

OpenAIR@RGU

The Open Access Institutional Repository
at Robert Gordon University

http://openair.rgu.ac.uk

This is an author produced version of a paper published in

IEEE Multi-disciplinary Conference on Cognitive Methods in Situation
Awareness and Decision Support (ISBN 9781467303453)

This version may not include final proof corrections and does not include
published layout or pagination.

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

NWIABU, N., ALLISON, I., HOLT, P., LOWIT, P. and OYENEYIN, B.,
2012. User interface design for situation-aware decision support
systems. Available from OpenAIR@RGU. [online]. Available from:
http://openair.rgu.ac.uk

Citation for the publisher’s version:

NWIABU, N., ALLISON, I., HOLT, P., LOWIT, P. and OYENEYIN, B.,
2012. User interface design for situation-aware decision support
systems. In: IEEE Multi-disciplinary Conference on Cognitive
Methods in Situation Awareness and Decision Support. 6-8 March
2012. Piscataway, New Jersey: IEEE. Pp. 332-339.

Copyright
Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository,
are protected by copyright and intellectual property law. If you believe that any material
held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with
details. The item will be removed from the repository while the claim is investigated.

http://openair.rgu.ac.uk/�
mailto:openair%1ehelp@rgu.ac.uk�

© 2012 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

User Interface Design for Situation-aware Decision
Support Systems

Nuka Nwiabu, Ian Allison, Patrik Holt, Peter Lowit, Babs Oyeneyin
School of Computing, IDEAS Research Institute, Robert Gordon University, Aberdeen, UK

Abstract—Information recall about general situations incurs
memory and cognitive loads on operators. Recognition of infor-
mation for specific situations identified with users’ context and
the state of the world is helpful to operators in performing tasks
in complex environments. The emergence of ubiquitous, ambient,
and pervasive technologies is increasingly providing methods to
help operators to perform their tasks in smart and intelligent
ways. Existing user interface design does not solve the problem
of drawing together the information required for situation-aware
decision support systems in a way that minimises cognitive load.
This paper discusses a framework for user interface design
of situation-aware systems that exploit inputs from users and
the environment to provide information tailored to the user’s
tasks in specific situations. The user interface can reconfigure
automatically in order to adapt to the current situation. The
adaptation of the user interface to the current situation and
the presentation of a reusable sequence of tasks in the situation
reduces memory loads on operators. Hierarchical Task Analysis
(HTA) is used to describe tasks for various types of situations.
HTA is supplemented with scenarios to stimulate design ideas
and requirements analysis is used to represent interrelationships
between tasks.

Keywords: Situation awareness; Context awareness; User inter-
face design; Cognition; Scenarios; Task Analysis; Requirements
analysis.

I. INTRODUCTION

User interfaces (UIs) represent the point of contact between
systems and human users. The emergence of ubiquitous,
ambient, and pervasive technologies has resulted in methods
to assist users in smart and intelligent ways. One such way is
context-aware computing; a trend whereby computing devices
and systems serve their users beyond the traditional desktop
in diverse environments [6]. Dey [10] defines context as any
information that can be used to characterize the situation of
an entity. A system is said to be context aware if it uses
context to provide relevant information and services to the
user [29]. Context awareness was introduced by Schilit [32]
to develop an application that adapts to the location of use,
nearby people and objects, and the change of those objects
over time. With technology advancement and the growth of
mobile computing in recent times, context awareness has
attracted greater research attention [16]. Context-aware user
interfaces allows systems to dynamically adapt to changes in
a user’s task domain by updating relevant information and
service provision.

A related concept to context awareness is the notion of
situation awareness. Situation awareness (SA) is a cognitive
process in decision-making and is defined as ”the perception
of elements in the environment within a volume of time and

space, the comprehension of their meaning, and the projection
of their status in the near future” [14]. The Endsley SA
model [14] has three layers comprising perception, com-
prehension, and projection. The perception layer recognises
all the necessary information about the environment. The
comprehension layer interprets the perceived information in
order to understand the current state of the environment. The
projection layer uses knowledge of the current state of the
environment to predict its future state. Situation awareness and
context awareness both focuses on information about the state
of the environment in which these tasks are carried out [16].
Situation-aware systems exploit explicit and implicit inputs to
provide information tailored to users’ tasks in different situa-
tions. The system can adjust to a range of user abilities to solve
the problem of variations in user’s expertise, greater speed of
performance, reduced operators workload, more consistency,
greater flexibility in behaviours, and less training time [23].
But it is simplistic to assume that adaptive user modelling
will solve all human-computer interaction problem. A growing
body of research has examined the characteristics of human-
operator interaction with adaptive display and described the
human performance costs such as trust, complacency, skill
and performance degradation, decrease user acceptance that
can occur in such interaction [26],[31]. Designers of UIs
for situation-aware systems must know what changes from
users or environments are related to the tasks that the users
perform to achieve goals by drawing up a task model, using a
notation which allows it to describe tasks for various types of
situations [9]. There appears to be no existing framework with
a notation to support designers in building UIs for situation-
aware systems from situation-based tasks.

This paper describes a framework for the design of situation-
aware interfaces in a manner that input information (context
and environmental cues) can be explicitly taken into account
in the task specification. In order to achieve a concrete user
interface (UI), it is assumed that the designer adds abstract UI
components to the task model. This information is platform-
independent so that the rendering back-end can ultimately
use this information to construct a concrete UI for various
platforms. The next step consists of creating the dialogue
model. Designers can be supported by automatically generat-
ing the statuses and transitions between the various individual
dialogues, so as to simplify the work of designers. The tool
includes an algorithm to calculate the different dialogues
and transitions between dialogues from the task specifica-
tion. Designers can adjust, add or remove these transitions

according to the results of a previous testing stage or the
designers’ experience. This way situation-aware UI designers
can manipulate transitions that would be triggered by situation
changes. Designers thus have control over the influence of
situation on the usability of the UIs.

The case study for the paper is the design of situation-
aware UI for Hydrate formation prediction in subsea oil and
gas pipelines. There will three transition statuses, Normal,
Warning, and Danger [25]. Normal situations represent sit-
uations where there is no problem in the domain. A warning
situation represents a situation that is not normal but not yet
in danger. A danger situation is a crisis situation that means
there are already problems in the domain. The UI executes
reconfiguration after input variation so as to stay adapted
to any of these situations that depict the current situation
in the domain. Warning situations cause the presentation of
preventive sequence of task while danger situations cause
the presentation of remediation or repair sequences of task.
Hierarchical Task Analysis (HTA) is used to describe tasks
for these situations. HTA is supplemented with scenarios
to stimulate design ideas. Each scenario has a setting that
explicitly describes the starting state of the current and the
future situations, and implicitly depicts the characters that take
part in the situations in the scenario. Each scenario has actors
who perform tasks to achieve goals in different situations.
Requirements analysis is used to supplement our scenario-
based HTA in representing interrelationships between tasks.
Dialogues and transitions between dialogues are calculated
from the task specifications.

The remainder of the paper is as follows. The following
section provides a short overview of related work. Then
the design process, and the task model to the approach are
successively presented followed by a prototype architectural
design for situation-aware UI. Finally, the design is evaluated
and the work is summarised and concluded.

II. RELATED WORK

The emergence of ubiquitous, ambient, and pervasive tech-
nologies has triggered research in context-aware UI design.
Limbourg et al.[21] developed a language, UsiXML, to de-
scribe context-aware UIs. He provided tool support, however,
concentrates on transformations between models in order to
transform abstract descriptions to concrete ones, with no
recognition of the fact that there could be unexpected changes
of the UI when a context change occurs. Clerckx and Coninx
[7] provided a mechanism to avoid these unexpected changes
by incorporating context in UI development using transforma-
tions between models [8] but the integration with the context
model is done by the designer. Mori et al.[24] describes the
TERESA tool for designing UIs for mobile devices. Abstract
models are used in order to deploy concrete UIs on several
platforms. The approach is task centered implying that a lot
of effort has been taken in visualizing the task model. A recon-
sideration of visual representation of task models is recently
carried out by [27]. Techniques like semantic zoom (hiding
information outside the point of focus) and fish eye views

(increasing the size of elements in focus) are introduced in
order to improve the effectiveness of viewing and constructing
task models.

To express the solution for identified UI patterns in an
abstract way, [3] provided a modelling tool for model-based
UI design having two different levels of abstraction; wisdom
presentation model, and canonical abstract prototypes. The
tool applies the Wisdom model to UI patterns, easily express-
ing containment relationship, while the Canonical prototype
is much closer to the concrete representation of the identified
pattern. However, support for context-aware and multi-device
UIs using the Canonical notation is not obvious and is there-
fore not considered by the approach.

Calvary et al. [2] describe a development process to create
context-sensitive UIs. The development process consists of
four steps: creation of a task-oriented specification, creation of
the abstract interface, creation of the concrete interface, and
finally the creation of the context-sensitive interactive system.
The focus however, is on a mechanism for context detection
and how context information can be used to adapt the UI,
captured in three stages; recognizing the current situation,
calculating the reaction, and executing the reaction.

Wu et al. [35] used HTA combined with scenario-based
design to develop a UI to context-aware indoor navigation
applications. The approach used HTA method to identify user,
user-application, and application tasks. The work provided a
framework of command interfaces for executing interaction
between application tasks and user tasks. These command
interfaces link users, user-application, and application tasks.
The work did not look at how human variability influences
usability. Also, no mention was made of the method of
interaction between objects.

In a similar hybrid approach, Lewis [20] combined HTA
with requirement analysis by replacing the abstract, and partial
task elements of requirement analysis with real tasks from the
task analysis. The approach does not however consider the
possibilities of losing detail in the process of generalisation.
Kim et al [18] and Liu [22] combined metadata definition
with scenarios to build task knowledge structures in their
works on sentence ends and interruption points in speech.
Metadata was created within a specific context and for specific
purpose, and different purposes and different contexts have
different metadata requirements. Metadata are information
and documentation associated with objects which makes data
understandable and shareable for users over time relieving
them of having to have full advance knowledge of the data
existence or characteristics.

III. DESIGNING SITUATION-AWARE INTERFACES

This section provides an overview of the design process
(Fig. 1.). The design process supports the design of declarative
abstract models, describing the situation-aware user interface.

The aggregate of the models can be serialized in order
to export these models to a runtime. To test the result of
these models, the corresponding UI can be generated in the
shape of a prototype to check the usability of the system.

Fig. 1. Situation-aware User Interface Design Process

Considering the prototype, some changes to the models in
the design process can be applied to alter for instance the
presentation of the UI or how situation changes may affect
the UI.

Situation-based Task Model: First, a task model is speci-
fied describing the tasks users and application may encounter
when interaction with the system is taking place. Because we
want to develop Situation-aware UIs, tasks also depend on the
current situation. This is why tasks in the task model are drawn
for specific situations. In this way the designer can describe
different tasks for different situations.

Input Model: When the task model is specified, the de-
signer has to denote what kind of input can influence the
interaction, i.e. the tasks. This can be done by selecting
objects for input gathering (Perception Objects or POs). These
objects can be aggregated by the aggregation objects (AO) and
interpreted by the interpretation objects (IO). The designer
can do this by linking AOs to POs and selecting from a
set of predefined interpretation rules how the input has to be
interpreted. The IOs represent the interpreted information at
the comprehension layer. When the input model is specified,
the designer has to link the IOs to task model nodes (inter-
model connection). In this way, the designer can denote which
tasks can be performed in which situation.

Situation-Specific Dialogue Models: Next, the tool will
automatically extract a dialogue model from the task model for
each situation. Afterwards, inter-model connections are added
automatically between states of the dialogue model and tasks
of the task model that are enabled for each particular state.
The dialogue model nodes (states) of the different dialogue
models are linked to denote between which states situation
changes may occur.

Presentation Model: To provide the interface model with
information about how the interaction should be presented to
the user, designers have to compose abstract UI components,
and link these to the relevant tasks for each presentation model
node. The presentation model nodes can be structured hierar-

chically in order to group presentation components for layout
purposes. The designer can choose from several abstract UI
components such as static, input, choice, navigation control,
hierarchy, and custom widget. Finally the UI components can
be grouped, and structured in a hierarchical structure.

Situation-aware Interface Model: The aggregate of all the
models results in a situation-aware interface model.

Usability evaluations: Usability tests are then carried out
to test and improve usability of the graphical interface with
the models.

IV. SITUATION-BASED TASK DESIGN

The first step in the situation-aware user interface (SAUI)
design process just like every other interface design is to
draw up the task model, a hierarchic structure and a way
of establishing temporal relationships between various (sub)
tasks. Task analysis can help designers understand what needs
to be accomplished by the user, the environment, and the
system and break down the major task into the simplest
component parts. Designers need to know what user tasks
are necessary to operate the system and also need to know
which part of user input can be transferred to the system
task in order to increase the level of context awareness of
the system. Hierarchical Task Analysis (HTA) focuses on the
way a task is decomposed into subtasks and the order and
conditions where these are executed. They are represented
as a hierarchy of tasks, subtasks and plans. It provides a
brief picture of user tasks and basic functional specification
of the proposed application. The top down structure of HTA
ensures completeness and is easy to comprehend [4] but
cannot adequately address human factor and social issues, for
example, emotion [6]. Such issues may be elicited from a
scenario.

Scenarios according to Carroll [5], are examples of specific
experience that exist to stimulate designers’ creative imagi-
nation. Scenarios and claims are lightweight instruments that
guide thought and support reasoning in the design process [5].
But scenarios also have their own downsides. According to
Diaper [11] scenarios can lead to errors, as a scenario, or even
a set of scenarios, do not explicitly guide a designer towards a
correct model of the required system. Both scenarios and task
analysis are criticised for omitting the explicit representation
of communication between agents engaged in collaborative
tasks and also not capturing the richness of interaction that
occurs in the real world compared with other methods such as
requirements analysis [19].

This paper designs a task model based on situations, using
a hybrid technique of combining scenarios, HTA, and require-
ments analysis. Designers use the set of tasks that can be
identified in the task specification as a basis for the different
dialogues the user interface will need to complete its tasks.

A. Problem Scenario

We commence design with scenarios using the Robertson
model (Fig. 2.) below:

Fig. 2. Scenario-based design (Robertson, 1996)

Following the Robertson model, we used narrative texts to
start a scenario in hydrate formation prediction in sub sea oil
and gas pipelines, for example:

An engineer plans to use a system that senses the sea floor en-
vironment through sensors to predict the formation of hy-
drate in a subsea oil and gas pipeline. The system under-
stands the situation in the pipeline by integrating the en-
gineer’s context with cues from the sea floor. The sit-
uation presented was a warning situation which con-
sist of goal to be achieved and the corre-
sponding tasks. Among the tasks are, re-
duce water dew point task, and chemical in-
jection task. He decided to use chemical injec-
tion method to solve the problem in the absence of de-
hydrator. The available chemical for the engi-
neer to use was methanol which is cheaper on a volume ba-
sis than glycol. Methanol distribute in three phases; aque-
ous, vapour, and liquid. At the aqueous phase the en-
gineer used the Hammerschmidt equation to de-
termine the methanol molecular weight and k-
value before injection.

We simplify the task scenario by partitioning the scenario
into propositions to identify candidate design objects as fol-
lows e.g. Engineer predicts the formation of hydrate, Engineer
uses the system, system senses the sea floor environment, sys-
tem integrate context and cues, ”‘Reduce water dew point” is
a task, Methanol distributes in three phases, aqueous, vapour,
and liquid. The propositions apart from helping to identify
candidate objects also served as guides to object interactions
e.g. showing interactions between Engineer and system. It
shows the objects that are active, for example ”engineer” and
the ones that have been acted upon, for example ”system”. The
propositions also show the interrelations among the objects
and some basics about the properties of the objects [30],
e.g. the object ”molecular weight” and ”k-value” defined by
”Hammerschdt equation”.

The proposition analysis provided useful information but it
was however, not sufficiently detailed for design. Systematic

question-asking was used to elaborate the propositional list
[30]. Questions were asked on each item of the propositional
list. The why-questions are used to receive both intentional
and causal information. The how-questions provided the pro-
cedural, causal, and enablement information. Answers to the
why-and-how questions exposed some of the content of the
problem space and generated materials for the work.

Some why-questions were asked, for example (1) Why is
knowledge of the environment required to understand the sit-
uation? (2) Why is chemical injection a method of preventing
hydrate formation? (3) Why did the Engineer not use line
heating method? Some how-questions were also asked, for
example (1) How are context and cues integrated? (2) How
do system retrieve past situation? (3) How are past situations
preserved?

Answers to the why-questions revealed some important
information that was not explicit in the scenarios. For example,
an answer to a why-question ”Why is knowledge of the
environment required to understand the situation?” reveals the
fact that the dynamic state of the environment affects the state
of the gas and its flow in the pipelines. This information is
not explicit in the scenario but helped in identifying other
candidate objects. The answer to the how-question on ”How
are context and cues integrated?” gave the understanding
that there must be perception before integration. This answer
provided us a new candidate object, ”perception”. Similarly,
the answer to the question ”How do systems retrieve past
situations?” gave birth to a new candidate object, ”assess
similarity”.

B. Hierarchical Task Analysis

Hierarchical Task Analysis (HTA) techniques was used
to decompose complex tasks identified in scenario design
into subtasks and the order and conditions where these are
executed. The output of HTA is represented diagramatically
and textually [12]. HTA provides a brief picture of user tasks
and basic functional specification of the proposed system. The
break down of tasks enables us to stay focused on parts of
the overall task without missing the picture of overall task
activities. The top down structure ensures completeness and is
easy to understand [33][4]. Also, in the task-design mapping,
HTA provides a good description of all task functions for
mapping on to the system [4].

User:
0. predict the formation of hydrate

1. use the system (User task)
2. providing the context (User task)

2.1. provide well head pressure
2.2. provide well head temperature
2.3. provide flow rate
2.4. provide location of pipeline
2.5. provide time

3. provide state of the environment (Sensors task)
3.1. provide solar radiation

Fig. 3. Situation-based Task Model

3.2. provide wind direction
3.3. provide wind speed

4. situation awareness (Application task)
4.1. perceive context and cues
4.2. integrating context and cues
4.3. understanding the situation
4.4. assess similarity
4.5. retrieve similar past cases and tasks

5. perform ”reduce water dew point” task (User task)
5.1. glycol dehydrating
5.2. solid desiccants

5.2.1. mollecular sieve
5.2.2. silica gel

6. perform ”chemical injection” task (User task)
6.1. supplemental glycol
6.2. supplemental methanol

6.2.1. liquid hydrocarbon phase
6.2.2. vapour phase
6.2.3. HMS equation (User-Application task)

6.2.3.1. molecular weight (User-Application task)
6.2.3.2. determine k-value (User-Application)

7. preserve workable method (User-Application task)

C. Integrating HTA and Requirements analysis

Representative tasks from HTA are mapped into the abstract
model of requirements analysis to supplement requirements
analysis using Use Cases of the Unified Modelling Language
(UML). The ”human‘user”, ”sensors” and the ”application”
are actors in the Use Case diagram. Actors ”‘represent the
roles that people, other systems or devices take on when com-
municating with the particular Use Cases in the system”[1].
Use Cases are the different tasks performed by the human user,
and the application [28].

Fig. 4. Use case modelling

From the Use Case model, sensor provides the state of
the environment. The application perceives the environment
and user’s context, integrates the context and cues from the
environment, understands the situation in the domain, matches
the present situation with past situations to assess similarity,
and then retrieves a similar past situations together with the
sequence of tasks that were performed to address it. The user
interacts with the system, provides the context, performs chem-
ical injection, applies supplemental methanol.The user and the
application use hammerschmidt equation at the aqueous phase,
determine the molecular weight, determine the k-value and
finally preserve workable solutions.

Each of the actors has a number of Use Cases but some
of the Use Cases depend on other Use Cases, for example,
the application’s Use Case, ”understand the situation” depends
on the Use Case, ”integrate context and cues”. Similarly,
user’s Use Case ”apply methanol” is dependent on ”perform
chemical injection”.

Fig. 5. Use case relationships and interactions

In the way, the Use Case of one Actor can depend on
the Use cases of other actors. For example, the application’s
”integrates context and cues” which is the inclusion Use
Case to ”understand the situation”, is dependent on the user’s

”‘provide context” Use Case and the sensor’s ”‘provide state
of the environment” Use Case. The dependencies of the Use
Cases shows the interrelationships between the user’s tasks
and the application’s tasks.

V. SITUATION-AWARE USER INTERFACE PROTOTYPING

The architecture for Situation-aware user interface design
comprises the user interface component, situation awareness
model, and the environmental sensing systems. The user pro-

Fig. 6. Situation-Aware User Interface Design Model

vides the system with context, and receives decision support
from the system through the user interface. The system senses
the environment through some sensing systems or sensors.
The SA component is the application core. The SA model
is the first (perception) and second (comprehension) layers
of the Endsley SA model [14]. The system perceives cues
from the environment to understand the current situation.
Additionally, the system accepts or ignores the user’s context.
Ignoring context gives a static interface which SA will be the
same on each retrieval, although different actions could be
explored by the user with different information. Taking the
user’s context into account gives an adaptive display whose
behaviour will be customised to the user’s specific need. In
the adaptive mode at constant state of the environment, the
system prompts the operator for context. Context input results
to an automatic change in SA and action list. The system
design is lower than the rigid system in level of automation
(LOA) [13]. LOA is a level of task planning and performance
interaction between an operator and the computer in a complex
system with four systematic functions; monitoring, generating,
selecting, and implementing [17]. Monitoring is the perception
task of our SA computational model. Generating is the task of
comprehension while selecting and implementing are human
decision making and action performance tasks respectively.
The system presents SA and a set of actions to be performed in
the situations to the operator. The operator cannot generate any
other option but to select the option provided by the computer
to perform decision making and physically implementing the
actions.

A. Input Model

Input acquisition takes place at perception layer. Input
comes to the application core from users’ context, and sensors.

These two types of inputs forms the perception object (PO).
Three levels of processing take place at the comprehension
layer; input aggregation, input interpretation, and adaptation,
represented as aggregation object (AO), interpretation object
(IO), and adaptor respectively. The interpretation object (IO)
ensures that mapping takes place from POs to AOs each time
new services become available or when services disappear.
The AOs then indicate to the IO the categories of POs from
which they can use input information. The IO carries out the
tasks of (1) Recalculating the mapping of AOs on POs: a
service can be a supplier of input information. If this is the
case, the IO can make use of this and treat the service as a
perception object and link to comprehension which can make
use of this input information (2) Detecting input changes: if
a context and environmental change takes place, the IO will
look at the adaptor in order to decide whether the change has
a direct influence, so that an interdialogue transition has to be
implemented (3) Invoking an interdialogue transition: the IO
sends an event to the adaptor and tells it that an input change
has taken place and that the interdialogue transition has to be
implemented if it is evident from this interpreted information
that a situation change has taken place. If a transition exist
in the dialogue model to follow up this situation change, the
adaptor will invoke the appropriate transition.

B. Situation-specific dialogue

A separate dialogue model will be calculated automatically
for these different types of situations and presented to the
designer. The designer can then indicate between which sta-
tuses transitions are possible under the influence of situation
changes. For example, in a three status situation, Normal,
Warning, Danger, the designer can decide, only to make a
transition from Warning to Danger when the user interface
is in the main menu status. This avoids the user interface
adjusting if this is not desirable. IOs are linked to these
transitions to make it clear what has to be taken into account
in order to make the transition. An example of an IO is the
Warning object. This object can indicate if the situation is in
the Warning state, using POs and AOs. The adaptor changes
the state of the UI caused by a change in context and the
environment. The tool provides a design technique that can
carry out prediction of possible changes in the UI following
termination of a task, the implementation of a user action or
a situation change. The design tool generates a prototype UI
which it derives from the tasks in the task specification. The
specific presentation of the gathering of tasks is generated from
a device-independent XML-based UI description which the
designer can attach to the tasks.

C. Production of a running User Interface

During the application runtime, the adaptor controls com-
munication between UI abstract input information and the
application core. The adaptor possesses information about the
user’s tasks and how these can be influenced by the situation.
The IO encapsulates input information at such an abstract level
that it only tells the adaptor that the situation change that

has taken place is significant enough to adjust the status of
the UI. The adaptor uses the dynamic dialogue model and
the dynamic task model to decide when the UI has to be
updated. These dynamic models are adjusted so that account
can be taken of the current situation, if this influences the
tasks the user wants to perform. The dynamic dialogue model
consists of possible statuses of the UI. The difference is in the
transitions that can occur. Here, we make a distinction between
intra-dialogue and inter-dialogue transitions. An intra-dialogue
transition is a transition between two states which is performed
if the task described for the transition is performed by the user
or the application. An inter-dialogue transition, by contrast, is
a transition between two possible states of the UI, but can
only be performed if a situation change has taken place which
fulfills the conditions defined by the designer for the transition.

From the time the application is launched, the status of
the UI and the application can be changed by the user, the
application and the IO. The IO detects the current situation,
supplied by the abstract interaction objects and then the
adaptor is notified of the status in which the UI will have
to be launched.

Fig. 7. A screen shot of Situation-Aware User Interface

VI. DESIGN EVALUATION

The design usability evaluation was carried out with end
users. This procedure involves administering questionnaire
forms consisting of 50 areas of satisfaction to 20 end users
from an oil and gas organisation. The respondents had to
decide whether they agreed, undecided, or disagree with each
of the 50 items in relation to the UI they were evaluating. The
respondents completed the inventory at their work place. These
respondents who were end users used the system to accomplish
task goals within the organisation for their daily work. The
resulting matrix of inter-correlations between items was factor
analysed using the Software Usability Measurement Inventory
(SUMI). The items were observed to relate to a number of

different meaningful areas of user perception of usability. The
program (SUMISCO) analysed and transformed the data into
Global and five other subscales namely: Efficiency, Affect,
Helpfulness, Control, and Learnability.

Fig. 8. Profile Analysis

Efficiency measures the degree to which users feel that the
UI assists them in their work and is related to the concept
of transparency. The Affect subscale measures the user’s
general emotional reaction to the UI or Likability. Helpfulness
measures the degree to which the UI is self-explanatory, as
well as more specific things like the adequacy of help facilities
and documentation. The Control subscale measures the extent
to which the user feels in control of the system, as opposed
to being controlled by the system, when carrying out the task.
Finally, Learnability, measures the speed and facility with
which the user feels that they have been able to master the
UI, or to learn how to use new features when necessary.

Figure 8 shows the median rating for each usability scale,
with upper and lower confidence intervals. Feedback from
users on efficiency rating indicated that users were satisfied
with the UI adaptation to current situations and the presen-
tation of reusable sequence of tasks for hydrate prevention
especially chemical injection tasks and procedures. Users were
also satisfied with less commands required for a given task
performance, reduced number of clicks or keystrokes required
to carry out tasks, and less options on the screen at one time.
However, users were of the opinion that the HELP facility
should have more information than already provided. The
comments on the HELP facility resulted to the ”Affect” low
rating of 68%. The generally high usability rating of the UI
implies low cognitive load on users. Instead of having to make
extra effort to understand the UI, a user only need to be focus
on task performance. All the comments have been noted and
the response will be reflected in further work.

VII. CONCLUSION AND FURTHER WORK

The core of the study is that the addition of context to
input in situation-aware systems results to automatic change
in SA and action list, making the UI to adapt to the specific
need of the individual operator. Also, that adaptation will take
place only when the change in context and the environment is
significant enough to result to transition between two possible
statuses of the user interface.

The adaptation of the interface to the current situation as
specified in this prototype and the presentation of reusable
tasks in the situation with reduced number of commands,
clicks, and options reduces cognitive loads on operators and
thereby facilitates interactions.

The work has also demonstrated a method of combining
scenarios, HTA, and requirements analysis in task modelling.
The approaches complement each other by using scenarios to
stimulate and support reasoning in task analysis. Task analysis
provides an integrated picture of tasks. Mapping real, complete
and representative tasks of HTA to abstract and partial tasks of
requirements analysis helps to ensure that all important users’
tasks with their relationships and interactions are identified.

Further work will be on the unification of SA and ecological
theories. Both concepts emphasise on human cognition and
behaviour in real world settings. Although work in ecology is
trying to shift from cognitive constructs to the environment
while SA is broadening the study of the environment and
cognitive theories [15]. Ecological Interface Design (EID)
probably due to its origin from the engineering plant do-
main [34] is mostly applied to specific subsystem displays.
Situation-aware interface design is an SA-Oriented Design
(SAOD) that adapt to the current situation with emphasis
on the whole system. The study in Situation-Aware Eco-
logical Interface Design (SAEID) will provide a framework
for interface design that will attempt to support operators in
dealing with unfamiliar and unanticipated abnormal situations
in complex domains. There will be a comparative performance
and usability evaluation of the static and adaptive displays. The
effectiveness of the user interface in terms of the reduction of
the cognitive load of the operators shall be estimated using
cognitive load reduction (CLR) index.

REFERENCES

[1] S. Bennett, S. McRobb, and R. Farmer. Object-oriented system analysis
and design using UML. McGRAW-HILL education, 2006.

[2] G. Calvary, J. Coutaz, and D. Thevenin. Supporting context changes
for plastic user interfaces: A process and a mechanism. In In Joint
Proceedings of HCI and IHM 2001. Lille, France, page 349364, 2001.

[3] P.F. Campos and N.J. Nunes. Canonsketch: a user-centered tool for
canonical abstract prototyping. In Proceedings of EHCI and DSV-IS,
Germany 2004, pages 108–126, 2004.

[4] M. S. Carey, R. B. Stammers, and J. A. Astley. In Task Analysis for
Human-Computer Interaction. Ellis Horwood, 1989.

[5] J.M. Carroll. Making use is more than a matter of task analysis.
Interacting with Computers, 14:619–627, 2002.

[6] Y.M. Cheng and C. Johnson. Applying task analysis to facilitate the
design of context-aware technologies. In 2nd Workshop on complexity
in design and engineering, 2007.

[7] T. Clerckx and K. Coninx. Towards an integrated development envi-
ronment for context-aware user interfaces. In Dagstuhl seminar. Mobil
computing and ambient intelligent: The challenge for multimedia, 2005.

[8] T. Clerckx, K. Luyten, and K. Coninx. The mapping problem back and
forth: Customizing dynamic models while preserving consistency. In 3rd
International Workshop on Task Models and Diagrams for user interface
design (TAMODIA 2004), Prague, Czech Republic, pages 33–42, 2004.

[9] T. Clerckx, K. Luyten, and K. Coninx. Designing interactive systems
in context: From prototype to deployment. In 19th British HCI Group
Annual Conference (HCI 2005), Napier University, Edinburgh, United
Kingdom, 2005.

[10] A.K. Dey. Understanding and using context. Personal and Ubiquitous
Computing, 5:5–7, 2001.

[11] D. Diaper. Task scenarios and thought. Interacting with Computers,
14:629–638, 2002.

[12] A. Dix, J. Finlay, G. Abowd, and R. Beale. Human-Computer Interac-
tion. Prentice Hall Europe, 1998.

[13] M. Endsley and D. Kaber. Level of automation effects on perfor-
mance, situation awareness and workload in a dynamic control task.
Ergonomics, 42:462–492, 1999.

[14] M.R. Endsley. Toward a theory of situation awareness in dynamic
systems. Human Factors and Ergonomics Society, 37:32–64, 1995.

[15] M.R. Endsley. Situation Awareness: Progress and Directions. Ashgate
publishing, 2004.

[16] Y. Feng, T. Teng, and A. Tan. Modelling situation awareness for context-
aware decision support. Expert Systems with Applications, 36:455–463,
2009.

[17] D.B. Kaber and M.R. Endsley. The effects of level of automation and
adaptive automation on human performance, situation awareness and
workload in a dynamic control task. Theoretical Issues in Ergonomics
Science, pages 1–40, 2004.

[18] J. kim, S.E. Schwarm, and M. Ostendorf. Detecting structural metadata
with decision trees and transformation-based learning. In HLT/NAACL,
pages 137–144, 2004.

[19] K. Kuutti. Workprocess: Scenarios as a preliminary vocabulary. In J.
M. Carroll (Ed.), Scenario based design. Wiley, 1995.

[20] C. Lewis and J. Rieman. Task-Centered User Interface Design.
http://www.hcibib.org/tcuid, 2008.

[21] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and V. Lopez-
Jaquero. USIXML: a Language Supporting Multi-Path Development of
User Interfaces. Kazman and Palanque, 2004.

[22] Y. Liu, E. Shriberg, A. Stolcke, B. Peskin, J. Ang, D. Hillard, M. Os-
tendorf, M. Tomalin, P. Woodland, and M. Harper. Structural metadata
research in the ears program. In ICASSP, volume 5, 2005.

[23] C.A. Miller, H. Funk, R. Goldman, J. Meisner, and P. Wu. Implications
of adaptive vs. adaptable uis on decision making: Why automated
adaptiveness is not always the right answer. In In Proceedings of the
1st International Conference on Augmented Cognition, Las Vegas, NV,
2005.

[24] G. Mori, F. Patern‘o, and C. Santoro. Design and development of
multidevice interfaces through multiple logical descriptions. IEEE
Transactions on Software Engineering, 30(8), 2004.

[25] N.D. Nwiabu, I. Allison, P. Holt, P. Lowit, and B. Oyeneyin. Situation
awareness in context-aware case-based decision support. In IEEE
International conference on Cognitive Methods in Situation awareness
and Decision Support, Miami Beach, FL, pages 9–16, 2011.

[26] R. Parasuraman, T. Sheridan, and C. Wickens. A model for types and
levels of human interaction with automation. IEEE Transactions on
Systems, Man, and CyberneticsPart A: Systems and Humans, 30:286–
297, 2000.

[27] F. Patern‘o and E. Zini. Applying information visualization techniques
to visual representations of task models. In 3rd International Workshop,
Tamodia04, Prague, Czech Republic, November 15-16, 2004, pages 105–
112, 2004.

[28] M. Priestley. Practical object-oriented design with UML. McGraw-Hill
education, 2003.

[29] J. Raz, A. Juhola, J. Serrat-Fernandez, and A. Galis. Fast and efficient
context-aware services. Number ISBN: 0-470-01668-X. John Wiley &
Sons Inc., 2006.

[30] S. Robertson. Generating object-oriented design representations via
scenario queries. John Wiley & Sons Inc., 1995.

[31] P. Satchell. Innovation and automation. Aldershot, UK: Ashgate, 1998.
[32] B. Schilit and M. Theimer. Disseminating active map information to

mobile hosts. IEEE Network, 8:22–32, 1994.
[33] A. Shepherd. In Task Analysis for Human-Computer Interaction(Ed,

Daiper, D.). Ellis Horwood, 1989.
[34] K.J. Vicente and J. Rasmussen. Ecological interface design: Theoretical

foundations. IEEE Transactions on systems, man, and Cybernetics,
22:589–606, 1992.

[35] H. Wu, A. Marshall, W. Yu, and Y.M. Cheng. Applying hta method to the
design of context-aware indoor navigation for the visually-impaired. In
4th Intl. conference on Mobile Technologies, Applications and Systems,
2007.

	Allison UID coversheet
	CogSIMA 2012 IEEE copyright statement
	Allison user interface design

