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Abstract—A recommender system predicts users’ potential in-
terests in items, where the core is to learn user/item embeddings.
Nevertheless, it suffers from the data-sparsity issue, which the
cross-domain recommendation can alleviate. However, most prior
works either jointly learn the source domain and target domain
models, or require side-features. However, jointly training and
side features would affect the prediction on the target domain
as the learned embedding is dominated by the source domain
containing bias information. Inspired by the contemporary arts
in pre-training from graph representation learning, we propose
a pre-training and fine-tuning diagram for cross-domain rec-
ommendation. We devise a novel Pre-training Graph Neural
Network for Cross-Domain Recommendation (PCRec), which
adopts the contrastive self-supervised pre-training of a graph
encoder. Then, we transfer the pre-trained graph encoder to
initialize the node embeddings on the target domain, which
benefits the fine-tuning of the single domain recommender system
on the target domain. The experimental results demonstrate the
superiority of PCRec. Detailed analyses verify the superiority of
PCRec in transferring information while avoiding biases from
source domains.

Index Terms—Recommender system; Cross-domain; Pre-
training; Contrastive learning

I. INTRODUCTION

A recommender system predicts the potential interests of
users to items, where the core is to learn user/item embeddings.
Matrix factorization is an early method for collaborative
filtering (CF), where it learns user/item embeddings and re-
constructs their interactions with inner product [1], [2]. The
general idea of CF approach is based on observation of the
preferences of other users that are similar to the historical
preferences of the target user. Later on, deep recommender
systems [3]–[6] have shown that capturing deep features
in a supervised or unsupervised manner is more appealing
than shallow models such as CF to capture similarity and
implicit relationship between items. However, due to the cold-
start and data-sparsity issues [7], [8], models learned from a
single domain are unable to achieve satisfactory performance.
Therefore, Cross-Domain Recommendation (CDR) [9]–[13]
has been proposed. It transfers the information from source
domains to a target domain, such that the recommendation
performance on the target domain can be improved.

The CDR has been verified as an effective way to allevi-
ate the aforementioned issues [10]–[13]. The essential idea
in CDR is to use the common users on both domains to
transfer relevant information, which can be achieved from two

perspectives: 1) modeling user information in source domain
as auxiliary information in target domain [10], [12]; or 2)
jointly training shareable parameters on both domains [11],
[14]. Meanwhile, some recent works [13], [15] try to combine
both. However, existing works assume that the information
from a source domain is relevant to the prediction objectives
in the target domain, which is not necessarily true. If a source
domain contains dominant bias against the target domain, the
prediction on the target domain would be misled, which thus
spoils the recommendation performance.

To this end, we should devise a new CDR paradigm, which
can not only transfer the information but also protect the
prediction on the target domain from being dominated by the
bias from source domains. Inspired by recent developments of
pre-training frameworks in computer vision [16], [17], natural
language processing [18], graph representation learning [19],
and sequential recommendation [20], we intent to design a
novel pre-training framework for the CDR problem. The ad-
vantages are twofold: Firstly, the pre-trained model on source
domains transfer auxiliary information to the target domain.
Secondly, the fine-tuning step on target domain ensures the
prediction is dominated by the information in the target
domain, thus overcoming the bias from source domains.

Though existing works have discussed how to pre-train
a model on source domains and fine-tune it on the target
domain [21], it is still challenging to propose a suitable
framework for the CDR problem. Firstly, previous works [18],
[19], [22] pre-train a model on a large corpus with side
information available, which is not the case for CDR. The only
available data in CDR is the user-item interactions, which is
very sparse. Additionally, it is unclear how to exert the pre-
trained model while avoiding its bias impeding the prediction
on the target domain.

Therefore, we propose to Pre-train a graph neural network
for Cross-domain Recommendation (PCRec) by transferring
the graph structural information from source domain graphs
to the target domain. During the pre-training stage, we adopt
the Self-Supervised Learning (SSL) [23]–[25] scheme to train
a graph encoder. SSL reduces the prediction bias from source
domains as it pre-trains the model without prediction objec-
tives. To be more specific, we sample and embed two sub-
graphs of a node as positive pairs and employ contrastive
learning to maximize the agreements between them.

Then, we transfer the pre-trained graph encoder to the target
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Fig. 1. An illustration of PCRec model architecture in specific example. The model is mainly composed of three setps. In the pre-training stage, a model with
the structural learning of nodes’ embedding is used to learn the source domain’s structure. The target domain is put into the pre-trained model to initialize
nodes’ embedding and fine-tune by a bipartite recommendation system in the fine-tuning stage. In the last, applied fine-tuned embedding to predict.

domain. However, since the encoder is also dominated by
the structural bias in the source domain, we thus exert the
pre-trained encoder to initialize node embeddings for another
single domain model. According to our empirical study, we
recognize that adopting a simple Matrix Factorization (MF)
model on the target domain during the fine-tuning stage [26]
significantly outperforms other complex models, such as
LightGCN (LGCN) [27]. We hypothesis that a simple MF
retains a balance between source domain and target domain
information, while other complex models over-emphasize the
data on the target domain and thus diminish the source domain
information. The contributions are as follows:
• To the best of our knowledge, we are the first work in-

vestigating pre-training GNN to tackle the CDR problem.
• We design a novel framework to handle the CDR prob-

lem, which pre-trains a graph encoder on source domain
to initialize the user/item embeddings in the target do-
main.

• Extensive experiments are conducted to complete CDR
and analyze our proposed framework.

II. RELATED WORK

A. Cross-domain recommendation

The cross-domain recommendation system mainly alleviates
two major CF-based model bottlenecks: user/item data sparsity
and the cold-start problem. The trained model may be over-
fitting when user/item data is too sparsity to cover the universal
data distribution. The cold start problem often exists when
new users have no historical shopping records and the lack of
features of new products. Both issues lead to a decline in the
effectiveness of the recommendation system.

Conventional CDR has two approaches [28] to address
the above problems: (1) content-based transfer, and (2)
embedding-based transfer. Content-based transfer mainly links
different domains by identifying similar content information
while no common users/items in this situation [29], [30].

In contrast, Embedding-based transfer focuses on user/item
relevance, such as multiple domains have common users or
common items. This approach first trains the CF-based model
(bayesian personalized ranking [26], neural collaborative filter-
ing [5], etc.)to extract user/item embeddings and then transfer
these embeddings through common or similar users/items
across domains. In this work, we focus on embedding-based
transfer. Unlike learning common users/items attributes, we
adopt self-supervised contrastive learning and graph neural
networks to learn users’ structural embedding from the source
domain and then transfer it to the targer domain.

B. Contrastive learning

GNNs models couple with contrastive learning to learn
graph or node level representations without relying on su-
pervisory data [31]. Then the trained model can transfer the
learned representations to a priori unknown downstream tasks.
In general, the contrastive learning method needs to create
multiple views for each instance in the dataset through various
data augmentations [32]. Two views are positive pairs, one is
the original instance, and another is the augmented instance.
We also need two negative views generated from the different
instances. The ultimate goal of contrastive learning is to
shorten the distance of the positive pair while pushing the
negative sample away. Mutual information (MI) is often the
measurement in contrastive learning.

III. PROPOSED MODEL

A. Preliminary

Following existing works [19], [33], we model the user-
item interactions as a bipartite graph. We denote the graph
as G = (U , I, E), where U , I and E denote the set of users,
items, and edges, respectively. Regarding the CDR problem,
we denote a source domain graph as G(s) and a target domain
graph as G(t). For each node, we extract its context information
from the r-ego network which is defined as:



Definition 1 (An r-ego network.): The r-hop neighbors for
a node u are defined as Su = {i : d(u, i) ≤ r} where d(u, i)
is the shortest path distance between u and i in the graph G.
The r-ego network of vertex u, denoted as Gu, is a sub-graph
composed by Su and the corresponding edges between Su.
Next, we present how to pre-train a graph encoder f : G →
Rd upon the source domain graph G(s) by adopting the self-
supervised learning scheme [19], [24].

B. Pre-training on Source Domain

We adopt the SSL scheme during the pre-training phase,
which employs contrastive learning to optimize the graph
encoder. Specifically, the SSL has three components: 1) the
data augmentation, which constructs positive and negative sub-
graph pairs of a node, 2) the graph encoder to embed the sub-
graphs, and 3) the contrastive loss to optimize the encoder.

1) Data Augmentation: Contrastive learning requires the
construction of positive pairs and negative samples of a node.
As the only available data in the source domain graph is the
interactions, we construct positive pairs as two sub-graphs
of one node. The sub-graphs should share similar structure
information to warrant two sub-graphs to be positive pairs.
Therefore, we sample them from the r-ego network of a node.

We first conduct two random walks on node u’s r-ego
network Gu (the superscript is ignored for simplicity), to
generate two sub-graphs gq and gk, which are regarded as
a positive pair. After constructing positive sub-graph pairs for
nodes, we treat those sub-graphs generated from different r-
ego networks as negative samples. We demonstrate the sub-
graph construction process in Figure 1(a), where gqu and gku are
a positive pair since they are sampled from the same node. We
use gk

−

1 and gk
−

2 to denote the negative samples, which are
sub-graphs sampled from the r-ego network of another node.

2) GNN Encoder: After retrieving those sub-graphs, we
feed them into two graph encoders fq and fk, which is
illustrated in Figure 1(a). We encode the sub-graph gq with
graph encoder fq , while encoding other sub-graphs with fk.
Correspondingly, we generate low-dimensional representative
vectors eq and ek for the positive pair gq and gk, respectively.
In this work, we choose the Graph Isomorphism Network
(GIN) [34] to be the graph encoder because GIN exhibits
powerful ability in distinguishing a broad class of graphs [35].
In general, other GNN models can also be used as the encoder.
We leave this study as future work.

3) Contrastive Loss Function: We adopt the contrastive loss
InfoNCE [36] to self-supervisedly optimize the graph encoder,
which maximizes the agreements between positive pairs. The
InfoNCE loss is formulated as follows:

LInfoNCE = − log
exp(eᵀqek/τ )∑n
i=1 exp(eᵀqei/τ )

, (1)

where τ is the temperature hyper-parameter. Minimizing this
objective is equivalent to maximizing the similarity between
positive pairs, i.e. eq and ek, while minimizing the similarity
between negative pairs, i.e. eq and ei where i 6= k. In practice,
we view those instances as a query embedding eq and a set

TABLE I
STATISTICS OF THE DATASETS.

Data # User # Item Sparsity Domain
Amazon-GGF 31,230 40,648 99.96% Source
Amazon-PP 14,180 4,970 99.80% Target

of key embeddings {ei}|ni=1. The contrastive loss looks up a
single key (denoted by ek) that eq matches in the key set.

In contrastive learning, maintaining the K-size look-up key
set is essential. Intuitively, as the denominator in Eq. (1)
expresses, larger key set size leads to better sampling of the
underlying data space. Due to the computational constraint,
we adopt the MoCo [37] training scheme, which maintains
a dynamic set of keys with a queue and a moving-averaged
encoder. MoCo is able to increase the key set size without
additional backpropagation costs. Formally, if denoting the
parameters of fk as θk and those of fq as θq , MoCo updates θk
as θk ← mθk + (1−m)θq , where m ∈ [0, 1) is a momentum
hyper-parameter.

C. Fine-tuning on Target Domain

After obtaining the pre-trained GIN model from the source
domain, we should transfer the model to the target domain.
However, due to the pre-trained encoder is dominated by the
structural bias of the source domain graph, directly fine-tuning
the encoder in the target domain cannot avoid the interference
of the bias from the source domain. Instead, we employ
the pre-trained GIN model to initialize the node embeddings
in the target domain. Then, we fine-tune a simple Matrix
Factorization (MF) [26] model with initialized embeddings to
infer the final embeddings of nodes. We illustrate this process
as in Figure 1(b). The fine-tuning on the target domain is
optimized with the Bayesian Personalized Ranking (BPR) loss
function, which is formulated as follows [26]:

LBPR = −
M∑
u=1

∑
i∈Nu

∑
j /∈Nu

log σ(ŷui − ŷuj) + λ‖Θ‖2 (2)

where Nu denotes the set of items which are the neighbors
of node u, ŷui, and ŷuj denote the rating of user u on item i,
and the rating of user u on item j individually.

Alternatively, the MF-based recommeder system can be sub-
stituted by any other single domain recommendation models,
e.g., LightGCN. However, the empirical results indicate that a
simple MF-based model outperforms a complex signal domain
recommender system.

D. Recommendation

We will use the embedding optimized during the fine-tuning
stage to make a further recommendation. We compute the
score between a user and an item as: r̂ui = eᵀuei, where
eu ∈ Rd and ei ∈ Rd are the user and item embeddings,
respectively. The score r̂ui is used to rank those items for
users.



TABLE II
THE OVERALL COMPARISON. THE PERFORMANCE IS MEASURED IN THE

TARGET DATASET AMAZON-PP.

Model Recall@20 Recall@40 MAP@20 MAP@40
LGCN 0.1935 0.3107 0.0203 0.0248
CMF 0.0712 0.1329 0.0080 0.0109
CoNet 0.1153 0.2314 0.0160 0.0161
JSCN 0.1329 0.2520 0.0263 0.0307
PCRec 0.2756 0.4445 0.0264 0.0329
Impro. 42.43% 43.06% 0.38% 7.17%

IV. EXPERIMENTS

We conduct experiments to respond the following research
questions (RQs):
• RQ1: Can PCRec outperform existing single domain and

cross-domain recommendation methods?
• RQ2: In the case of cross-domain, how far away neighbor

information aggregation is helpful to represent the node
embedding?

• RQ3: In CDR problem, how can we effectively transfer
the information from source domain to target domain?

A. Data

We conduct experiments on two datasets from the Amazon
Review Data (2018)1: Grocery and Gourmet Food (Amazon-
GGF) and Prime Pantry (Amazon-PP). Their statistics are
shown in Table I. For cross-domain models, we set Amazon-
GGF as the source domain and Amazon-PP as the target
domain, while for single domain model, we solely use the
target domain data. Due to distinct sparsity on both datasets,
we adopt the 5-core2 setting for Amazon-PP, and 10-core set-
ting for Amazon-GGF. The number of common users between
Amazon-PP and Amazon-GGF is 4,275.

B. Experimental Settings

1) Baselines: We compare our proposed PCRec with three
cross-domain and one single-domain methods. CMF [38] is
a matrix factorization-based cross-domain rating prediction
model. CoNet [13] and JSCN [33] both are joint learning
model with differernt ways to transfer one domian knowledge
to the other. One single domain method is LightGCN, which
devises a light graph convolution for training efficiency and
generation ability.

2) Evaluation Protocol: We randomly split 80% and 20%
of the interactions in the target domain as training and testing
set, respectively. We randomly choose 10% of the training
data for validation during training. We use Recall@K and
MAP@K to evaluate the top-K recommendation performance
where K = [20, 40].

3) Hyper-parameter Settings: In the pre-training, we apply
Adam optimizer with a learning rate of 0.005, τ is 0.07,
and MoCo (K=512) momentum m is 0.999. We change
the learning rate to 0.001 in adam optimizer, and the early

1Available at https://nijianmo.github.io/amazon/index.html.
2Each of the remaining users has at least k ratings.

TABLE III
THE INFLUENCE OF DISTANCE ON NEIGHBORS AGGREGATION.

Variants Recall@20 Recall@40 MAP@20 MAP@40
PCRec-2hop 0.0329 0.0663 0.0044 0.0064
PCRec-3hop 0.0297 0.0613 0.0037 0.0039
PCRec-L3 0.1938 0.3267 0.0200 0.0259
PCRec-L1 0.1996 0.3264 0.0201 0.0258
PCRec 0.2756 0.4445 0.0264 0.0329

stopping strategy is the same as LightGCN. Furthermore,
PCRec method inherits the optimal values of other shared
hyper-parameters.

C. Overall Comparison (RQ1)

We compare PCRec with various baselines regarding the
performance on the target domain Amazon-PP. The overall
comparison is reported in Table II and we have the following
findings:
• PCRec can significantly outperforms other methods on

recall, e.g., achieving 42.43% on Recall@20. against the
second-best one. This is because PCRec can effectively
transfer the information from source domains to target do-
main while protecting the recommendation on the target
domain from being dominated by the source domain. The
performance variant between MAP and Recall is because
the number of positive samples in the data is small.

• Among those baselines, LGCN performs the best with re-
spect to Recall@{20,40}, even better than CDR methods,
which indicates the effectiveness of using GNN to learn
node embeddings. Nevertheless, it is still much worse
than PCRec since it is cannot transfer the information
from the source domain.

• JSCN outperforms other baseline CDR methods, which
shows the benefits of using spectral graph convolution to
encode user-item interaction. However, it performs worse
than PCRec, because it jointly learns the source and target
domain embeddings, which leads to the interference of
the noise in the source domain.

D. Variants Analysis (RQ2)

In this section, we aim to analyse the specific designs
of our proposed PCRec framework regarding the neighbors
aggregation.

At the pre-training stage, how to generate the subgraphs is
critical. Regarding this point, two designs can be modified:
• The first one is the choice of r concerning the r-hop

neighbors. We change the r from 2 to 3, and results are
generated by applying the pre-trained GIN without fine-
tuning to reflect the intrinsic effect. Intuitively, PCRec
should perform better at 3-hop rather than 2-hop due to
more neighbor information being included. However, as
presented in Table III, PCRec-2hop outperforms PCRec-
3hop. We argue that this is because, with the distance
increasing, the similarity between positive samples will
decrease, thus hindering node representation learning.

https://nijianmo.github.io/amazon/index.html
https://en.wikipedia.org/wiki/Degeneracy_(graph_theory)


TABLE IV
EXPLORATION OF VARIOUS WAYS TO TRANSFER THE INFORMATION FROM

SOURCE DOMAIN TO TARGET DOMAIN OF CDR.

Recall@20 Recall@40 MAP@20 MAP@40
LGCN 0.1935 0.3107 0.0203 0.0248
Pre-Only 0.0329 0.0663 0.0044 0.0064
CU-PE 0.1911 0.3198 0.0199 0.0258
CU-PM 0.2277 0.3880 0.0227 0.0293
PCRec 0.2756 0.4445 0.0264 0.0329

• The second design that can be changed is the data
augmentation method. Usually, there are four ways to
augment graph data, node dropping, edge dropping, ran-
dom walk, and attribute masking [39]. The first three
mechanisms do not require side information. Thus they
can be adopted for the CDR problem. In PCRec, we
generate the subgraphs through random walk, which can
be supported by the graph structure assumption [40]. The
other two methods can be explored in the future.

For the fine-tuning stage, we study how the complex-
ity of fine-tuning model will impact the performance. We
change PCRec’s MF to 1-layer LGCN (PCRec-L1) and 3-
layer LGCN (PCRec-L3). There is no significant difference
between PCRec-L1 and PCRec-L3, and they are both much
worse than PCRec. We hypothesis that a complex model will
over-emphasize the target domain, thus hindering knowledge
transfer. Therefore, a simple model with elaborate initialization
may be able to retain the balance.

E. Transfer in CDR (RQ3)

To explore the process of implementing knowledge transfer
in CDR, we present how do we finally get to the PCRec
framework by altering three key components step by step:
• We first examine the necessity of fine-tuning in CDR.

We transfer the source knowledge by the pre-trained GIN
model without fine-tuning, which is named Pre-Only. As
shown in Table IV, the performance of Pre-Only is the
worst, which implies that naively adopting the pre-trained
model would bring severe bias to the target domain.
Therefore, we add a fine-tuning model to PCRec.

• Secondly, we consider two plans to transfer the knowl-
edge to common users: 1) straightly using the pre-trained
embeddings as the initialization of fine-tuning (named
CU-PE), 2) applying the pre-trained model to generate
the initialization of fine-tuning (named CU-PM). As pre-
sented in Table IV, CU-PM not only performs better than
CU-PE but also surpasses the LGCN, while CU-PE falls
behind it. In the CDR problem, the result indicates that
transferring the inherited structure information from the
model has better performance than copying the common
users’ embedding from the source domain to the target
domain directly.

• Finally, we explore the role of nodes other than common
users, which leads to our final PCRec. In CDR problem,
other nodes should be carefully processed. But as they

can also receive the information transferred by the pre-
trained encoder, we suggest that they should be included.
The experiment result demonstrates that the target per-
formance would not be dominated by the source domain
in this way of transferring.

V. CONCLUSION

In this work, we investigate the possibility of pre-training
a GNN to transfer structural representations in the source
domain to the target domain to address the cold-start problem
in the CDR task. We propose a novel framework, PCRec,
which pre-trains a graph encoder to learn node embeddings
from the source domain and apply it to the target domain
to initiate embedding. A simple MF method during the fine-
tuning stage can significant outperform other complicated
methods on all metrics.
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