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Abstract—Many statistical models require an estimation of
unknown (co)-variance parameter(s) in a model. The estimation
usually obtained by maximizing a log-likelihood which involves
log determinant terms. In principle, one requires the observed
information–the negative Hessian matrix or the second derivative
of the log-likelihood—to obtain an accurate maximum likelihood
estimator according to the Newton method. When one uses the
Fisher information, the expect value of the observed information,
a simpler algorithm than the Newton method is obtained as the
Fisher scoring algorithm. With the advance in high-throughput
technologies in the biological sciences, recommendation systems
and social networks, the sizes of data sets—and the corresponding
statistical models—have suddenly increased by several orders
of magnitude. Neither the observed information nor the Fisher
information is easy to obtained for these big data sets. Thispaper
introduces an information splitting technique to simplify the
computation. After splitting the mean of the observed information
and the Fisher information, an simpler approximate Hessian
matrix for the log-likelihood can be obtained. This approximated
Hessian matrix can significantly reduce computations, and makes
the linear mixed model applicable for big data sets. Such a
spitting and simpler formulas heavily depends on matrix algebra
transforms, and applicable to large scale breeding model, genetics
wide association analysis.

Index Terms—Observed information matrix, Fisher informa-
tion matrix, Fisher scoring algorithm, linear mixed model, breed-
ing model, geno-wide-association, variance parameter estimation.

I. I NTRODUCTION

Many applications in animal/plant breeding [1], clinic trials,
ecology and evolution [2], genome-wide association [3], [4],
[5], [6] involve the following linear mixed model.

y = Xτ + Zu+ ǫ, (1)

wherey ∈ R
n×1 is a vector which consists ofn observations,

τ ∈ R
p×1 is a vector ofp fixed effects,X ∈ R

n×p is the
design matrixwhich corresponds to fixed effects,u ∈ R

b×1

is the vector of unobserved random effects,Z ∈ R
n×b is

the design matrix which corresponds to the random effects.
ǫ ∈ R

n×1 is the vector of residual errors. The random
effects,u, and the residual errors,ǫ, are multivariate normal
distributions such thatE(u) = 0, E(ǫ) = 0, u ∼ N(0, σ2G),
ǫ ∼ N(0, σ2R) and

var

[
u
ǫ

]

= σ2

[
G 0
0 R

]

, (2)

whereG ∈ R
b×b, R ∈ R

n×n.

When the co-variance matricesG and R are known, one
can obtain theBest Linear Unbiased Estimators(BLUEs), τ̂ ,
for the fixed effects and theBest Linear Unbiased Prediction
(BLUP), ũ, for the random effects according to the maximum
likelihood method, the Gauss-Markov-Aitiken least square[7,
§4.2]. τ̂ and ũ satisfy the following equations

C

(
τ̂
ũ

)

=

(
XTR−1y
ZTR−1y

)

, (3)

where

C =

(
XTR−1X XTR−1Z
ZTR−1X ZTR−1Z +G−1

)

.

For such a forward problem, confidence or uncertainty of the
estimations of the fixed and random effects can be quantified
in term of co-variance of the estimators and the predictors

var

(
τ̂

ũ− u

)

= σ2C−1. (4)

In many other more interesting and more realistic cases,
the co-variance matrices of the random effects and the random
noise are unknown. TypicallyG andR are parametric matrices
with parameters that need to be estimated, say,G = G(γ) and
R = R(φ). We shall denoteκ = (γ, φ) and θ := (σ2, κ). To
obtain an estimation on the confidence or uncertainty as in (4)
one has to obtain an estimate on the variance parameterθ first.
Efficient statistical estimates for the variance parameters via
theREstricted Maximum Likelihood(REML) method requires
to maximize the corresponding (restricted) log-likelihood func-
tion [9, p.252](details follows in next section):

ℓR(θ) = const− 1

2
{(n− ν) log σ2 + log det(H)

+ log det(XTH−1X) +
yTPy

σ2
}, (5)

whereν = rank(X),

H = R(φ) + ZG(γ)ZT ,

and
P = H−1 −H−1X(XTH−1X)−1XH−1. (6)

Here we supposeν = p. To find an estimate for the variance
parameter, one has to maximum ofℓR(θ) according to the
maximum likelihood principle. This is a conceptually simple
nonlinear Newton-Raphson iterative procedure as described in
Algorithm 1, however it can be computationally expensive to
carry out for big data sets.
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Usually, one obtain the maximum or an quasi-maximum
value by finding thestationary pointof the restricted log-
likelihood, the zeros of its first derivatives with respectsto θ.
These first derivatives ofℓR are referred to as thescoresfor
the variance parametersθ or the log-likelihood [9, p.252]:

s(σ2) =
∂ℓR
∂σ2

= −1

2

{
n− p

σ2
− yTPy

σ4

}

, (7)

s(κi) =
∂ℓR
∂κi

= −1

2

{

tr(P
∂H

∂κi
)− 1

σ2
yTP

∂H

∂κi
Py

}

. (8)

We shall denote

S(θ) = (s(σ2), s(κ1), . . . , s(κm))T

as thescore vector. The negative of the Hessian of the log-
likelihood function, or the negative Jacobian matrix of the
score vector, is referred to as theobserved information matrix.
We will denote the matrix asIO.

IO = −








∂ℓR
∂σ2∂σ2

∂ℓR
∂σ2∂κ1

· · · ∂ℓR
∂σ2∂κm

∂ℓR
∂κ1∂σ2

∂ℓR
∂κ1∂κ1

· · · ∂ℓR
∂κ1∂κm

...
...

. . .
...

∂ℓR
∂κm∂σ2

∂ℓR
∂κm∂κ1

· · · ∂ℓR
∂κm∂κm








. (9)

An standard approach to find zeros of the score vector
is the Newton-Raphson method in Algorithm 1 which re-
quires the observed information. Unfortunately, we shall see
that computing the observed information is computationally
prohibitively for large data sets. Therefore, theexpected in-
formation—the Fisher information—is often preferred due
to its simplicity. The resulting algorithm is referred to as
the Fisher-scoring algorithm[10], [11]. The Fisher scoring
algorithm is a success in simplifying the approximation of
the Hessian matrix of the log-likelihood. Still, evaluating of
the elements of the Fisher information matrix is one of the
bottlenecks in a maximizing log-likelihood procedure, which
prohibits the Fisher scoring algorithm for larger data sets. In
particular, the high-throughput technologies in the biological
science, recommendation systems, engineering and social net-
work mean that the size of data sets and the corresponding
statistical models have suddenly increased by several orders of
magnitude. Further reducing computations is deserved in large
scale statical models like genome-wide association studies.

In [12], the authors prove that the mean of the observed
information,IO, and Fisher information,IF , can be split into
two parts:

IO + IF
2

= IA + IZ . (10)

The expectation of the first part,IA is equivalent to the Fisher
information which maintains the essential information on the
variance parameters while possesses a much simper form than
the Fisher information; the second partIZ involves a lot of
computations is an random zero matrix. The approximated
informationIA is much simper than information used in [4],
[5], [6, eq.6, eq.7]. And such an approximation significantly
reduce computations and speed up the linear mixed model
[13].

The aim of this paper is to provide detailed derivation
of such an information splitting formula and supplies an

self-contained background information. The remaining of the
paper is organised as follows. In§ II we shall introduce the
restricted maximum likelihood method for linear mixed model
and derives the formula for the restricted log-likelihood and
its scores. In§ III, we shall derive the observed, Fisher, and
the averaged splitting information. In§ IV we shall derive
computational friendly formulas for evaluating elements of the
averaged splitting information matrix. We concludes the paper
with some discussion in the last section.

II. RESTRICTED LOG-LIKELIHOODS AND ITS SCORE

The restricted maximum likelihood method was introduced
by Patterson and Thompson [14]. The aim of the method was
to reduce bias in animal breeding models with unbalanced
block structures. The maximum likelihood estimates of vari-
ance parameters in a linear mixed model have large bias. We
shall fist use the simple linear model to articulate the difference
between an ML estimation and a REML estimation of the
variance parameters.

Consider the simplest linear model

y = Xτ + ǫ, ǫ ∼ N(0, σ2I). (11)

The bias between an maximum likelihood estimation for the
variance parameter,̂σ2 andσ2 is

Bias(σ̂2, σ2) = E(σ̂2)− σ2 =
p

n
σ2, (12)

wherep = rank(X) is the number of fixed effects andn is the
number of observations. When the observations is small and
the number of fixed effects is relative large to the observations.
the biasBias(σ̂2, σ2) is relative large. Such situations happen
when one subdivide a big data set into many small groups,
and view each group as an individual block.

A. Bias of ML estimation on variance parameter

The individual observationsyi, i = 1, . . . , n, in the linear
model (16) are statistically independent and have distribution
yi ∼ N(xiτ, σ

2), wherexi is theith row ofX . The likelihood
for the joint distribution is defined as

L(τ, σ2; y) =

n∏

i=1

f(yi; τ, σ
2) =

n∏

i=1

exp
(

− (yi−xiτ)
2

2σ2

)

√
2πσ2

=

(
1√
2πσ2

)n

exp

(

− (y −Xτ)T (y −Xτ)

2σ2

)

.

The log-likelihood function,ℓ, is given by

ℓ = logL(τ, σ2; y)

= −n

2
log(2πσ2)− (y −Xτ)T (y −Xτ)

2σ2

= −n log(2π)

2
− n log(σ2)

2

− 1

σ2
(yT y − 2yTXτ + τTXTXτ).
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Algorithm 1 Newton-Raphson/Fisher Scoring/Averaged Information Splitting method to solveS(θ) = 0.
1: Give an initial guess ofθ0
2: for k = 0, 1, 2, · · · until convergencedo
3: Solve 





IO(θk)δk = S(θk) for Newton-Raphson

IF (θk)δk = S(θk) for Fisher scoring

IA(θk)δk = S(θk) for average information splitting

4: θk+1 = θk + δk
5: end for

The score functionsof τ andσ2 are the first derivatives ofℓ
with respect toτ andσ2 respectively

s(τ) : =
∂ℓ

∂τ
=

1

σ2
(XT y −XTXτ),

s(σ2) : =
∂ℓ

∂σ2
=

−n

2σ2
+

1

2σ4
(y −Xτ)T (y −Xτ).

The maximum likelihood estimation for the fixed effects,τ̂ ,
and the variance parameterσ̂2 satisfy that

{

s(τ̂ ) = ∂ℓ
∂τ

∣
∣
τ̂
= 0,

s(σ̂2) = ∂ℓ
∂σ2

∣
∣
σ̂2

= 0.
(13)

For this simple model, the ML estimation is obtained easily:
{

τ̂ = (XTX)−1XT y,

σ̂2 = 1
n (y

T (I − PX)y) := SR

n ,

wherePX = X(XTX)−1XT is the projection matrixfor X
and

SR : = (y −Xτ̂)T (y −Xτ̂) = yT (I − PX)y. (14)

is the residual sum of squares. Since

E(yT (I−PX)y) = tr((I −PX)E(yyT )) = (n−p)σ2, (15)

wherep = rank(X), we have

E(σ̂2) =
E(yT (I − P )y)

n
=

n− p

n
σ2. (16)

Without difficulty, one can obtain the bias between the ML
estimationσ̂2 andσ2 as in (12).

B. REML estimation for linear models

In the framework of REML, the observationy is divided
into two (orthogonal) components: one of the component of
y contains all the (fitted) residual error information in the
linear mixed model (11). Employing the maximum likelihood
on the two orthogonal components results in two smaller
problems (compared with the ML estimation). The partition
is constructed based on the following lemma

Lemma 1. Let X ∈ R
n×p be full rank and the projection

matrix PX = X(XTX)−1X , then there exist an orthogonal
matrix K = [K1,K2] such that

1) PX = K1K
T
1 ;

2) KT
2 X = 0;

3) I − PX = K2K2.

Proof: SincePX is a projection matrix with rankp, the
matrix is symmetric with eigenvalues 1 and 0. Then there exist
an eigenvalue decomposition as

PX = (K1,K2)

(
Ip 0
0 0

)(
KT

1

KT
2

)

= K1K
T
1 .

Therefore,K1 ∈ V1, and K2 ∈ V0 where Vi, i = 0, 1 is
the eigenspace which corresponds to the eigenvaluei. For a
projection matrix, we havePXX = X , therefore,X ∈ V1 and
KT

2 X = 0 because eigenvectors which associate to different
eigenvalues are orthogonal. The term 3) follows because

I − PX = [K1K2]

(
KT

1

KT
2

)

−K1K
T
1 = K2K

T
2 .

Let K = [K1,K2] be an orthogonal matrix such that
PX = K1K

T
1 and KT

2 X = 0. Let yi = KT
i y, i = 1, 2,

thenE(KT y) = KTE(y), and

var(KT y) = KTvar(y)K = σ2I.

(
y1
y2

)

∼ N

((
KT

1 Xτ
0

)

, σ2

(
Ip 0
0 In−p

))

. (17)

Apply the maximum likelihood methods toy1 and y2, we
obtain two likelihood functions

ℓ1(τ, σ
2; y1) = −p

2
log(2π)− p

2
log(σ2)−

(y1 −KT
1 Xτ)T (y1 −KT

1 Xτ)

2σ2
, (18)

ℓR = ℓ2(σ
2; y2) = −n− p

2
log(2πσ2) +

yT2 y2
σ2

. (19)

The estimation ofτ based on the likelihood functionℓ1 is
the same as the maximum likelihood estimation:

ˆ̂τ = (XT K1K
T
1

︸ ︷︷ ︸

=PX

X)−1XT K1K
T
1

︸ ︷︷ ︸

=PX

y = (XTX)−1XT y = τ̂ .

Restrict the maximum likelihood method to the marginal
distribution of the residual component,y2, one can obtain
the estimation of the variance parameters. The marginal log-
likelihood function,ℓ2, does not depend onτ . The estimation
of σ2 in the marginal likelihood is

ˆ̂σ2 =
yT2 y2
n− p

=
yTK2K

T
2 y

n− p
=

yT (I − PX)y

n− p
=

SR

n− p
, (20)
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where SR is the residual sum of squares defined in (14).
Employ the result in (15), we conclude that the REML
estimation for the variance parameter is unbiased,

E(ˆ̂σ2) = σ2.

Therefore, the REML estimation on variance parameter in the
linear model (16) is unbiased. In summary, REML has twofold
functionalities. On one hand, one can use the REML as an
approach to model reduction, reducing the problem size. On
the other hand, it reduces the bias for the estimation of the
variance parameter.

C. Restricted log-likelihood for linear mixed model

The construction of the REML estimation for (11) with
general (co-)variance structure is constructed based on the
following fact.

Lemma 2. Let X ∈ R
n×p be full rank withp < n, then there

exists an nonsingular matrixL = [L1, L2] such that

1) LT
1 X = Ip×p;

2) LT
2 X = 0;

3) I − PX = I −X(XTX)−1XT = L2(L
T
2 L2)

−1LT
2 .

Proof: Let B ∈ R
(n−p)×(n−p) be any nonsingular matrix

and K2K
T
2 = I − PX as in Lemma 1. ThenBKT

2 X = 0
and rank(K2B

T ) = n − p. Therefore,{X,K2B
T } forms

a set of basis ofRn×n. DenoteLT = [XK2B
T ]−1, then

LT [X,K2B
T ] = I, we have

(
LT
1 X LT

1 K2B
T

LT
2 X LT

2 K2B
T

)

=

(
Ip×p 0
0 I(n−p)×(n−p)

)

. (21)

This gives thatLT
1 X = Ip×p andLT

2 X = 0(n−p)×p.
To prove 3), letD = [X,L2], then the columns ofD forms

a basis set ofRn×n andD is an nonsingular matrix. Apply
the identityI = DD−1D−TD = D(DTD)−1DT and write
it in a block matrix multiplication forms

I = (X,L2)

(
XTX XTL2

LT
2 X LT

2 L2

)−1 (
XT

LT
2

)

.

Employ the fact theLT
2 X = 0, and multiply the block matrices

on the right hand side, we have

I = PX + L2(L
T
2 L2)

−1LT
2 .

Corollary 1. Let X ∈ R
n×p be full rank with p < n, H

be a positive definite matrix, andL = [L1, L2] be the linear
transform matrix in Lemma 2 such thatLT

1 X = Ip×p and
LT
2 X = 0(n−p)×p. If P is defined in(6)

P = H−1 −H−1X(XTH−1X)−1XTH−1

then we have
P = L2(L

T
2 HL2)

−1LT
2 . (22)

(XH−1X)−1 = LT
1 HL1 − LT

1 HL2(L
T
2 HL2)

−1LT
2 HL1.

(23)

Proof: SinceH is symmetric positive definite, then there
exists a symmetric positive definite matrixH1/2, Let X̂ =
H−1/2X , thenX̂ is full rank andLT

2 H
1/2X̂ = 0. According

to Lemma 2, we have

I − X̂(X̂T X̂)−1X̂ = H1/2L2(L
T
2 HL2)

−1LT
2

Multiply H−1/2 on both sides, we obtain (22). For (23), we
have

LT
1 HL1 − LT

1 H L2(L
T
2 HL2)

−1LT
2

︸ ︷︷ ︸

P

HL1

= LT
1 HL1 − LT

1 (H −X(XTH−1X)−1XT )L1

= LT
1 X

︸ ︷︷ ︸

Ip×p

(XTH−1X)−1 XTL1
︸ ︷︷ ︸

Ip×p

= (XTH−1X)−1.

For X ∈ R
n×p, Let L = [L1, L2] be the linear transforma-

tion defined in Lemma 2. such thatLT
1 X = Ip andLT

2 X = 0.
Use this transform, we obtain

LT y =

(
y1
y2

)

∼ N

((
τ
0

)

, σ2

(
LT
1 HL1 LT

1 HL2

LT
2 HL1 LT

2 HL2

))

.

(24)
According to the result in [15, p40, Thm 2.44], the marginal
distribution of y2 is given asy2 ∼ N(0, σ2LT

2 HL2). The
associated likelihood function corresponding toy2 is

ℓR = ℓ2 = ℓ(σ2, φ; y2) = −1

2
{(n− p) log(2πσ2)

+ log |LT
2 HL2|+ yT2 L2(L

T
2 HL2)

−1LT
2 y2)/σ

2}. (25)

This form is equivalent to (5).

Theorem 1. The residual log-likelihood for the linear model
in (25) is equivalent to

ℓR =− 1

2

{
(n− p) log(σ2) + log |H |+ log |XTH−1X |

}

− 1

2
yTPy/σ2 + const. (26)

where

P = H−1 −H−1X(XTH−1X)−1XTH−1. (27)

Proof: First we notice thatP = L2(L
T
2 HL2)

−1L2 (22)),
and (23). Then we use the identity
∣
∣
∣
∣

(
Ip −(LT

1 HL2)(L
T
2 HL2)

−1

0 In−p

)(
LT
1 HL1 LT

1 HL2

LT
2 HL1 LT

2 HL2

)∣
∣
∣
∣

=

∣
∣
∣
∣

(
(XTH−1X)−1 0

LT
2 HL1 LT

2 HL2

)∣
∣
∣
∣
= |LTHL|,

We have|LTHL| = |H ||LTL| = |(XTH−1X)−1||LT
2 HL2|

and

log |LTL|+log |H | = log |LT
2 HLT

2 |− log |XTH−1X |. (28)

Note the construction ofL does not depend onσ2 and φ,
thereforelog |LTL| is a constant.
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D. The score functions for the restricted log-likelihood

To derive the scores for the restricted log-likelihood, we
shall use the formula (25) rather than (5). In general setting,
when we present the restricted log-likelihood, we shall use(5),
because it does not involve any intermediate variables likeL2.

Lemma 3. LetA(κ) be a nonsingular parametric matrix, then
we have

∂ log|A|
∂κi

= trA−1 A

∂κi
, (29)

∂A−1

∂κi
= −A−1 ∂A

∂κi
A−1. (30)

Proof: See [16, p.305, eq.8.6] for (29) and [16, p.307, eq.
8.15] for (30)

Theorem 2 ([17]). Let X ∈ R
n×p be full rank. The scores

of the residual log-likelihood the linear model in(11) is given
by

s(σ2) =
∂ℓR
∂σ2

= −1

2

{
n− p

σ2
− yTPy

σ4

}

, (31)

s(κi) =
∂ℓR
∂κi

= −1

2

{

tr(PḢi)−
1

σ2
yTPḢiPy

}

, (32)

whereP is defined in(27), and Ḣi =
∂Hi

∂κi

Proof: Consider the residual loglikelihood function in
(25), it follows thats(σ2) = ∂ℓR

∂σ2 .

s(κi) = −1

2

{
∂ log |LT

2 HL2|
∂κi

+
1

σ2

∂(yTPy)

∂κi

}

. (33)

Using the fact on matrix derivatives of log determinant in (29)
and the property of the trace operationtr(AB) = tr(BA)

∂ log(|LT
2 HL2|)

∂κi
= tr

(

(L2HL2)
−1 ∂(L

T
2 HL2)

∂κi

)

= tr



L2(L
T
2 HL2)

−1L2
︸ ︷︷ ︸

=P

Ḣi



 = tr
(

PḢi

)

. (34)

One easy way to calculate the second term in (33) is to use
the relationship

P = L2(L
T
2 HL2)

−1LT
2

and the result on matrix derivatives of an inverse matrix (30)

∂H−1

∂κi
= −H−1 ∂H

∂κi
H−1.

We have

∂(L2(L
T
2 HL2)

−1LT
2 )

∂κi
= L2

∂(LT
2 HL2)

−1

∂κi
LT
2

= −L2(L
T
2 HL2)

−1 ∂(L
T
2 HL2)

∂κi
(LT

2 HL2)
−1LT

2

= −L2(L
T
2 HL2)

−1LT
2

︸ ︷︷ ︸

=P

Ḣi L2(L
T
2 HL2)

−1LT
2

︸ ︷︷ ︸

=P

= −PḢiP = Ṗi. (35)

III. D ERIVE THE INFORMATION MATRICES

As the score vector for the restricted log-likelihood avail-
able, the observed information and the Fisher information can
be derived by definition with the help of some matrix algebra
operations.

Lemma 4. Let y ∼ N(Xτ, σ2H) be a random variable and
H is symmetric positive definite matrix,whererank(X) = ν,
then

P = H−1 −H−1X(XTH−1X)−1XH−1

is a weighted projection matrix such that

1) PX = 0;
2) PHP = P ;
3) tr(PH) = n− ν;
4) PE(yyT ) = σ2PH .

Proof: The first 2 terms can be verified by directly by
computation. Since H is a positive definite matrix, there exist
H1/2 such that

tr(PH) = tr(H1/2PH1/2) = tr(I − X̂(X̂T X̂)−1X̂)

= n− rank(X̂) = n− ν.

whereX̂ = H−1/2X . The 4th item follows because

PE(yyT ) = P (var(y)−Xτ(Xτ)T )

= σ2PH − PXτ(Xτ)T = σ2PH.

Lemma 5. Let H be a parametric matrix ofκ, andX be an
constant matrix, then the partial derivative of the projection
matrix

P = H−1 −H−1X(XTH−1X)−1XH−1

with respect toκi is

Ṗi = −PḢiP, (36)

whereṖi =
∂P
∂κi

and Ḣi =
∂H
∂κi

.

Proof: Using the derivatives of the inverse of a matrix
(30), we have

Ṗi =
∂

∂κi
(H−1 −H−1X(XTH−1X)−1XTH−1)

=−H−1ḢiH
−1 +H−1ḢiH

−1X(XTH−1X)−1XTH−1

−H−1X(XTH−1X)−1XTH−1Ḣi×
H−1X(XTH−1X)−1XTH−1

+H−1X(XTH−1X)−1XTH−1ḢiH
−1

=−H−1Ḣi +H−1X(XTH−1X)−1XTH−1ḢiP

=− PḢiP.
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A. Formulas for the observed information

Theorem 3. The element of the observed information matrix
for the residual log-likelihood(5) is given by

IO(σ2, σ2) =
yTPy

σ6
− n− p

2σ4
, (37)

IO(σ2, κi) =
1

2σ4
yTPḢiPy, (38)

IO(κi, κj) =
1

2

{

tr(PḢij)− tr(PḢiPḢj)
}

+
1

2σ2

{

2yTPḢiPḢjPy − yTPḦijPy
}

. (39)

whereḢi =
∂H
∂κi

, Ḧij =
∂2H

∂Ki∂Kj
.

Proof: The result in (37) is standard according to the
definition. The result in (38) follows according to the result in
Lemma 5. If one uses the score in (7). The first term in (39)
follows because

∂ tr(PḢi)

∂κj
= tr(PḦij) + tr(ṖjḢi) (Ṗj = −PHjP )

= tr(PḦij)− tr(PḢjPḢi).

The second term in (39) follows according to the result in
Lemma 5.

−∂(PḢiP )

∂κj
= PḢjPḢiP − PḦijP + PḢiPḢjP. (40)

Further note thatḢi, Ḣj andP are symmetric. The second
term in (39) follows because of

yTPḢiPḢjPy = yTPḢjPḢiPy.

B. Formulas of the Fisher information matrix

TheFisher information matrix, I, is the expect value of the
observed information matrix,I = E(IO). According to such
a definition, with some calculation, we have

Theorem 4. The element of the Fisher information matrix for
the residual log-likelihood function in(5) is given by

I(σ2, σ2) = E(IO(σ2, σ2)) =
tr(PH)

2σ4
=

n− ν

2σ4
, (41)

I(σ2, κi) = E(IO(σ2, κi)) =
1

2σ2
tr(PḢi), (42)

I(κi, κj) = E(IO(κi, κj)) =
1

2
tr(PḢiPḢj). (43)

Proof: The formulas can be found in [17]. Here we supply
alternative proof. First note thatPX = 0 and

PE(yyT ) = P (σ2H +Xτ(Xτ)T ) = σ2PH. (44)

Then

E(yTPy) = E(tr(PyyT )) = tr(PE(yyT ))

= σ2 tr(PH) = (n− ν)σ2. (45)

whererank(L2) = n− rank(X) due toLT
2 X = 0. Therefore

E(IO(σ2, σ2)) =
E(yTPy)

σ6
− n− ν

2σ4
=

n− ν

2σ4
. (46)

Second, we notice thatPHP = P . Apply the procedure in
(45), we have

E(yTPḢiPy) = tr(PḢiPE(yyT )) = σ2 tr(PḢiPH)

= σ2 tr(PHPḢi) = σ2 tr(PḢi), (47)

E(yTPḢiPḢjPy) = σ2 tr(PḢiPḢjPH)

= σ2 tr(PHPḢiPḢj)

= σ2 tr(PḢiPḢj), (48)

E(yTPḦijPy) = σ2 tr(PḦijPH) = σ2 tr(PḦij).
(49)

Substitute (47) into (38), we obtain (42). Substitute (48) and
(49) to (39), we obtain (43).

Because the elements of the Fisher information matrix have
simper forms than these of the observed information matrix,
in practice, theFisher information matrix, I = E(IO), is
preferred. The corresponding algorithm is referred to as the
Fisher scoring algorithm[11]. The Fisher scoring algorithm
is widely used in many machine learning algorithms.

The Fisher scoring algorithm is a great success in reduc-
ing computations in the Hessian matrix of a log-likelihood.
However, notice that the elementsI(σ2, κi) andI(κi, κj) in
the Fisher information still involve computationally intensive
trace terms of matrix products. Evaluating these trace terms
is still computationally prohibitive for big data sets. On the
other hand, we notice that some quadratic terms inIO(σ2, κi)
and IO(κi, κj) is easier to be evaluated because they can
be transformed as several matrix vector multiplications. One
natural thinking is whether one can obtain an approximated
information matrix by some combination of the Fisher infor-
mation and the observed information such that only quadratic
terms remain.

Following the idea used in [17], where theaverage infor-
mationIA is introduced as

IA(σ2, σ2) =
1

2σ6
yTPy; (50)

IA(σ2, κi) =
1

2σ4
yTPḢiPy; (51)

IA(κi, κj) =
1

2σ2
yTPḢiPḢjPy. (52)

The authors in [12] prove that such an “average information”
is in fact a part of the mean of the observed and Fisher
information. For example,

I(κi, κj) + IO(κi, κj)

2
=

yTPHiPHjPy

2σ2
︸ ︷︷ ︸

IA(κi,κj)

+
tr(PHij)− yTPHijPy/σ2

4
︸ ︷︷ ︸

ÎZ(κi,κj)

. (53)

According to the classical matrix splitting techniques [18,
p.94], this technique can be formulated as follows.

Theorem 5. Let IO and I be the observed information
matrix and the Fisher information matrix for the residual
log-likelihood of linear mixed model respectively, then the
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TABLE I
COMPARISON BETWEEN THE OBSERVED, FISHER AND AVERAGED SPLITTING INFORMATION

index IO I IA

(σ2, σ2) yTPy

σ6
−

n−ν
2σ2

n−ν
2σ4

yT Py

2σ6

(σ2, κi)
yTPHiPy

2σ4

tr(PHi)

2σ2

yT PHiPy

2σ4

(κi, κj) IO(κi, κj)
tr(PHiPHj)

2

yT PHiPHjPy

2σ2

IO(κi, κj) =
tr(PHij)−tr(PHiPHj)

2
+

2yTPHiPHjPy−yTPHijPy

2σ2
,

Hi =
∂Hi
∂κi

, Hij = ∂2H
∂Hi∂Hj

average of the observed information matrix and the Fisher
information matrix can be split asIO+I

2 = IA + IZ , such
that the expectation ofIA is the Fisher information matrix
andE(ÎZ) = 0.

Proof: Let the element ofIA be defined as in (50) to
(52), we have

IZ(σ
2, σ2) = 0, (54)

IZ(σ
2, κi) =

tr(PḢi)

4σ2
− yTPḢiPy

4σ4
, (55)

IZ(κi, κj) =
tr(PHij)− yTPHijPy/σ2,

4
(56)

Apply the result in (45), we have

E(IA(σ2, σ2)) =
(n− ν)

2σ4
= I(σ2, σ2). (57)

Apply the result in (47), we have

E(IZ (σ
2, κi)) = 0

and

E(IA(σ2, κi)) =
tr(PḢi)

2σ2
.

Apply the result in (48), we have

E(IZ(κi, κj)) = 0

and

E(IA(κi, κj)) =
tr(PḢiPHj)

2
= I(κi, κj).

IV. COMPUTE ELEMENTS OF AVERAGED SPLITTING

INFORMATION

CompareIA with IO, and IF in Table I, in contrast
with IO(κi, κj) which involves 4 matrix-matrix products,
IA(κi, κj) only involves a quadratic term which can be eval-
uate by 4 matrix-vector multiplications and an inner product
as in Algorithm 2. One might think thatPy is complicated

Algorithm 2 ComputeIA(κi, κj) =
yTPḢiPḢjPy

2σ2

1: ξ = Py
2: ηi = Hiξ; ηj = Hjξ;
3: ζ = Pηj

4: IA(κi, κj) =
ηT
i ξ

2σ2

because of its representation in (6), whereas it turns out
that Py have a very simple representation. We introduce the
following lemma.

Lemma 6. Let H = R+ ZGZT , then

H−1 = R−1 −R−1Z(ZTR−1Z +G−1)−1ZTR−1.

Proof: Using Fact 1.

Lemma 7. The inverse of the matrixC in (3) is given by

C−1 =

(
CXX CXZ

CZX CZZ

)−1

=

(
CXX CXZ

CZX CZZ

)

where

CXX = (XTH−1X)−1, (58)

CXZ = −CXXXTR−1ZC−1
ZZ , (59)

CZX = −C−1
ZZZ

TR−1XCXX , (60)

CZZ = C−1
ZZ + CZZ

−1ZTR−1XCXXXTR−1ZTC−1
ZZ .

(61)

Proof: We only proof the formula According to Fact 3,

CXX = ((XTR−1X)−1 − (XTR−1Z)C−1
ZZ(Z

TR−1X))−1

= (XT (R−1 −R−1Z(ZTR−1Z +G−1)−1ZTR−1)
︸ ︷︷ ︸

H−1

X)−1

= (XTH−1X)−1.

We shall prove the following results

Theorem 6. LetP be defined in(6), τ̂ andũ be the solution to
(3), ande be the residuale = y−Xτ̂−Zũ, thenPy = R−1e,
and

P = H−1 −H−1X(XTH−1X)−1XTH−1 (62)

= R−1 −R−1WC−1WTR−1 (63)

where W = [X,Z] is the design matrix for the fixed and
random effects.

Proof: Suppose (63) hold, then

Py = R−1y −R−1W C−1WTR−1y
︸ ︷︷ ︸

(τ̂T ,ũT )T

(64)

= R−1(y −Xτ̂ − Zũ) = R−1e (65)
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R−1 −R−1WC−1WTR−1

=R−1 −R−1(X,Z)

(
CXX CXZ

CZX CZZ

)(
XT

ZT

)

R−1.

=R−1 −R−1{XCXXXT −XCXZZ − ZCZX + ZC−1
ZZZ

+ Z(CZZ
−1ZTR−1XCXXXTR−1ZTC−1

ZZ)Z
T }R−1

=R−1 −R−1ZC−1
ZZZ

TR−1

︸ ︷︷ ︸

H−1

− (R−1 −R−1ZC−1
ZZZ

TR−1)XCXXXTH−1

=H−1 −H−1X(XTH−1X)−1XTH−1

From above results, we find out that evaluating the matrix
vectorPy is equivalent the solve the linear system (3), and
then evaluate the weighted residualR−1e. Notice that the
matrixP ∈ R

n×n. On contrast,C ∈ R
(p+b)×(p+b) wherep+b

is the number of fixed effects and random effects. This number
p+ b is much smaller than the number of observationsn. In
each nonlinear iterations, the matrixC can be pre-factorized
for evaluatingPηi.

V. D ISCUSSION

From above discussion, we know that he Fisher information
has a simper form than the observed information and de-
scribes the essential information on the unknown parameters.
Therefore, Fisher information matrix is preferred not only
in analyzing the asymptotic behavior of maximum likelihood
estimates [19], [20], [21] but also in finding the variance of
an estimator and in Bayesian inference [22]. In particular,
if the Fisher information matrix is used in the process of a
maximum (log-)likelihood method, which is widely used in
machine learning. Besides the traditional application fields like
genetical theory of natural selection and breeding [23], many
other fields including theoretical physics have introduce the
Fisher information matrix theory [24], [25], [26], [27].

The aim of information splitting is to remove computation-
ally expensive and negligible terms so that a much simper
approximated information matrix is obtained. Such a splitting
keeps the essential information and can be used as a good
approximation to the observed information matrix which is
required for a derivative Newton method. These formulas are
much simpler than that used in genetics wide-association [3],
[4], [5], [6], and make derivative Newton method applicable
for large data sets which involve many thousands fixed and
random effects.
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APPENDIX

Fact 1. Let A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×m, andD ∈

R
m×n. If A is andC is nonsingualr then

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)DA−1.

Fact 2. Let A,B ∈ R
n×n,then we have

(A+B)−1A = I − (A+B)−1B

A(A+B)−1 = I −B(A+B)−1

Proof: Notice the identity

(A+B)−1(A+B) = I = (A+B)(A+B)−1.

Fact 3. SupposeS = (A−BC−1BT )−1 exist, then
(

A B
BT C

)−1

=

(
S −SBC−1

−C−1BTS C−1BTSBC−1 + C−1

)

.
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