. Generated confusion matrices, where the number of classes is 10 and ε = 0.6

samples for all datasets except letters. For letters, since the
number of classes is higher and the dataset is more complex,
we let the initial set be 150 samples. The instances are chosen
randomly from the training set. To speed up training, we limit
the datasets to the total training size of N = 1050 (and
N = 8000 for letters), including the initial set. After the initial
clean data batch, noisy data arrives in batches of 50 instances.
For the classifier with the UCI datasets we use SVM.

To synthesize the crowd labels, we evaluated NN-MC using
the following parameters: number of workers K ∈ {6, 8, 10},
empty proportion e ∈ {0.1, 0.2, 0.3}, and noise rate ε ∈
{0.4, 0.6, 0.8} with all four noise patterns mentioned above.
Note that the empty proportion indicates the proportion of
missing labels for each worker. Moreover, the mentioned noise
rates ε are the average of the noise rates of all the workers.
The noise rates of each worker are randomly selected in the
range of 10% to 90% with respect to the average of ε.

Our algorithm queries the true label of the r = 5 most
informative noisy samples per batch via the oracle. We repeat
each experiment 50 times and report the average final accuracy
computed on the test set.

4) Networks Architecture and Training: For NN-MC, we
use a Multi-layer Perceptron (MLP) with two hidden layers
with 64 and 32 neurons respectively, and tanh activation
function, where the input layer size corresponds to the number
of workers. For MCE, for CIFAR-10 we consider a CNN
architecture which consists of 6 convolutional layers followed
by 2 fully connected layers [66]. The activation function
is ReLU. To estimate each annotator confusion matrix, our
DNN is trained for 130 epochs using SGD optimizer with
momentum 0.9, weight decay 10−4, learning rate 0.01, and
mini-batch size of 128 instances.

B. Confusion Matrix Comparison

Here we compare the performance of off-line NN-MC and
MCE. In Table II reports the error rate of aggregated labels
for NN-MC and MCE with different number of annotators
(workers). We vary the noise rate ε ∈ {0.4, 0.6, 0.8}, which
this value is the mean of noise over the annotators for the
uniform noise pattern. Furthermore, we test the effect of mixed
noise pattern, where the annotators noise patterns are different
from each other while the average noise rate is ε = 0.6 (termed
mixed pattern). We set the patterns with 10 workers based on

TABLE II
ERROR RATES (%) FOR DIFFERENT CONFUSION MATRIX ESTIMATION
METHODS WITH EMPTY PROPORTION OF 0.1, AND DIFFERENT NOISE

RATES AND PATTERNS.

# of Workers = 6
Method Uniform 0.4 Uniform 0.6 Uniform 0.8 Mixed Patterns 0.6
NN-MC 7.47 29.61 67.77 18.75

MCE 6.10 28.33 55.70 8.28
# of Workers = 8

NN-MC 3.77 21.76 63.72 12.34
MCE 3.66 21.73 54.34 4.90

# of Workers = 10
NN-MC 1.77 16.77 60.42 8.08

MCE 2.88 19.37 53.99 4.51

the following sequence: [bimodal, truncnorm, flip, uniform,
bimodal, truncnorm, flip, uniform, bimodal, truncnorm]. For
the case of 6 and 8 workers, we use the first 6 and 8 patterns
respectively. Across the experiment in Table II, MCE obtains a
better error rate than NN-MC. It shows that a small proportion
of trusted data with clean samples can improve the estimation
of the confusion matrix. The difference between these two
models becomes larger by increasing the noise rate. In other
words, when the number of annotators is 6, for ε = 0.4
and ε = 0.8, the difference is 1.37 and 12.07, respectively.
In addition, increasing the number of annotators reduces the
error rate as it increase the chance of extracting the true label.
Moreover, an interesting observation is on the effect of the
mixed noise pattern. As the table shows, having a mixed
pattern results in lower error rates compared to the case of
all uniform noises.

C. NN-MC Performance on UCI Dataset

We extensively analyze the performance of on-line NN-MC
and off-line NN-MC under different settings of number of
workers, empty proportions, noise rates and noise patterns in
Figure 3 and 4. We investigate the influence of every single
parameter by changing one parameter value while fixing the
other parameter values. The fixed parameters are k = 6,
e = 0.1, ε = 0.6, and the noise pattern bimodal. As a baseline,
we use Majority Voting and compare its performance with NN-
MC.

We can see that label aggregation methods can achieve
higher accuracy when we have more workers to provide poten-
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Fig. 3. Error rates for on-line and off-line NN-MC, and Majority Voting for usps and optdigits. At each row, one parameter is changing while the other
parameter are fixed. The values for fixed parameters are: number of workers K = 6, empty proportion e = 0.1, noise rate ε = 0.6, noise pattern bimodal.

TABLE III
LABEL ERROR-RATES (%) FOR ON-LINE LABEL AGGREGATION, AND

FINAL ACCURACY WITH ACTIVE LEARNING FOR r = 5, K = 6, e = 0.1,
ε = 0.6 AND bimodal NOISE PATTERN.

Method USPS Optdigits Pendigits Letters
Error Rate On-line NN-MC 29.04 28.34 28.85 23.51

Accuracy On-line NN-MC +AL (LC) 89.64 88.89 89.94 86.20
Accuracy On-line NN-MC +AL (BvSB) 96.12 92.36 91.62 88.24

tially noisy labels for each instance (see plots in first column).
The reason is that more eligible workers for each instance
corresponds to more information to correctly calculate the data
likelihood and make a more precise prediction. According to
the plots in the second column, we can see that a lower empty
proportion will increase the accuracy of all methods, because
the lower empty proportion represents more labels for each
instance on average. The plots in the third column show that
lower noise rates of the potentially noisy labels can help the
label aggregation algorithms make a better prediction. In the
last column, the flip noisy pattern has the worst accuracy for
all datasets. Comparing to other patterns, for each true label
class (each row in the confusion matrix), flip’s probability
mass concentrate on one single wrong label. This phenomenon
will significantly disturb the label aggregation algorithm to
correctly learn the confusion matrices of the workers according
to the potentially noisy labels.

D. Results on Relabeling with Active Learning

We study the effect of active learning to identify and
relabel wrong aggregated labels after applying on-line NN-
MC. For each batch of data that arrives, first we find the
aggregated labels and then further cleanse them by applying

active learning with LC and BvSB to relabel the informative
data. Table III shows the error rate for on-line NN-MC, and the
effect on accuracy of incorporating active relabeling after NN-
MC with the fixed parameters used in the previous section.
As the results show, active relabeling helps in achieving a
high accuracy by only relabeling 10% of data instances per
batch. Among the datasets, letters seems to be more difficult
to classify since it has more classes, although label aggregation
succeeds in estimating a more clean label set. Among the
active learning methods, BvSB performs better in selecting
the informative data, since it focuses on the two top classes,
whereas LC considers only the highest probable class.

VII. CONCLUSION

In this paper we address the challenges and solutions of how
to design an end-to-end learning framework from noisy crowd-
sourced data, with special focus on on-line scenarios. We
illustrate the challenges arising with on-line label aggregation
of multiple workers. We propose a visionary framework which
incrementally combines noisy data, expert relabelling, and
supervised models for better learning results. We introduce
a method to estimate the expertise of multiple annotators by
estimating their confusion matrix while leveraging a small
clean dataset. To increase the quality of the labels and benefit
from an expert labeler, we relabel suspiciously noisy aggre-
gated labels in an efficient manner. Our results show that the
proposed label aggregation can successfully lower the labeling
error rate by more than 30%, while relabeling only 10% of the
most informative samples, which results in a highly accurate
classification model.
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Fig. 4. Error rates for on-line and off-line NN-MC, and Majority Voting for pendigits and optdigits. At each row, one parameter is changing while the other
parameter are fixed. The values for fixed parameters are: number of workers K = 6, empty proportion e = 0.1, noise rate ε = 0.6, noise pattern bimodal.
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