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Abstract—The Message Passing Interface (MPI) is a parallel
programming model used to exchange data between working
units in different nodes of a supercomputer. While MPI blocking
operations return when the communication is complete, non-
blocking and persistent operations return before the communi-
cation is complete, enabling a developer to hide communication
latency. However the usage of these latter comes with additional
rules the user has to abide to. This is error prone, which
makes verification tools valuable for MPI program writers.
PARCOACH is a framework that detects MPI collective errors
using a static/dynamic analysis. The static phase studies the
control- and data-flow of a program to detect potential errors
while the dynamic phase uses compile-time information to verify
the potential errors. In this paper we present an extension of
PARCOACH static analysis to detect misuse of MPI nonblocking
and persistent communications. OQur new analysis adds the
detection of four new error classes related to these types of
communications.

Index Terms—MPI, Nonblocking Communication, Correct-
ness, Static Analysis, Persistent Communication

I. INTRODUCTION

Since it first went out in 1994, the Message Passing Interface
(MP]) is the de facto standard for inter-node communica-
tions in supercomputers. MPI provides several interfaces to
exchange data between working units called MPI processes:
point-to-point communications involving a sender and a re-
ceiver, collectives communications involving a group of MPI
processes exchanging data, or RMA communications allowing
to write or read directly from another MPI process memory.
For an application spanning over the thousands of nodes of a
supercomputer, these data communications can be very time
consuming.

MPI nonblocking and persistent communications are an
important part of the MPI standard. They are designed to
allow hiding the communication costs with other work. All
communications obey to some rules in the MPI standard. It is
the responsibility of the user when inserting the corresponding
procedure calls to abide to those rules. Because of their design,
nonblocking and persistent operations ask for extra care when
using them, and especially the handling of arguments given to
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them. As an example, a nonblocking operation is divided in
two procedure calls: an initiation call and a completion call.
Between these calls, linked together with a specific MPI struc-
ture, it is erroneous to use said structure for another operation,
or to access some specific other operation arguments. This is
error prone, and detecting misuse of these communications at
compile time can be very beneficial for MPI program writers.

PARCOACH [1]-[3] is a framework built on top of LLVM
to detect misuse of collectives in MPI programs. A first anal-
ysis studies the program at compile-time and issues warnings
when a potential error is detected. Then a runtime check is
performed to verify all potential errors during execution. In
previous works, PARCOACH was designed to detect incorrect
ordering of MPI blocking collectives calls. Then it had been
adapted to handle ordering of blocking and nonblocking
collective calls, but no data-flow analysis was performed to
detect other nonblocking related errors.

In this paper, we propose an extension of PARCOACH
to detect misuse of nonblocking and persistent operations in
MPI programs, including MPI persistent collectives operations
voted in to be part of the next MPI standard. Based on a
new data-flow analysis, PARCOACH is now able to match
nonblocking and persistent initialization calls to most of the
other corresponding calls. Once the matching is done, it is
then possible to detect wrong management of the operation
arguments. Our new analysis is fully automatic and integrated
in the tool, implemented as an LLVM pass.

Section [[I] presents the semantics of nonblocking and persis-
tent operation, and their potential misuse. Section [I1I| describes
existing works on the verification of these operations while
Section[[V] presents our new algorithms to realize some match-
ing for nonblocking and persistent operation procedure calls,
and augment the error detection coverage of PARCOACH for
such operations. Section [V| shows results on several bench-
marks and Section [VI] concludes our work.



II. USAGE OF MPI NONBLOCKING AND PERSISTENT
OPERATIONS

A. Semantics and use cases of MPI nonblocking calls

An MPI nonblocking operation is composed of two proce-
dure calls.

The first procedure call initiates the nonblocking operation.
More specifically, it hands over the argument lists to the
operation, including the contents of the data buffers if any,
and it attaches the operation to the given request. In most
cases, MPI nonblocking initiating procedure names is of the
form MPI_I<operation> (e.g., MPI_Ibcast).

The second procedure call completes and frees the oper-
ation. It returns the control of the argument list, including
the contents of the data buffers. The completion call can be
either a MPI_Wait,aMPI_Test or MPI_Request_free
(only for point-to-point communications). MPI_Wait waits
until the resources needed by the communication can be safely
used while MPI_Test tests whether the communication has
completed. Those completions also exist in three additional
versions: all, any, and some. While the basic form only
completes the asynchronous communication it is associated to,
the all derivative can be associated to multiple nonblocking
communications and will complete all of them. Similarly,
the any and some derivatives can be associated to multiple
initialization calls and will respectively complete any of those,
or at least one of those. In all derived versions the requests
are freed according to the communications that have been
completed [4].

Unlike blocking calls that only return when the resources
of the communications can be reused, nonblocking calls do
not offer such warranties. They will return as soon as they
can, leaving those resources, such as the data buffers, in a
vulnerable state. Depending on the nature of the communi-
cation, any access or modification of resources might lead to
nondeterministic behaviors. Those issues are a supplementary
burden put on the developer, leading to longer development
and debugging times. In the section we expand on some
of those issues that a developer should be aware of when
writing code with asynchronous communications.

B. Semantics and use cases of MPI persistent calls

An MPI persistent operation is composed of four procedure
calls.

The first procedure call initializes the persistent operation.
More specifically, it hands over the argument lists to the
operation, and it attaches the operation to the given request.
However, contrary to the nonblocking operation, this first
procedure call doesn’t hand over the contents of the data
buffers, if any. The user remains free to change the data buffer
contents until a call to a starting procedure. In most cases,
MPI persistent initialization procedure names is of the form
MPI_<Operation>_init (e.g., MPI_Bcast_init).

The second procedure call starts the operation. After this
call, the contents of the data buffers are handed over to
the operation. It should not be modified by the user, nor

read in the case of an output data buffer, until the call to
a completing procedure call. The starting call can be either
MPI_Start or MPI_Startall. Once the starting call is
done, the communication involved in the operation algorithm
can take place at any time, until the end of the completion
call.

The third procedure call completes the operation. It returns
the control of the contents of the data buffers. The completion
call for a persistent operation can be the same as for a non-
blocking operation. However, once the operation is completed,
it can either be restarted with a new call to a starting procedure,
or it can be freed with a call to freeing procedure.

Hence, the fourth procedure call to MPI_Request_free
frees the operation by relinquishing all the arguments associ-
ated with the operation, and marking the MPI request as free
and being reusable.

As with nonblocking calls, most resources passed to the
initialization calls cannot be reused until the operation is freed.
This can lead to errors and race conditions. These potentials
issues are described in the next section.

C. Type of errors

This section gives five types of errors related to nonblocking
and persistent communications: Collective mismatch, missing
wait, unmatched wait, request overwriting and buffer data race.

1) Collective Mismatch: MPI nonblocking collective op-
erations, as well as MPI persistent collective operations,
follow the same restrictions as their blocking counterparts.
In particular, every process in a communicator must call the
same sequence of blocking collective, nonblocking collective
initiation and persistent collective initiation procedures. If one
process has a different sequence than the others, a deadlock
can arise. The code in Listing [I] describes an example of
collective mismatch. Suppose this code is executed with at
least 2 MPI processes, rank O initiates a nonblocking broadcast
and calls a reduce while the other processes first call a reduce
and then initiate a nonblocking broadcast. This mismatch
example results in a deadlock.

Similarly, in Listing 2] rank O calls a nonblocking broadcast
while other processes call a blocking broadcast. This is an
error as nonblocking collective operations do not match with
their blocking counterpart.

Listing 1: MPI Collective Mismatch Example 1

MPI_Request req;
if (rank == 0) {

MPI_Ibcast (&da, count, datatype, 0, com, &req);

MPI_Reduce (&dsend, &drecv, 1, datatype, Op , 0, com);
} else {

MPI_Reduce (&dsend, &drecv, 1, datatype, Op, 0, com);

MPI_TIbcast (&da, count, datatype, 0, com, &req);

}

MPI_Wait (&req, MPI_STATUS_IGNORE) ;




Listing 2: MPI Collective Mismatch Example 2

MPI_Request req;

if (rank == 0) {

MPI_Ibcast (&da, count, datatype, 0, com, &req);
} else {

MPI_Bcast (&da, count, datatype, 0, com);

}

MPI_Wait (sreq, MPI_STATUS_IGNORE);

2) Missing wait: Any nonblocking and persistent starting
call must be associated with a completion call to ensure
the communication resources can be safely reused. The code
shown in listing E] is erroneous since MPI_Bcast_init
initializes a persistent broadcast which is then started with
MPI_Start, but is never completed afterwards.

Listing 3: Missing Wait

MPI_Bcast_init (&da, count,
MPI_sStart (&req);

/x oo x/
MPI_Request_free (&req);

datatype, 0, com, info, &req);

3) Unmatched wait: According to the MPI specification,
an unmatched or redundant wait is not an error: a completion
call is allowed to take an empty request. However we consider
that it can be useful to raise this situation and warn the
developer since it can hide other issues such as an unmatched
initialization call. Listing ] shows such a case. The last
MPI_Wait is always called on a null request.

Listing 4: Unmatched Wait

MPI_Request req;

1f(..) ¢
MPI_TIbcast (&da, count,
MPI_Wait (&req)

}

MPI_Wait (&req)

datatype, 0, com, &req);

4) Request Overwriting: Once a request has been taken
by a nonblocking or persistent communication, it should not
be overwritten by another statement or used by any other
nonblocking or persistent communication. Since it contains
information about the former communication, its corruption
can prevent the completion of the said communication. As a
consequence, the code presented in listing [3] is incorrect.

Listing 5: Request Overwriting

MPI_IBcast (&da, count,
MPI_TIBcast (&e, count,
MPI_Wait (&req,

datatype, 0, com, &req);
datatype, 0, com, &req);
MPI_STATUS_IGNORE) ;

5) Buffer Data Race: Nonblocking and persistent initial-
ization calls return as soon as possible to their caller, and they
do not ensure the safety of the resources that are needed by
the message. Depending on the nature of the operation and

on how those resources are being used, race conditions might
happen, thus leading to a nondeterministic behavior. A data
that is needed for an outbound message will be sensible to
writings. As illustrated in listing [f] the first statement below
the MPI_ Isend operation only reads the buffer da. However,
the following statement writes to that buffer and can cause a
race condition. On the other hand, a data that is being received
is akin to a writing to that memory space, making any type
of access unsafe.

The same problem may arise with persistent operations if
the buffer is modified between the start and the completion
calls.

Listing 6: Buffer Data Race

MPI_Request reqg;

MPI_TIsend(&da, 1, MPI_INT, 1, tag, com, &req);
a = b + da;
da = 3;

MPI_Wait (&req, MPI_STATUS_IGNORE) ;

III. RELATED WORK

We roughly split existing works that verify MPI applications
in three categories: Dynamic analyses, Static analyses and
hybrid approaches.

a) Dynamic Analyses: Dynamic analyses are applied
during the execution of a program. They are able to provide
accurate results with very few false-positives as they constantly
monitor the state of the program. Errors are then only reported
when they are about to occur. MUST [5] performs deadlock
detection by building a wait-for graph which depicts the
scheduling dependencies between processes. As all dynamic
tools, MUST only stands for a specific environment and can
miss errors (e.g., data races [6]). This is a major drawback
in a high performance environment where computations are
meant to be run with many parameters and can lasts for weeks.
DAMPI [7] is based on a time-out approach using Lamport-
clocks to detect deadlocks. It can produce false positives and
suffers from the same limitations than MUST. SimGridMC [8]]
is a model checker for MPI applications, it checks if a pro-
gram satisfies a given property (e.g., liveness, communication
determinism) by considering all possible executions. Although
SimGridMC identifies data races, it can’t detect high level
errors like unmatched waits.

b) Static Analyses: Static tools are run at the compilation
of each translation unit, or at link-time in order to perform a
whole program analysis. They are also completely independent
of the program inputs but can lead to many false positives.
MPI-Checker [9] is based on the Clang Static Analyzer. It can
perform path-sensitive checks to find erroneous matchings of
nonblocking communication calls as well as missing initializa-
tion, completion calls and request overwriting. MPI-Checker
does not support buffer data race nor collective mismatch
detection and does not check for persistent operations misuse.
Ye et al. [6] developed a tool that uses partial symbolic




execution to detect MPI usage anomalies. It is limited to com-
munications on MPI_COMM_WORLD, doesn’t detect missing
wait and doesn’t check collectives and persistent operations.
CIVL [10] and MPI-SV [11]], [[12] both combine symbolic
execution with model checking but unlike MPI-SV, CIVL does
not support nonblocking operations.

c) Hybrid Approaches: Hybrid approaches combine a
static analysis with a dynamic one. This trade-off allows the
best of both approches. PARCOACH 2], [3]] uses this method
to find collectives mismatch. It raises warnings for poten-
tial errors with debugging information like the conditionals
responsible for them. The static phase is completed by an
instrumentation of potentially faulty communications that will
properly terminate the program and provide useful feedback
if the potential error is actually a true positive. PARCOACH
is mainly focused on collectives and is not able to detect
any error presented in Listings In [1fJ, we presented a
light analysis that checks if each nonblocking initiation can
be matched with a completion call. This check was done by
counting the number of initiation and completion calls on each
path of the program and did not consider requests. Our new
analysis extends PARCOACH to detect all errors presented
Section To the best of our knowledge, our static analysis
is the first one that detect all errors presented and tackles MPI
persistent communications.

IV. STATIC DETECTION OF MPI NONBLOCKING AND
PERSISTENT COMMUNICATION MISUSES

This section provides an in-depth description of the methods
we implemented to perform a compile-time conservative ver-
ification of MPI nonblocking and persistent operation usage.
We first associate the initialization calls to their completion
calls using techniques that analyze the control flow of the
program. After the matching is done, a basic data-flow analysis
is performed to find statements that can lead to race condi-
tions inside each overlapping window. Collective mismatch
detection is performed by PARCOACH using the algorithm
presented in [[1] and extended in [3].

A. Matching of procedure calls for a nonblocking operation

Nonblocking initialization and completion procedure calls
are linked to each other through the request object. For each
nonblocking initiation call in the current function, we look
at its request and build the list of every potential completion
points.

According to the MPI specification, any nonblocking initi-
ation call must be terminated by a completion call. In other
words, if the control flow goes through an initialization call,
then it must flow through a completion call at a later point in
the code before exiting the program or the MPI environment.
A nonblocking communication may require the insertion of
multiple matching completion calls in the code, as shown
in figure [Ta] In this example, assuming that all MPI calls
(i.e., the MPI_TIbcast call and both MPI_Wait calls) share
the same request, and that the branching condition in node
B is dependent of the rank of the MPI process, then the

program represented by that control flow graph (CFG) is
correct. Whichever branch is taken before exiting the program,
the MPI_Tbcast call will be completed by one of the
MPI_Wait calls. It means that, when performing our static
analysis, the initialization call needs to be matched with both
completion calls.

@i@

() (b)

@§@

Fig. 1: CFG examples with multiple initialization or comple-
tion points for a communication

The notion of post-domination can be used to realize such
static matching. A node v post-dominates a node w in a
CFG if all paths from w to the exit node contains v [13]]. In
our situation w is the initialization call and v the completion
call. When there are multiple completion calls, the notion of
generalized post-domination enables us to find all sets of nodes
V' that post-dominate a node v. Those sets need to follow those
two conditions [14]:

1) all paths from v to the end of the program must contain

a node from V;

2) for each node w € V/, there is at least one path from v
to the end of the CFG that contains w and that does not
contain any other vertex in V.

In other words we need to find, for each nonblocking
initiation call, the “nearest” set of completion calls that post-
dominates it. The post-dominator sets are found using an
adapted DJ-graph [15]]. For example in figure [Ta] the MPT_ -
Ibcast call is post-dominated by 4 sets of cardinality 1 -
itself, node B, node D, and the sink - and by one set of
cardinality 2 which is the set defined by both MPI_Wait.

As explained in section completion calls can intercept
empty requests however we will still warn about those situ-
ations since they can help in resolving other errors. In order
to catch a valid request, completion calls have to be executed
only if a nonblocking communication has been initiated. In
other words, the completion call needs to be dominated by
an initialization call. For example, assuming that all MPI
nonblocking calls share the same request object, the code
represented by the CFG in figure [Ib]is correct. If the branching
condition in node A depends on the rank of the MPI process,
then the wait has to be matched with both initializations.



Algorithm 1 Matching MPI initiations and completion calls

Require: mpi_i: list of MPI nonblocking initiation calls in
f, mpi_w: list of MPI nonblocking completion calls,
dominator and post-dominator trees of f

Ensure: Each MPI nonblocking call is properly matched

1: procedure MATCH_MPI_NONBLOCKING(function f)

2 for all mpi_i € f do

3: gen_pdom < get_genPDomSet(mpi_i)

4 wait_set <— get_wait(mpi_i.req) > Set of waits
using the same request

5 potential_wait_sets < ()

6: for all P € gen_pdom do

7 if P C wait_set then

8 potential_wait_sets.insert(P)

9: if potential_wait # () then

10: for all P € potential_wait_sets do

11: cumul_dist = 0

12: for all w € P do

13: dist = dist(mpi_i, w);

14: cumul_dist += dist

15: if matched_dist > cumul_dist then

16: matched_dist = cumul_dist

17: matched_wait < P

18: check_race_cond(mpi_i, matched_wait)

19: else

20: Raise warning about missing wait

21: for all mpi_w € f do

22: gen_dom < get_genDomSet(mpi_w)

23: mpi_i_set < get_matched_init(mpi_w) ©> Set of
matched initiation computed from the previous loop

24: if mpi_i_set ¢ gen_dom then

25: Raise warning about unmatched wait

The matching of MPI nonblocking initiation calls to com-
pletion calls is described in algorithm [T} As input arguments,
the algorithm takes all MPI initiation and completion calls
in a function. For each MPI initiation call, we compute the
set of all its generalized post-dominators sets, and we get the
set of all completion calls using the same request wait_set
(lines 3 and 4). Since the generalized post-dominators sets
can contain any statement in the function, we first prune this
ensemble to keep only the sets containing nodes also present
in wait_set, i.e., sets composed only of completion calls (lines
5 to 8). If no such set can be found, then the nonblocking
initiation call cannot be matched, and we raise a warning
about missing completion calls for this initiation call (lines 9
and 20). If compliant generalized post-dominators sets exist,
they are stored in potential_wait (line 8). It is then necessary
to find which set is indeed composed of the actual matching
completion call. Each set of potential_wait_sets can properly
complete the communication since they post-dominate the
initiation. However, only the set of completion calls that will
be visited first will be matched with the initiation, i.e. the
set whose nodes have the shortest distance to the initiation

in the CFG. To do so, the distance between the initiation
call and each completion call is computed, and accumulated
(lines 13 and 14). We compare each cumulative distance to
find the smallest one, hence the generalized post-dominators
set composed of the closest completion calls (lines 15 to 17).
Once we matched the initiation call to its closest completion
calls, we apply the algorithm to find potential misuse of
the operation arguments (line 18). This step is depicted in
algorithm [2] and described in section

At the end of the algorithm, another pass is applied on
the completion calls to check if they correctly terminate
the nonblocking operation initiation they were matched with
during the previous pass on the initiations calls (line 21 to 25).
A completion call must be dominated by the set of initiation
calls it was assigned to, otherwise a warning will be issued
for an unmatched wait.

B. Matching of procedure calls for a persistent operation

Like for a nonblocking operation, all procedure calls in-
volved in a persistent operation (i.e., initialization, starting,
completion and freeing procedure calls) are linked to each
other through the request object. A persistent operation should
go through each of these calls in order, with the exception that
after the completion call, the request can encounter either a
freeing call, or a new starting call.

For the analysis, it means that a set of starting calls should
post-dominates the persistent initialization call, then a set of
completion calls should post-dominates each starting call. For
the completion call, it should be post-dominated by a set of
either freeing calls or new starting calls. Since the purpose of
algorithm |1|is to find a set of MPI completions call matching
a specific nonblocking initiation call, it can be easily adapted
to persistent operations. A first call to algorithm [I] can be
performed to match the persistent initialization call to starting
calls. Then, it can be applied again to match each starting call
with a completion call. Finally, it can be used to match each
completion call to freeing calls, or new starting calls. If new
starting calls are found, then the algorithm will be applied
recursively until all persistent operations reach a freeing call.

As the initialization procedure and the freeing procedure
are called only once, finding unmatched initialization and
freeing is easy and can be done in their own algorithm
execution. However, for starting and completion procedure
calls, as multiple of them can be used for the same persistent
operation, it is necessary to keep a global set of matched called
over all the algorithm invocations. Unmatched starting calls
and completions calls can be found only once all the starting-
completion couple procedures have been matched over the life
of the tested persistent operations.

C. Detection of overwriting

As described in section |lI} both nonblocking and persistent
operations hand over their argument list to the operation.
These arguments should not be accessed until the operation is
completed or freed. More specifically, as said in section
it is forbidden to reuse a request passed to an operation for



another, until the current operation is freed. Also, depending
on how it is used, data buffers should not be accessed between
the starting and the completion of an operation. A reception
buffer of a communication should not be read inside the
overlapping interval, since its state is unknown as long as the
communication has not been completed. Thus the read data
may not be the correct one. It is also forbidden to write, since
it may squash the received data. On the other hand, while it is
safe to read a send data buffer of an operation once it has been
started, it is forbidden to write to it. Between the starting and
the completion, there is no way to know if the writing in the
send buffer happened before or after the contents of the buffer
have been sent, leading to a potential incorrect transferred data.

Algorithm 2 Detecting data buffers and requests overwriting

Require: MPI initiation call mpi_i, with its matching com-
pletion calls matched_wait
Ensure: Warning are issued on the statements that can cause
race conditions in the overlapping interval
1: procedure CHECK_RACE_COND(mpi_i, matched_wait)
2 for all w € matched_wait do
3 for all Path p from mpi_i to w do
4: for all Statement s € p do
5 if s writes on the request of mpi_i then
6 Raise warning about a request overwritting
7 else if s reads or writes an output argument or
s writes an input argument then
8: Raise warning about a possible buffer data
race on s

The detection of buffer data races and request overwriting
for nonblocking operations is described in algorithm [2] This
algorithm is only performed once the initialization call has
been successfully matched with its completion calls in order
to have a properly defined overlapping window. It is based-
on the use-def and def-use chains of each argument of the
initialization call. The input or output nature of each argument
of an MPI call is taken into account, in accordance with the
interface definitions.

Every statement between the initiation point and its com-
pletion calls is then visited in a BFS fashion so that every path
can be explored (lines 3 and 4). For each statement, we check
if:

1) the request object is written, which also includes that its
pointer is given to another function (line 5)

2) a send data buffer is written (line 7)

3) a receive data buffer is written or read (line 7)

For case 1, a warning for a potential request overwriting is
issued. For cases 2 and 3, a warning for buffer misuse is issued.

As with algorithm [T} algorithm [2] can also be easily adapted
for persistent operations. Checking potential data buffer misuse
is the same, as their access is also forbidden between starting
and completion calls. For potential request overwriting, the
boundaries of the BFS should be changed to cover all paths
from the initialization call to the matched freeing calls.

V. EVALUATION

Algorithms |1| and 2| have been integrated in PARCOACHE]
as an intraprocedural compilation pass using LLVM 10. Being
applied on the intermediate representation of a program,
LLVM passes are independent of the source language. Besides,
PARCOACH is independent of the MPI implementation used.
Our analysis has been tested with C and C++ codes, and should
be applicable to FORTRAN codes by using the corresponding
front-end and providing the adequate representation of MPI
calls. The generalized dominators and post-dominators infor-
mation are built upon the CFG, dominator and post-dominator
trees provided by the compilation framework. The intermediate
representation is in single static assignment form, and basic
data dependencies information are provided such as use-def
and def-use chains.

Our implementation supports all point-to-point and col-
lective MPI nonblocking communications. We consider all
kind of communication initiations, but only the MPI_Wait
completion call. Other completion procedures are left for
future work.

A. Static Results

Our measurements were made on a platform equipped
with 12 cores Intel Xeon processors with a base clock speed
of 2.20GHz, and with 20Gb of memory. PARCOACH new
analysis pass is applied on each translation unit and warns the
developer in case of a nonblocking communication misuse.
It has been validated on multiple correct and incorrect
micro-benchmarks we wrote. Listings [7] [8] and [9] show three
code snippets from our micro-benchmarks suite. We measured
the compile-time overhead induced by our analysis compared
to a compilation without the pass on two mini applications
from the Mantevo project [16]: miniMD and miniFE, and 2
CORAL benchmarks : lulesh [[17] and LAMMPS [18].

In listing [7) the initiation call line 9 is not post-dominated by
a completion call which means it is not correctly completed.
PARCOACH successfully identifies a completion is missing
and raises a warning.

Listing 7: Code snippet 1 from the micro-benchmark suite

7 int msg = 0;
8 MPI_Request req;
9 MPI_Ibcast (&msg, 1,

MPI_INT, 0, MPI_COMM_WORLD, &req);

The pass has limited information about the source code
when compiled with debugging symbols. It provides a basic
report of the encountered error, with its nature and its location
in the source code. The output on the standard error stream
for this example is shown below.

PARCOACH: warning: MPI_TIbcast line 9 has
no matching completion call

TPARCOACH is available at https:/github.com/parcoach/parcoach
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Listing 8: Code snippet 2 from the micro-benchmark suite

15 MPI_Com com = MPI_COMM_WORLD;
16 MPI_Request reqg;
17 MPI_Isend(&msg, 1,

MPI_INT, 1, 0, com, &req);

18 if (rank < 2) {

19 printf ("rank %d does nothing\n", rank);
20 } else {

21 MPI_Wait (&req, MPI_STATUS_IGNORE);
22}

23 MPI_Wait (&req, MPI_STATUS_IGNORE) ;

Listing [8] shows an example of a misplacement of comple-
tion calls. Our pass associates the nonblocking initiation send
line 17 with the MPI_Wait line 23 that post-dominates it and
thus raises a warning for the unmatched completion line 21.
The output returned by PARCOACH is

PARCOACH: warning: MPI_Wait line 21
is unmatched

The code snippet shown in listing [9]exposes an example of a
datarace. MPI_Ireduce line 18 is matched with MPI_Wait
line 20. Our buffer data race detection checks all instructions
in the overlapping window (i.e., between lines 18 and 20). The
instruction line 19 writes into sum. Since it is an outbound
buffer, it should not be modified.

Listing 9: Code snippet 3 from the micro-benchmark suite

15 MPI_Com com = MPI_COMM_WORLD;
16 msg = l+rank, sum=0;

17 MPI_Request reqg;
18 MPI_TIreduce (&msg,
19 sum = foo + rank;
20 MPI_Wait (&req, MPI_STATUS_IGNORE) ;

&sum, 1, MPI_INT, SUM, 0, com, &req);

The warning returned by PARCOACH indicates the in-
struction causing a race condition and associates it with the
nonblocking reduce initiation.

PARCOACH: warning: Race condition on
instruction line 19 - Buffer used in
MPI_TIreduce line 18

Figure 2] shows the compilation-time overhead for miniMD,
miniFE, lulesh and LAMMPS. We omit to show the overhead
of all codes in our micro benchmarks suite as it is negligible.
PARCOACH new static analysis performs a more advanced
data-flow study than its previous analysis which causes a
higher overhead for some benchmarks. However, those addi-
tional costs are still small compared to the expected execution
time of each application. Furthermore, PARCOACH detects
and reports issues in the code at an early point in the program
lifespan which is beneficial.

B. Discussion

The warnings returned by PARCOACH on the CORAL
benchmarks and the mini applications are mainly false pos-
itives. Some situations would require a more in-depth analysis
of the control and data flows. An example is given in listing [T0]

Overhead (%)

miniMD

LAMMPS miniFE

lulesh

Fig. 2: Compilation-time overhead (ratio between the new
PARCOACH analysis time and the total compilation time).

PARCOACH is unable to match the nonblocking receive
initiation in the first loop with the completion in the following
loop as there is no post-domination or domination relationship
between them. Yet the control flow has to go through both
loops since they have compatible loop conditions. One way
to resolve this shortcoming would be to explore the branch
and loop conditions when possible to give constraints on the
control flow.

Listing 10: Code snippet from miniFE (File make_local_-
matrix.hpp)

for (int i=0; i<num_recv_neighbors; ++i{
MPI_Irecv (&A.elements_to_send[]j], send_length[i],
mpi_dtype, neighbors[i],
MPI_MY_ TAG, MPI_COMM_WORLD, &request[i]);
j += send_length[i];
}

VA

for (int i=0; i<num_recv_neighbors; ++i) {
if (MPI_Wait (&request[i], &status) != MPI_SUCCESS) {
std::cerr << "MPI_Wait error\n"<<std::endl;
MPI_Abort (MPI_COMM_WORLD, -1);
}
}

Other limitations are caused by the intraprocedural context
preventing us from matching calls across function boundaries
and from knowing the sensibility of the resources inside a
function. The data dependency analysis is not able to properly
discriminate access to structured data fields.

When MPI_Test is used, our analysis is able to match
the initiation to the first test completion it encounters. This
is a limitation of our analysis as the operation may not be
completed at the first test. However only a dynamic analysis
could improve this solution.



VI. CONCLUSION

In this paper we present an extension of PARCOACH to
detect misuse of MPI nonblocking and persistent communi-
cations. We propose two algorithms based on the notion of
generalized dominators and post-dominators to add new error
detections in PARCOACH. Our analysis is built on top of
LLVM 10 and can automatically find five type of errors. In
addition to the already implemented detection of collective
mismatch, which was augmented to also include persistent
initialization calls, the following correctness analyses are now
possible with PARCOACH: missing wait, unmatched wait,
request overwriting and buffer data race. This analysis can
be easily coupled with any optimization pass (e.g., [19]) to
verify nonblocking communication transformations.

For future work, we plan on leveraging two limita-
tions in our implementation. Our implementation supports
only MPTI_Wait and MPI_Test as completion procedures.
We plan to extend this list to all their flavors (MPI_-
Wait/Test{all/any/some}). Also the current imple-
mentation of this new analysis is limited to intraprocedural.
That is problematic when dealing with programs using wrap-
pers around the MPI calls. To support these cases, we plan
to develop an interprocedural analysis. Finally, the support
for persistent operations is preliminary. The algorithm can be
improved to perform all the matching in one pass instead of
performing the algorithm multiple times.
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