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Abstract—A rapidly evolving situation such as the COVID-19
pandemic is a significant challenge for AI/ML models because of
its unpredictability. The most reliable indicator of the pandemic
spreading has been the number of test positive cases. However,
the tests are both incomplete (due to untested asymptomatic
cases) and late (due the lag from the initial contact event,
worsening symptoms, and test results). Social media can com-
plement physical test data due to faster and higher coverage,
but they present a different challenge: significant amounts of
noise, misinformation and disinformation. We believe that social
media can become good indicators of pandemic, provided two
conditions are met. The first (True Novelty) is the capture of new,
previously unknown, information from unpredictably evolving
situations. The second (Fact vs. Fiction) is the distinction of
verifiable facts from misinformation and disinformation. Social
media information that satisfy those two conditions are called
live knowledge. We apply evidence-based knowledge acquisition
(EBKA) approach to collect, filter, and update live knowledge
through the integration of social media sources with authoritative
sources. Although limited in quantity, the reliable training data
from authoritative sources enable the filtering of misinformation
as well as capturing truly new information. We describe the
EDNA/LITMUS tools that implement EBKA, integrating social
media such as Twitter and Facebook with authoritative sources
such as WHO and CDC, creating and updating live knowledge
on the COVID-19 pandemic.

Index Terms—social media, infodemic, covid-19, knowledge
acquisition, concept drift, true novelty, fake news

I. INTRODUCTION

By definition, epidemics spread rapidly and widely. Further-

more, like many disasters, epidemics also change significantly

the environments they invade. As of October 22, 2020, the

COVID-19 pandemic has spread to more than 180 countries

and regions worldwide, with 42M+ cases and 1.1M+ deaths

[1]. COVID-19 has transformed the world into the ’New

Normal’ with social distancing, travel restrictions, remote

work, and online learning. Even with early lockdowns, several

countries including the US have recently seen resurgence of

cases.

With several vaccines in phase 3 clinical trials, but none ap-

proved for general use, the control of COVID-19 has depended

on measures such as shelter-in-place, wearing of masks, and

closure of high-risk businesses. These measures are unpopular

for human, social, and economic reasons [2]. Entire sectors of

economy have suffered, including travel, professional sports,

and retail. When applied unevenly, the restraining measures

have had mixed results, with a third wave in the USA, both

in confirmed cases Figure 1 and deaths.

The complexity of COVID-19 pandemic management can

be seen in the varied responses in Figure 1, with multiple

waves at different times for each country. The variability has

defied the modeling and control efforts based on the knowl-

edge and assumptions derived from past experiences such

as the 2003 SARS outbreak and annual flu seasons. Among

other reasons, this complexity has been attributed to the high

transmission rate of the SARS-COV-2 virus, and the relatively

high number of asymptomatic cases that were contagious,

contributing significantly to the spreading of the pandemic.

These factors make contact tracing, the main containment tool

in past pandemics, ineffective in countries with high infection

rates such as the USA, India, and Brazil.

In an evolving pandemic, timely and reliable information

becomes extremely important for decision making at all levels,

from the government to the general public. However, there

are difficulties in obtaining actual information quickly. First,

there are significant technical challenges in data collection,

processing, and filtering of truly new information in a timely

manner. Second, bad-faith actors generate misinformation and

disinformation for monetary and political gains. Third, there

are non-technical issues that may obstruct the information flow

[2]. In this paper, we postpone the non-technical issues and

focus only on the two technical challenges.

The first technical challenge, which we call true novelty, is

the timely discovery of new information that has never been

seen before. This is a difficult challenge for two reasons. First,

continuous, real-time monitoring is required for the collec-

tion of new information. Second, statistical methods typically

classify previously unseen outliers as noise. This happened

to unprecedented discoveries such as the Ozone Hole over

Antarctica, verified by ground radar data. Retrospective anal-

ysis of NASA satellite data shows the phenomenon appeared
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in satellite data several years before, but the unprecedented

(low) values were considered ’physically impossible’ by data

assimilation algorithms and filtered out [3]. These two chal-

lenges are handled by the EDNA toolkit and EBKA approach

to include corroboration into event discovery (Section IV).

The second technical challenge, which we call fact vs.

fiction, consists of the deluge of data in all communications

channels on dominant topics such as COVID-19 pandemic,

including information, misinformation, and disinformation, a

problem often referred to as ’fake news’, and ’infodemic’ [2].

Despite the difficulties of distinguishing the real information

from fake news, it is critical for everyone, from policy makers

to the general public, to make appropriate decisions based

on real information. This is a real threat, since the continued

growth of infections and deaths worldwide Figure 1 suggests

that many people may have been influenced by fake news in

their decisions and behaviors. Another indication is the recent

poll by Pew Research [4], which shows only slightly more

than half of the US public would be willing to take COVID-

19 vaccines. The distinction of facts from non-facts is also

handled by the EBKA approach (Section IV).

The rest of the paper is organized as follows. Section II

outlines the opportunities and potential benefits of collecting

high quality social media data towards the tracking of COVID-

19 pandemic. Section III outlines the technical challenges as

mentioned above, and related work in those areas. Section IV

describes the technical approach to addressing those chal-

lenges, including the EDNA toolkit for real-time social media

data collection, and EBKA approach to distinguish facts from

fiction. Section V concludes the paper.

II. TRACKING THE PANDEMIC WITH LIVE DATA

A. Physical Indicators to Detect and Control the Pandemic

The tracking of COVID-19 pandemic has been accom-

plished through physical indicators as in past epidemics. The

primary indicator is the number of ’test positive’ cases, as

shown in Figure 1. The second indicator is the number of

deaths attributed to the pandemic. Together with the number of

hospitalizations (often with incomplete reporting), the number

of deaths is considered the main indicator of social and

economic cost caused by the pandemic, since the asymp-

tomatic and mild cases have less impact on people. The test

positive graph is an important predictor since a percentage of

positively identified cases will become seriously ill and require

hospitalization, and a percentage of these patients will die.

While very useful as statistical predictor of hospitalization

and deaths, unfortunately the test positive cases by themselves

have become less effective towards slowing or stopping the

spread of the pandemic. The current situation is quite dif-

ferent from previous epidemics, since the test positive cases

form the foundation of contact tracing, the main method of

effective containment. Contact tracing can be modeled as a

graph closure algorithm. Each person is a node, and close

contact is an edge connecting the two nodes. By testing all

nodes in contact with infected nodes, contact tracing can find

all possible candidates of infection and stop future contacts.

The key is that the contact tracing effort must overtake the

epidemic propagation to stop it successfully.

In COVID-19 case, due to the high contagion rate R0, a

large number of infection cases have quickly overwhelmed

the limited number of contact tracers, making it impractical

to control the pandemic through traditional contact tracing.

Another significant factor is contagion through asymptomatic

cases, estimated to be as high as 40% of total [6], particularly

among the young. Strategies that worked for Taiwan and other

Asian countries (e.g. aggressive contact tracing through full

sharing of patient travel and health histories combined with

widespread acceptance of face masks) may not be directly

applicable in countries such as the US and European Union

for a variety of cultural and political reasons such as privacy

concerns.

To replace manual contact tracing, many mobile apps and

platforms have been developed and deployed, including the

Google/Apple Privacy-Preserving Contact Tracing API [7],

[8]. However, these efforts aimed at automating the contact

tracing efforts have been hampered by low rates of adoption.

Statistical models estimate the need for an adoption rate of

between two-thirds to 90% of population (depending on the

contagion rate R0) for the contact tracing activity to overtake

transmission rates successfully. Unfortunately, real world de-

ployments show less than 10% adoption among mobile phone

users [9]. The prevailing low adoption rates are due to a variety

of reasons, including privacy concerns. As result, the mobile

app-based automated contact tracing approach by itself has

been insufficient in achieving full control of the pandemic in

all deployment efforts.

B. B.2 Tracking Pandemic through Information Propagation

In addition to the physical indicators described in Sec-

tion II-A, information through communications media (e.g. so-

cial networks) have been explored as alternative or supplemen-

tary sources for tracking physical events such as an epidemic.

Particularly, social media such as Twitter and WeChat services

have proved to be early disseminators of new information,

ahead of official reports. In the COVID-19 epidemic, the vast

majority of the mild to no symptoms patients have yet to be

tested. Consequently, social and online media, including self-

reporting, may be the best, and perhaps the only way to gather

the missing information on the 80% of patients.

We acknowledge that some previous attempts such as

Google Flu Trends (Section III-A) have met serious technical

and social challenges such as concept drift (Section III-B)

and misinformation (Section III-C). Our contention is that

an information-based pandemic tracking system could provide

useful and valuable information if two conditions hold:

Condition1 [True Novelty] Sufficient quantity of truly

new information can be obtained in a timely manner

Condition2 [Fact vs. Fiction] Factual information of suf-

ficient quality can be separated from misinformation and

disinformation

We recognize the above two conditions represent significant

challenges vis-à-vis current state of the art in ML research.
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Fig. 1. Covid Cases: Test-confirmed new cases in the world (7-day moving average, Oct 31, 2020 [5])

Condition 1 (True Novelty) is a challenge that distinguishes

our work from classic ML research based on closed data

sets such as MNIST and CIFAR. As an illustrative example,

models built on pandemic data collected in the US during the

first wave (Apr May of 2020) may not apply directly to the

second wave (Aug Sept), or the incipient third wave (October),

due to evolving social, economic, and political environments

that necessarily affect communications channels such as social

media. While the True Novelty condition may appear obvious

in retrospect, it has been obscured by the ML tradition of

working (only) within closed data sets collected and annotated

in yesteryears.

Condition 2 (Fact vs. Fiction) is a challenge recognized

by researchers and practitioners in the information security

area, ranging from spam detection [10], [11], [12], [13] (in

various communications channels including email, web, and

social media) to fake news [14]. On the COVID-19 pandemic

topic, the World Health Organization (WHO) has adopted

the term ’infodemic’ [2] to describe the rampant spreading

of misinformation and disinformation for both monetary and

political gains [15]. However, research on, and models devel-

oped for historical data sets such as fake news from 2016 US

presidential elections [16], would not apply to the infodemic

problems on the COVID-19 pandemic.

Our technical approach (described in Section IV) will ad-

dress these challenges and it is our contention that the above

conditions can be met under appropriate assumptions. Here,

we outline a scenario where the propagation of a pandemic

such as COVID-19 can be tracked through information propa-

gation under the two conditions. The scenario consists of two

matching components: a physical model and an information

model. The physical model follows what we have learned

about the pandemic:

1) The most important social, economic, and human cost

is due to the high level of hospitalizations and deaths

from the pandemic. The deaths data is available, but

lags positive tests by up to 30 days. As such, the death

statistics have limited predictive power on pandemic

propagation.

2) The most important predictor of deaths consists of the

positive data from Figure 1. This is particularly the case

of people with high risk factors such as age, and chronic

diseases such as diabetes. Except for a few countries and

regions with community testing, positive tests typically

follow the onset of significant symptoms (Up to 10 days

after contact event).

3) The traditional method to contain epidemics is contact

tracing, where the contact event is reconstructed, and all

the persons involved are tested for contagion. A graph

closure algorithm catches up with the propagation of

virus, enabling the elimination of further contacts and

contagion. Contact tracing works when the number of

infections is relatively small and infection symptoms are

clear. Unfortunately, the COVID-19 pandemic is spread-

ing too fast, and it has up to 40% of asymptomatic cases

that are still contagious.
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The information propagation model of social media follows

the physical model closely. Our research is conducted in four

stages. In the Stage 1, we collect social media data on the

pandemic in general (Section IV-C) and apply the EBKA

approach to filter out misinformation and disinformation. In

Stage 2, the resulting data set will be further subdivided into

the following groups:

1) Deaths and hospitalizations: We will apply unsupervised

clustering algorithms using keywords such as death and

hospitalization, as well as supervised ML algorithms to

build the first group of social media data. This first group

will be correlated with the official death data (group 1.a),

and hospitalization data whenever available (group 1.b).

2) Positive tests: We will apply again unsupervised and

supervised ML algorithms using keywords related to

positive tests to build the second group of social media

data associated with positive tests. We expect one part of

group 2 data to be associated with hospitalized (group

2.a) and another part with non-hospitalized (group 2.b).

3) Symptomatic: We will apply a third time unsupervised

and supervised ML algorithms using keywords related

to COVID-19 symptoms to build a third group of social

media data. We expect one part of group 3 to be associ-

ated with positive tests (group 3.a), and another part that

concerns only general discussions on symptoms (group

3.b).

In Stage 3 of our research, we will search for a correlation in

space and time between the relevant social media data (groups

1.a and 2.a) with the physical data on deaths, and positive tests.

The EDNA toolkit (Section IV-C) is able to find the location of

an event when mentioned in a tweet. The space-time matching

of social media data with the physical data of that area is

important, since different countries and regions have different

time frames in pandemic propagation. The variations among

the countries in Figure 1 (and variations among the states in

the US) are indications of the need for localization in the time

correlation analysis.

In Stage 4 of our research, assuming a reasonable correla-

tion between the physical model and information propagation

model can be established, we will search for correlation

between contact events and discussion of symptoms (group 3)

as well as positive tests (group 2). This search will start from

known contact events where social distancing was optional,

e.g., the Sturgis motorcycle rally and many in-person, crowded

election campaign events and rallies. The next step of search

will focus on medium scale events that have been reported as

super-spreaders, including weddings and church events. The

search will continue with friend and family events in the

community transmission stage.

III. CHALLENGES AND RELATED WORK

A. Associating Physical Events with Social Media

There have been several attempts to study the association

between physical events with social media and other communi-

cations media. Methodologically, many of these studies follow

the tradition in big data analytics to post-process the raw data

set collected on an event through various data cleaning steps

into a closed data set. Then, ML classifiers are generated

(either through unsupervised or supervised learning) and tested

on the cleaned data set. Due to the heuristics approaches to

data cleaning that are often specific to each event, the reported

results are often specific to that event. Most importantly,

such retrospective data analyses happen after the fact, often

years later, making the approach inapplicable to near-real-time

responses needed for rapidly changing situations such as the

COVID-19 pandemic.

The AI/ML community has adapted to this limitation of

retrospective studies by mapping terms and concepts from the

real world (e.g., ’real-time’ as used by real-time community

such as RTSS and RTAS conferences) into the closed context

of historical data sets. As a concrete example, the highly

cited Sakaki paper [17] (4500+ in Google Scholar as of

September 2020) is entitled ’Earthquake shakes twitter users:

real-time event detection by social sensors’. However, it is a

retrospective study conducted years after the earthquakes. The

term ’real-time’ in the title refers to the difference between

two timestamps: (1) a historical earthquake event, and (2) the

moment their model is able to decide on the detection of

that earthquake, based on the accumulated tweets from the

retrospectively cleaned Twitter log on the earthquake.

An implicit expectation of retrospective studies is that the

models trained from past event data would be applicable to

similar events in the future. Although this natural expectation

remains a valid and important goal for research in this area, the

actual ML models developed from past retrospective studies

have consistently shown less than robust performance when

applied to newer events. This difficulty is not unique to the

models developed in [17]. To the best of our knowledge,

all retrospectively trained ML models have had limited (and

decreasing) accuracy when evaluated on their modeling and

prediction of future events. This discussion of challenges

in applying ML models trained from retrospectively cleaned

data sets (and closed data sets more generally) is due to the

heuristic and event-specific rules of data cleaning, the lack of

knowledge about true novelty, and concept drift, the topic of

next subsection.

B. Concept Drift and Evolution of Reality

Big data approaches, including ML models, have been

attempted in the prediction of epidemic propagation. An early

and well-known example was Google Flu Trends (GFT),

which tracked the progression of annual flu epidemic in the

USA, using search terms collected from Google search en-

gines. In a 2009 Nature paper [18], GFT showed 97% accuracy

in the prediction of flu propagation, using a statistical model

derived from 2007-2008 flu season data. However, a gradual

shifting of words and language used in online media (including

search terms), a phenomenon called concept drift [19], caused

a steady decay of GFT performance, with prediction errors

reaching more than 100% by 2012 [20]; GFT was officially

shut down in 2015.
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According to current ML research practices on evaluating

ML models within closed data sets such as MNIST[21] and

CIFAR[22], most of concept drift [23] papers have restricted

their attention to closed data sets in a restricted case called

virtual concept drift. A typical technique to handle virtual

concept drift is to allocate appropriate weights to members

of a teamed classifier, which can adapt to varying subsets of

the closed data set. Unfortunately, closed data sets, including

the retrospectively cleaned data on events, cannot adapt to

environmental changes in the real world, which is happening

with the COVID-19 pandemic. Even for the GFT case, from

20/20 hindsight, the growth of GFT error rate was only

partially due to changes and evolution of language used to

search. Another important factor is that that the reality of

flu has also evolved over the years, including new viral

treatments such as Tamiflu that became more widely available

and affordable. Given non-trivial evolution of reality, virtual

concept drift techniques would be unable to maintain accuracy,

since the new reality (e.g., the COVID-19 pandemic) did not

exist in the original training data.

C. Misinformation and Disinformation

Due to the impact of the COVID-19 pandemic, a significant

portion of social media has been devoted to the topic. This

attention has generated an extraordinary amount of misin-

formation and disinformation on all topics related to the

pandemic, a phenomenon called ’infodemic’ [2] by the WHO.

Some of the misinformation and disinformation fall into the

category colloquially known as ’fake news’ [14], and other

items have been classified as pseudo-science. Examples of

fake news include rumors about purported cures for the SARS-

COV-2 virus (e.g.,chloroquine), and causal agents (e.g., 5G

cellphones or Bill Gates caused the pandemic). Examples of

pseudo-science include articles written in technical paper style

that use genetic sequence analysis to supposedly prove the

SARS-COV-2 virus was created in a bio-weapons lab (that

belongs to CIA or located in Wuhan, depending on the source).

The presence of misinformation and disinformation in social

media has been a well-known problem, as old as social media

themselves, and preceded by similar problems in other commu-

nications media such as email and web spams. However, the

scale, persistence, and sophisticated of COVID-19 infodemic

is unmatched, due partially to the scale and persistence of the

pandemic itself. As an illustrative example of the challenge,

consider the application of ML techniques in the sentiment

analysis area [24]. Based on statistical clustering, sentiment

analysis is good at finding strong opinions, but it would have

difficulties distinguishing actual facts from inaccurate or ma-

licious (strong) opinions. This problem has been exacerbated

by fake accounts that create overwhelming quantity of fake

news through repetition (e.g., similar Facebook postings or

retweeting).

Due to the difficulties in the interpretation of opinions and

their ease of change, we restrict our attention to verifiable

facts, which form the core part of the physical disaster

management area, including pandemics such as COVID-19.

Unlike opinions, the veracity of facts is unaffected by how loud

the shouting is. Instead, facts are published by reputable or

authoritative sources, and corroborated through a continuous

verification process by independent fact checkers. In our

research, we will rely on authoritative sources such as CDC

[25] and WHO situation reports[1] on pandemic data including

deaths and positive tests. In addition, we also use reputable

sources (that employ corroboration before publication) such as

the Johns Hopkins information center [5] as well as reputable

news sources including NY Times [26] and CNN [27].

IV. TECHNICAL APPROACH

A. True Novelty on Pandemic in Social Media

Towards the satisfaction of Condition 1 on True Novelty, we

have developed a set of tools [28] for data collection, classifier

training, and data analytics for the near-real-time detection of

landslides in the LITMUS project [29]. The tools are highly

customizable for a variety of topics, e.g., the LITMUS tools

have been successfully used to collect and analyze data on

wildfires. The tools include data collectors from Twitter and

Facebook as primary sources, and reputable news sources

such as New York Times and CNN.com as corroborative

sources. The LITMUS tools have evolved through several

iterations, include the ASSED [30] and EDNA toolkits [31],

which achieve faster deployment, fault tolerance, and end-to-

end management.

EDNA (and LITMUS) tools collect streaming social media

data from channel-specific APIs, e.g. the Twitter Streaming

API. As an example, the Twitter API sends tweets that

satisfy selection criteria defined by topic keywords. Similarly,

newspaper APIs send news articles matching the selection

criteria. For the data collection on the COVID-19 pandemic,

topic keywords include: coronavirus, covid-19, ncov-19, and

pandemic, among others. The near-real-time collection of

data from live social media sources is the first step of live

knowledge aggregation process.

The second step concerns the issues of concept drift [23] and

evolution of reality discussed in Section III-B. The discussions

about the pandemic can shift abruptly as new topics are

introduced, e.g., when new drugs and vaccines are announced,

and/or systematic misinformation and disinformation cam-

paigns are initiated. Although new keywords can be added

manually, the crucial period of true novelty detection (at the

beginning when the novelty was introduced) may have passed

and the new information lost. EDNA adapts to concept drift

in two ways: (1) by automating the augmentation of topic

keywords, and (2) by leveraging social network tracking of

popular postings.

First, as live social media data items are collected from

existing keywords, EDNA applies clustering algorithms to

search for new popular keywords. Our assumption is that

both positive new topics (e.g., new treatments) and new

campaigns of fake news associated with the pandemic would

still contain some of the pandemic-related keywords, at least

at the beginning, due to the requirements of current search

algorithms. This is because under true novelty, this correlation
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might disappear as the sources of these posts change com-

munities. Capturing nascent keywords allows us to follow the

evolution of new topics. For example, keywords such as: mask,

bioweapon, and bill gates were highly correlated in the early

stages of the pandemic. After a few weeks or months, the cor-

relation decreased significantly since the new keywords have

acquired their own social context. Capturing the keywords in

the early stages allowed us to continue collecting data through

concept drift, e.g., new tweets containing only the keyword

mask and omitting the original keywords coronavirus, covid-
19, ncov-19, or pandemic.

Second, EDNA also benefits from the popular or viral tweets

detected by social networks (using their own algorithms and

human moderators). Many of trending tweets would contain

the same topic keywords that EDNA is tracking. However,

other trending tweets can contain images and memes, or

neologisms that relate to the pandemic, but having low tex-

tual correlation with current keywords. Example of relevant

neologisms include ’infodemic’ (a legitimate concept to de-

scribe the misinformation campaigns on the pandemic, being

popularized by WHO), and plandemic (a fake news campaign

that emerged in June 2020), used to denote a particular anti-

vaccine conspiracy theory.

B. True Novelty on Pandemic in Social Media

The discussion in Section IV-A observes the appearance

of both legitimate new information and misinformation when

tracking new data items that belong to true novelty category.

To overcome the limitations of traditional ML classifiers

trained from closed data sets, we propose the application

of Evidence-Based Knowledge Acquisition (EBKA) approach

[32] to integrate noisy social media data such as Twitter,

Facebook, and Weibo with authoritative sources such as WHO

and CDC reports [1], [25] to distinguish verifiable facts

from fake news. Initially applied in the LITMUS landslide

information service [29], EBKA has demonstrated successful

The EBKA approach was initially developed in the LIT-

MUS project to filter the overwhelming amount of noise in

social media on landslide disasters. The main challenge is

that only about 5-10% of tweets that contain the keyword

’landslide’ actually referred to landslide disasters, with the

majority of references on results of elections as well as soccer

matches. EBKA distinguishes true novelty in social media

from misinformation through an automated integration of

primary sources (social media such as Twitter and Facebook)

with authoritative sources (reputable news sources such as NY

Times and CNN).

Since the authoritative sources only report on large disasters

with news reports and many tweets, it is uncertain whether the

classifiers trained from large-disaster data would be able to

detect small-scale landslides that have few tweets. Fortunately,

their complementary nature enabled a good combination: pri-

mary sources having high coverage with high noise levels, and

authoritative sources having high reliability and low coverage

levels. LITMUS results show that the high reliability of ground

truth from authoritative sources on a few large disasters

(between 1-5% of detectable landslides) combines well with

the relatively good reporting on each large landslide. The result

consists of high quality teamed deep learning (DL) classifiers

that become capable of detecting the smaller new landslides

that have lower signal-to-noise ratio. These EBKA teamed

classifiers become capable of recognizing a total of more than

10 times real landslide disasters with high accuracy.

The automated EBKA process to generate high quality

teamed classifiers from true novelty helps satisfy Condition

2 on the distinction of verifiable facts. By integrating au-

thoritative sources with primary sources, EBKA becomes

capable of recognizing true novelty information on the pan-

demic; the EDNA tools leverage authoritative sources such as

WHO, CDC, and JHU COVID Information Center to capture

verifiable facts on the pandemic. At an abstract level, the

continuously generated true novelty information on verifiable

facts is called live knowledge [32], which contributes to the

opportunities outlined in Section II. Specifically, the contin-

uous capture of live knowledge on the COVID-19 pandemic

can improve substantially the timely study of its spread and

effective countermeasures.

Like LITMUS, EDNA will use teamed classifiers to identify

physical event clusters from social media. For example, multi-

ple tweets that refer to an event (e.g., an outbreak of positive

tests) at the same time and location can be grouped into a

tentative event cluster. Event detection from social media is

fraught with noise: location extraction is somewhat coarse, and

this limits specific event detection. To filter out such noise and

collect information with verifiable facts, LITMUS integrates

authoritative sources such as news articles or other reputable

sources to (a) retroactively correct any inaccuracies in event

clustering, and (b) update event cluster detection models, e.g.,

whether a cluster is a true novel event, or fake news.

Retroactive correction involves progressively refining the

previous decision on older event clusters from social media

that have received more authoritative information, e.g., from

fact finding websites. In case of COVID-19, we ensure each

event cluster found in social media (e.g. tweets mentioning

the Sturgis motorcycle rally with coronavirus case related key-

words such as ’crowd’ or ’gathering’) has supporting evidence

from authoritative sources (e.g. news articles referring to the

Sturgis rally as a super-spreading event at a later date).

EDNA also performs methodical rolling model updates to

refine event cluster detection, particularly in the important

decisions such as whether an event is real or fake news. Event

clusters are detected with keyword filters plus topic modeling

that extracts trending topics related to event keywords. Refin-

ing event cluster detection requires identifying new keywords

that may be related to the pandemic, such as ’bleach’ after

the President’s press conference on April 24, and updating the

topic modeler to include these new keywords. Once a new

coronavirus related trend is detected, EDNA retrains the event

cluster detector with existing event cluster tweets and the new

trend tweets to add them to the teamed classifier.

The rolling model updates provides additional evidence

from authoritative sources to substantiate a true novelty cluster
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as real event. In contrast, if negative evidence is found (e.g.,

fact finding websites indicating a topic to be fake news),

EDNA reduces the weight of sub-models related to those

event cluster tweets in the teamed classifier. This progressive

substantiation process gave name to EBKA (evidence-based

knowledge acquisition): the teamed classifiers gains more

information on true novelty through the accumulation of sup-

porting or contradicting evidence from authoritative sources.

Since there should be no controversies on verifiable facts, we

expect the process to converge quickly and the occurrence of

fact settled.

Applying EBKA approach to the COVID-19 pandemic,

EDNA has collected about 600GB of social media data from

several social networks as outlined in the Section IV-C, with

over 600M tweets.

C. Continuously Collected Primary Dataset (Condition 1)

We have collected the EDNA-Covid dataset since January

25, 2020 using Twitters streaming API. Over time, we have

also enriched our dataset with other similar datasets, such

as [33] and [34]. We use the Twitter Sampled Stream API.

This API provides a real-time stream of 1% of all tweets. In

EDNA, we collect this stream with a highly-available cluster

of ingest processes. During our data ingest, we perform our

keyword extraction to identify coronavirus related tweets, with

the following keywords: corona, covid-19, ncov-19, pandemic,

mask, wuhan, and virus. To capture Chinese social data, we

also include these keywords in Mandarin. We initially included

the keyword china during data collection in January and

February, but decided to omit the phrase since it introduced

significant noise, and any tweets with the keyword that were

relevant to coronavirus already include the above keywords.

Even with 1% of the Twitter stream, we are able to collect

a large scale dataset of tweets. We show in Table 1 the tweets

collected since January. We converted to a highly-available

cluster of ingest processes near the end of June to improve

our data collection and reduce instances of dropped tweets.

We also updated our keyword filtering approach to keep tweets

that are retweets of matching tweets.

TABLE I
PER-MONTH TWEET COUNTS FOR EDNA-COVID

Month No. Tweets
2020-01 8,714,684
2020-02 25,553,003
2020-03 31,564,785
2020-04 25,498,020
2020-05 26,895,960
2020-06 99,415,221
2020-07 112,215,578
2020-08 113,543,567
2020-09 103,454,256

Our data is skewed towards English language tweets, as we

show in Table 1 with the top 5 language categories. We also

included Chinese and Japanese tweets with keywords in the

corresponding languages; including Chinese keywords nets us

25K tweets per month, which is less than 0.1% of the collected

tweets, and including Japanese keywords adds 50K tweets per

month. This includes enrichment with tweets from [33], [34].

TABLE II
TOP 5 LANGUAGES IN EDNA-COVID DATASET

Language No. Tweets Pct Total
English 395,109,343 63.4%
Spanish 76,653,705 12.3%
South Asian
(Indonesian, Javan, Malay)

23,681,633 3.8%

French 21,812,030 3.5%
Portuguese 19,942,427 3.2%

As a starting point for primary source data collection, we

have created new Twitter queries with keywords such as

coronavirus, covid19, novel coronavirus, outbreak, quarantine,

sars-cov-2, hubei, and wuhan; these keywords include both

static and dynamically updated keywords as described in

Sections IV-A and IV-B. Three sample tweets are included in

the following table:

TABLE III
SAMPLE TWEETS COLLECTED WITH EDNA

{ "created_at": "Sat Feb 29 18:59:56 +0000 2020",
"id": 1233829273691049984, "text": "Coronavirus
will spread in California, health officials say:
’It’s already out of the bag’ https:\
/\/t.co\/YHBt1myH5X
#uncategorized #feedly }
{ "created_at": "Sat Feb 29 18:59:57 +0000 2020",
"id": 1233829277067595779, "text": "President
Trump on #coronavirus: \u201cIts a
tough one but a lot of progress has been made
\u201d - 22 cases in US but one die
\u2026 https:\/
\/t.co\/Siw30dZqQY }
{ "created_at": "Sat Feb 29 18:59:57 +0000 2020",
"id": 1233829277914877953, "text": "Window of
opportunity for containing coronavirus rapidly
closing. https:\/\
/t.co\/WZ7joAxzqt ..}

This sustained increase in online engagement in reference

to a single event provides an unprecedented insight into a

slew of areas in natural language processing, such as social

communication modeling, credibility analysis, topic modeling,

and fake news detection. Our EDNA-Covid dataset, which

contains over 600M tweets from over 10 languages, would be

an excellent source for research into the social and language

dynamics of the pandemic. Our dataset demonstrates concept

drift, making it ideal for testing streaming models of analytics.

Data exhibits concept drift when its underlying distribution

changes over time, usually over several years. Under concept

drift, machine learning models and conventional offline an-

alytics will degrade as their prediction data desynchronized

from their training data model. Concept drift is a natural

part of real data; several examples of drift abound in nature,

from changing seasons, which can degrade performance of

computer vision systems, to lexical drift [35], which can de-

grade performance of NLP models over different geographical

regions. An important requirement inn concept drift research is
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data that exhibits such drift to enable development and testing

of drift detection and adaptation mechanisms.

With EDNA-Covid, we present a dataset that exhibits con-

cept drift. The online discourse on the Covid-19 pandemic has

taken root in a dizzying array of online communities, such as

sports [36], academia [37], and politics [16]. This allows us

a firsthand look at a real-world example of concept drift as

the online conversations change over time to accommodate

new actors, knowledge, and communities. This yields a high-

volume, high-velocity data stream with noise and drift as the

underlying conversations about the pandemic transition from

confusion to information to misinformation [38] and today,

with the US election nearing, disinformation [39].

a) EDNA: We will briefly describe our EDNA toolkit

here. EDNA is an end-to-end streaming toolkit for ingesting,

processing, and emitting streaming data. EDNA’s initial use

was a test-bed for studying concept drift detection and recov-

ery. Over time, it has grown to a toolkit for stream analytics.

We are continuing to work on it to mature it for production

clusters. The central abstraction in EDNA is the ingest-process-
emit loop, implemented in an EDNA Job. We show an EDNA

Job in Figure 2. Each component of the loop in an EDNA Job

is an abstract primitive in EDNA that is extended to create

powerful operators.

• Ingest primitives consume streaming records.

• Process primitives implement common streaming trans-

formations such as map and filter [40]. Multiple process

primitives can be chained in the same job.

• Emit primitives generate an output stream that can be

sent to a storage sink, such as a SQL table, or to another

EDNA Job.

The EDNA stack consists of four layers: deployment,

runtime, APIs, and plugins. EDNA can be deployed on a

local machine for single jobs or on clusters managed by

orchestrators like Kubernetes for multiple jobs in a streaming

application. On a cluster deployment, EDNA uses Apache

Kafka [41], a durable message broker with built-in stream

playback to connect jobs, and Redis [42] to share information

between jobs. The EDNA runtime manages and executes jobs

on the applied deployment. EDNA Jobs use the ingest, process,

and emit APIs to implement the ingest-process-emit loop, with

the appropriate plugin for complete the job.

b) Dataset Release.: Due to Twitter TOS regarding re-

lease of tweets, we are releasing the dataset to the public

through a registration method. We have provided a form at

https://forms.gle/dFYhuMzyPMunY17H9 for dataset requests.

We have released an alpha version of EDNA at https://github.

com/asuprem/edna and a sample of the dataset at https://github.

com/asuprem/EDNA-Covid-Tweets. We deploy long-running

stream processing applications with EDNA on Kubernetes. In

this case, we deploy LITMUS tools for data collection and

classification on EDNA.

D. Factual Dataset with True Novelty (Condition 2)

We now describe our steps to address Condition 2 for

extraction of the factual dataset from the raw EDNA-Covid

dataset. The factual dataset consists of social media post

clusters that can indicate changes in the pandemic’s spread.

We extract the factual dataset with an EDNA application. The

EDNA application identifies tentative location for the tweet,

possible misinformation or disinformation within the text, and

any ties to credible and authoritative sources, e.g. CDC, WHO,

JHU, New York Times, or other news organizations:

• Location Extraction: Identifying location from tweets

or social media is difficult since twewets contain ’short-

text’, which lacks context for most NLP tools. We accom-

plish this by using off-the-shelf NLP tools like Stanford

NER for the easy cases. Simultaneously, we record any

detected locations in a short-term cache. For any short-

text where off-the-shelf NER cannot fild locations, we use

our short-term cache as a substring match against the text

to identify any locations. Under EBKA, we also integrate

knowledge from authoritative sources. For any new cases

detected reported by CDC and WHO, we add locations

for those cases to our short-term cache as well.

• Misinformation Extraction: We obtain a collection of

misinformation keywords from Wikipedia [43] and from

[15]. We then use these keywords to filter tweets that

contain these keywords, which include bioweapon and

plandemic. We continuously update our misinformation

keywords from these sources. To detect new misinfor-

mation keywords that may not exist on [43] or [15],

we track tentative keywords associated with existing

misinformation that may be trending. This is because

new types of misinformation may try to ’piggyback’ on

existing trends to quickly gain an audience.

• Authoritative Source: We track a list of authoritative

sources and their posts. Any media from these sources,

e.g. [25], [1], [26], [27], [5] is automatically counted as

factual information.

Our EDNA application is shown in Figure 3, where each

process within the application is an EDNA Job. We describe

key jobs here:

1) Twitter Ingest: This job connects to the Twitter v2

sampled stream endpoint, available at [44]. This API

provides a real-time stream of 1% of all tweets. Each

raw object is archived to disk. We have described this

dataset in Section IV-C.

2) Metadata extractor: This job extracts the tweet object

from the streaming record and performs some data clean-

ing in discarding malformed, empty, or irrelevant tweets.

Tweets without the relevant coronavirus keywords are
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Fig. 3. EDNA Application: Our EDNA application to address Condition 2 to extract factual data from the stream.

tagged as possibly irrelevant. Keywords include: coron-
avirus, covid-19, ncov-19, pandemic, mask, wuhan, and

virus. This job also performs location extraction using a

combination of off-the-shelf Stanford NER and our short-

term location cache.

3) Sentiment analysis: We use an off-the-shelf tweet sen-

timent analysis model from [24] to record text senti-

ment. We plan to replace this with an EDNA application

that will automatically generate and retrain a sentiment

analysis model with data from Twitter’s own streaming

sentiment operators.

4) Misinformation Keywords Ingest: We obtain a collec-

tion of misinformation keywords from Wikipedia [43] and

from [15] as described earlier. This job regularly queries

sources for new keywords.

5) Extract Misinformation: This job parses the misinfor-

mation sources from Misinformation Keyword Ingest.
For example, it extracts keywords from headlines in the

Conspiracy section for [43]. All keywords are updated in

an internal cache for the Misinformation Filter job.

6) Misinformation Filter: We group 1 minute’s worth of

tweets for faster misinformation keyword checking and

to record misinformation keyword statistics on a per-

minute window. This job checks whether the grouped

tweet objects contain any of the misinformation keywords

extracted by the Extract Misinformation job and reg-

ularly updates its own cache of keywords. Tweets are

tagged if they contain misinformatioon keywords.

7) Authoritative Sources: Tweets and content from author-

itative sources are tagged with his job. We keep track of

authoritative sources as described, including CDC, WHO,

NYT, etc.

V. VISION

A rapidly evolving situation such as the COVID-19 pan-

demic is a significant challenge for human decision makers

and AI/ML models because of its unpredictability. The most

reliable indicator of the pandemic spreading has been the

number of test positive cases, but those indicators suffer

from being too few, too late. The tests are incomplete, since

asymptomatic cases (estimated at up to 40% of total) usually

remain untested, and they lag the initial contact by several

days, since the symptoms arise a few days later, and the test

results often take another couple of days. Additional indicators

and predictors of pandemic spread can have a significant

impact.

Social media can complement physical test data due to the

faster and higher coverage of social media. However, social

media also contain significant amounts of noise, misinforma-

tion and disinformation, making them less reliable. In addition,

technical issues such as concept drift have rendered ML

techniques less effective in rapidly evolving situations. Our

hypothesis is that social media can become good indicators and

perhaps predictors of pandemic, provided two conditions are

met. The first (True Novelty) is the capture of new, previously

unknown, information from unpredictably evolving situations.

The second (Fact vs. Fiction) is the distinction of verifiable

facts from misinformation and disinformation. Social media

information that satisfy those two conditions are called live

knowledge.

We apply evidence-based knowledge acquisition (EBKA)

approach to collect, filter, and update live knowledge on

the spread of COVID-19 epidemic. EBKA integrates primary

social media sources such as Twitter and Facebook with

authoritative sources such as WHO and CDC. Although the

authoritative sources have limited coverage, EBKA is able to

use them to generate highly reliable training data and extensi-

ble teamed classifiers capable of filtering out misinformation

(Condition 2) as well as capturing truly new information (Con-

dition 1). EBKA has been demonstrated to be effective in the

LITMUS landslide information system, and we are applying

EBKA in the tracking of COVID-19 pandemic information

with promising results. As the US recorded 88K new cases in

a single day (October 29, 2020), we can use all the help we
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can get.
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