
Towards Integrating Insurance Data into Information
Security Investment Decision Making

Daniel W. Woods and Andrew C. Simpson
Department of Computer Science, University of Oxford

Wolfson Building, Parks Road, Oxford OX1 3QD
United Kingdom

firstname.lastname@cs.ox.ac.uk

Abstract—Making security investment decisions involves giv-
ing consideration to a variety of risks. However, there is little
robust empirical evidence that can be used to support this process.
This paper builds a road-map for incorporating cyber insurance
data into existing security investment models. We propose an
approach for using this data as an input for one investment
model and introduce three distinct methods for evaluating the
effectiveness of a new investment. We then describe a road-map
for improving the insurance data collection process that aims to
improve data utility for researchers. This approach could benefit
those trying to justify an investment at all levels by providing
evidence for the return on security.
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I. INTRODUCTION

The consequences of an organisation mismanaging security
are increasingly severe. For example, a 2017 report [1] sug-
gested that the average consolidated total cost of a data breach
stands at $3.62 million. Whatever one thinks of such calcula-
tions and conclusions, one thing is clear: security budgets are
rising [2]. Some security researchers have asserted that cyber
risks “cannot be managed better until they can be measured
better” [3]. Yet, there has been little use of empirical data in
this respect. Indeed, Verendel goes as far as suggesting that
quantified security lacks validation by empirical results [4].

In this paper we propose a novel data source for evaluating
security investments. We give consideration to how cyber
insurance data might be applied to investment models that
seek to quantify the benefits of different information security
controls. We propose an approach for using this data within a
pre-existing model. We also map out future steps to increase
the utility of insurance data and move towards a scientific
approach to investment models that incorporates insurance
data, with a view to addressing the concerns aired by Verendel
in [4].

The structure of the remainder of this paper is as follows.
We start, in Section II, by providing the background for the rest
of the paper, including a review of the related literature and
an overview of how cyber insurance data is collected. Then,
in Section III, we investigate how this data could be used in
an existing investment model and introduces three approaches
to estimating breach probability. In Section IV we discuss
insurance data as an input, as well as the strengths of each
of the three approaches. Section V looks at how insurance

processes can be standardised for the benefit of insurers and
analysis alike. Finally, Section VI concludes the paper.

II. BACKGROUND

In this section we introduce a popular investment model,
before describing the format of insurance data and justifying
why it provides a useful input for the model.

A. Return on Security Investment

Investment models can be used to provide a cost–benefit
analysis of a given investment. Return on Security Investment
(ROSI) quantifies the benefits of a given investment adjusted
for the cost of investment [5], which involves a calculation of
the form

ROSI =
Benefits of Investment− Cost of Investment

Cost of Investment

There have been numerous proposed methods of quantify-
ing the benefit of investment. In [6], Böhme and Moore create
a multiple round model that considers the benefits of delaying
investment, which is extended to include penetration testing
in [7]. In [8], the authors consider trade-offs between security
and other factors (such as performance) in cloud computing.
The need to quantify the impact of a successful cyber attack
is common across these models.

In [9], Heitzenrater and Simpson estimate the benefits
of security using the notion of Annualised Loss Expectancy
(ALE), which is the product of the Annual Rate of Occurrence
(ARO) and the Single Loss Expectancy (SLE). The Informa-
tion Security Breaches Survey (ISBS) [10] — a self-reported
survey of UK organisations — asks each respondent to report
on their “worst-case loss”, which is used as an input for the
SLE, with an annual rate of occurrence that is assumed to be
1. We adapt this approach to use insurance data, the format of
which we consider in the next subsection.

B. Insurance Data Format

Cyber insurance data has two important aspects for our
approach: ex-ante assessment of the insured provides insights
into which security controls are in place; ex-post claims
financially quantify the effect of any cyber attacks suffered.
The insurance industry’s ability to link the two across many
insureds is a unique perspective.



TABLE I. THE RISKS AND COSTS COVERED BY EACH TYPE OF CYBER INSURANCE COVERAGE.

Coverage What It Covers
A1 First-Party The cost of replacing or restoring lost data.

Excludes liability for intellectual property.
A2 Data Privacy and Liability claims of a third party as a result of

Network Security Liability a data breach or an unintentional transmission of a computer virus.
A3 Business Interruption Revenues lost as a result of network down time.
A4 Cyber-Extortion Investigation costs, sometimes the extortion demand.
A5 Public Relations Fees for Public Relations firm to manage reputation in the event of a breach.
A6 Multi-Media Liability Costs relating to the content of a firm’s website such as copyright infringement.
A7 Professional Services Liability relating to a service offer such as web hosting or internet service.

Claims may be differentiated according to the type of
coverage offered. Table I details what is covered by a range of
coverage types. Certain cyber risks are covered, while others
are not. For example, the liability for a data breach is covered
by A2, while the risk of lost revenue as a result of systems
downtime may be covered by A3 or A4. However, the risk of
lost revenue as a result of reputation damage is not generally
covered. We do not claim this list to be exhaustive, not least
because it will evolve over time.

Characterising what data is collected in the risk assessment
is more difficult. Empirical research has identified conflicting
results on how the risk assessment is conducted. Franke [11]
reported that insurers choose to offer insurance based on the
security assessment, Woods et al. [12] identified a range of
security controls about which insurers collect information in
the application process, while Romanosky et al. [13] showed
that the majority of US insurers do not consider information
security when pricing risk. This disparity makes it difficult to
use the academic literature to identify the factors considered
in risk assessment.

For this reason we will consider a proposed cyber insurance
data standard [14] (claimed to be the first of its kind). In other
lines of insurance, data collection has converged on a common
standard1. The cyber insurance standard includes a collection
of mandatory and optional categories relating to a policyholder
— the mandatory categories mean that every policy inputted
will contain, at a minimum, the firm’s industry and revenue.
We include a selection of the available fields in Table II.

In order to input scores such as the ‘Privacy Policy Score’
or the ‘Encryption Quality Score’, the data standard provides
a Quality Score Rubric. This is a standardised evaluation of a
number of aspects of an organisation’s cyber security according
to a pre-defined rationale. Scores range from a binary Yes/No
choice through Low/Medium/High scoring to externally de-
fined levels. For example the ‘Anti Virus Quality Score’
depends on the scope of installation, which is scored with
‘Few workstations’, ‘Most workstations’ and ‘All endpoints’
corresponding to poor, average and excellent respectively.

C. Suitability of Insurance Data

We now attempt to motivate the use of insurance data
within security investment models. In order to do so, we first
look at one alternative — that of survey data. Of the surveys
mentioned so far in this paper, we find that [1], [2] and [10]
have 383, 260 and 1,125 responses respectively. Florêncio

1See, for example, ACORD’s data standards: https://www.acord.org/
standards/downloads/Pages/default.aspx.

and Herley [15] identify a number of issues with cyber-
crime surveys; increasing the sample size is suggested as one
solution to the problems associated with with surveying rare
phenomena such as data breaches. However, these numbers
are low because (in part) surveys are expensive to conduct,
whereas insurance data is created in proportion to the size of
the market — as a by-product of normal business operations.

Conflicting cyber crime survey results is another issue that
has been identified [16], which is (in part) explained by the
different populations surveyed. This raises a question about
the relevance of the losses of a large health care provider to a
small retail firm. Meanwhile, industry code is mandatory in the
data standard. In addition, there are optional fields including
Founding Year, Employee Count and Revenue [14], providing
the ability to focus only on data points ‘relevant’ to a given
organisation. This would allow the “finer-grained breakdown
of the data”, in particular relating to employee numbers, called
for in [9].

The difficulty of “mapping incidents to losses” is raised as
a challenge in [17]. Utilising insurance data skips the incident
step by solely considering direct losses. Claims financially
quantify the effect of cyber attacks suffered — if a breach leads
to no harm, then it is not reflected in claims data. Measurement
is done in a unit of account that facilitates comparison. We
acknowledge that fraudulent claims do weaken the data set.

As a firm’s cyber security practices are generally consid-
ered sensitive information, surveys rarely collect data relating
to this. However, this information is shared with insurers as
they cannot accept liability for a risk without understanding
the cyber security measures mitigating that risk. Importantly,
the data standard of [14] provides a standardised format that
allows for comparison between different insurer’s assessments,
which tend to be different to each other [13, 18].

Coverage being split into different policies delimits differ-
ent losses. This is important because security controls do not
affect these losses equally. For example, regularly backing-up a
system mitigates the risk of a suffering a cyber-extortion attack,
but will do little to protect against liability for a data breach.
We propose a model to separate out these losses and consider
how a given security control mitigates each loss specifically,
which allows for a more fine-grained understanding of its
effectiveness.

III. INCORPORATING INSURANCE DATA INTO ROSI

The analysis of Heitzenrater and Simpson described in [9]
defines the benefit of an investment in terms of the difference
between ALEs and ALE0, the expected loss with and without



TABLE II. A SELECTION OF THE FIELDS OF THE AIR CYBER EXPOSURE DATA STANDARD, WITH MANDATORY FIELDS IN BOLD TEXT.

Section Field
Organization Breach History, Employee Count, Founding Year, Industry Code,

Mergers/ Acquisitions, Ownership Type, Revenue, IT Maturity Score,
BitSight Rating, ISO 27001 Indicator, Privacy Policy Score

Organization Data Data Type, Record Count, Cost Per Unit, Data Back-up Frequency,
Recovery Cost, Health Indicator

Asset Asset Type, Business Interruption Cost, Recovery Cost, Location,
Asset Count, Physical Security Measures, Anti-Virus Quality Score

Transfer Business Interruption Cost, Recovery Cost, Transfer Type, Access Level,
Payment Processor, DNS Provider, Encryption Quality Score, Cloud Type

a given security investment, s, respectively. This reduces to a
binary choice between a set loss, λ, with probability, p:

ALE = p · λ

Here, p = 1 if no investment takes place because the set loss,
λ, is equal to the average worst-case loss in the survey. If an
investment is made, then ps varies between 0 and 1 according
to how effective the control is.

We propose how cyber insurance data can feed into λ and
p in turn, and provide three different methods for estimating
the probability of breach, p. We use a hypothetical example to
illustrate this.

Consider a retail firm with around 50 employees looking at
an investment with known cost, c. The investment is a phishing
awareness scheme, which involves simulating a phishing attack
against the firm’s employees and giving further training to
those who fall victim to it. Finally, suppose that there is a
database X that contains insurance policies entered in a way
that is consistent with the data standard of [14], complete
with corresponding claims data delimited as in Table I. For
simplicity, we will only consider coverage related to first-party
costs, cyber extortion and multi-media liability (A1, A4 and
A6 respectively).

A. Set Loss, λ

Claims data can be input as the set loss λ. This involves
querying the database X to produce all results of entries with
‘Industry Type = Retail’ and ‘25 < Employee number < 100’.
We then take an average of the total claims over a given time
period to give λ0. If the average amount claimed under first-
party A1 is 12000, cyber extortion A4 is 16000 and multi-
media liability A6 is 3200, then we will have the vector

λ0 = (12000, 16000, 3200)

This is the expected loss if a breach occurs and with no further
investment we assume that each will occur with probability 1.
Thus

ALE0 = λ0 · (1, 1, 1)
= 31200

Next we look at calculating the probability of breach, p, if the
phishing awareness scheme takes place.

B. Probability of Breach, p

The probability of breach, p, is a vector of the form

p = (p1, p2, p3) ∈ [0, 1]3

For example, p1 is the likelihood of suffering the set loss
A1. We introduce three methods of determining the value

of p: subjective effectiveness, psub, harnesses an individual’s
expectations; external effectiveness, pext, incorporates external
data sources; and actuarial effectiveness, pact, utilises data that
relates losses to the controls that insureds have in place.

1) Subjective Effectiveness: This method relies upon an
individual’s judgement in classifying a control into different
categories describing a percentage of risk mitigated. We outline
reasoning behind how an anti-phishing awareness campaign
mitigates each of A1, A4 and A6 to illustrate this method.

Making an arbitrary choice, suppose that High, Low and
Ineffective correspond to mitigating 75%, 25% and 0% of the
risk respectively.

First-Party Coverage covers the costs of restoring or re-
placing lost data. Many of these losses are caused by internal
errors, which a phishing campaign does not mitigate. Conse-
quently, we say that the control has a low effect on mitigating
the risks covered by First-Party Coverage. Conversely, the
majority of cyber extortion attacks originate from outside the
organisation. Consequently, we conclude that the control will
have a high effect on A4. Finally, phishing awareness will have
a negligible effect on A6, which covers liability for content on
the organisation’s media outlets.

Given the above, we have the following.

psub = (0.25, 0.75, 0)
ALEsub = (0.25, 0.75, 0) · (12000, 16000, 3200)

= 15000
ROSIsub = ALE0−ALEsub−c

c

2) External Effectiveness: The ‘external effectiveness’,
pext, uses data provided by external sources to quantify the
effectiveness of an investment in mitigating the expected loss
under a given coverage, Ak. Effectiveness (αki ) is likely
measured against a particular attack, Ti. This must be corrected
for the proportion of losses (βki ) covered by Ak that can be
attributed to the attack, Ti. We must then sum over all the
different attacks that lead to a given loss, weighted by the
proportion of attacks faced. This results in the following.

pk = 1− Σiαki
βki

pext = (p1, p2, . . . , p7)

Ideally, we would delimit all possible attacks so that
Σiβki = 1.

Suppose that we failed to list some attack, Tt. Then, the
control’s effectiveness αt in mitigating that attack would not be
reflected in the sum pk. The result would be an under-estimate
of the effectiveness of the control.



To illustrate this method, we make the assumption that if
x% of simulated phishing attacks succeed, then x% of real
attacks will succeed. With αki signifying the change before
and after an awareness campaign, we suggest the following as
appropriate inputs:

αki = ∆Percentage of Successful Simulated Attacks
βki = Proportion of Ai losses involving phishing

One source of βki
is reports of the percentage of attacks

involving phishing, with such a report from 2012 suggesting
that 90% of targeted attacks start with phishing [19]. Now
suppose, with λ0 = (c1, c2, c3), that phishing attacks T1 result
in 90% of the losses c1 and c2, but none of the multi-media
losses c3. If the hypothetical phishing awareness campaign led
to a fall from 80% to 40% of phishing attacks, then we would
have

α11 = α21 = α31 = 0.4
β11 = β21 = 0.9 and β31 = 0

with αki
= 0 for a 6= 1 as the phishing awareness campaign

only affects phishing attacks. These result in an effective
reduction of 0.36 across each A1 and A3 and no reduction
of A6 so that

pext = (0.64, 0.64, 1)
ALEext = (0.64, 0.64, 1) · (12000, 16000, 3200)

= 21120
ROSIact = ALE0−ALEext−c

c

3) Actuarial Effectiveness: The ‘actuarial effectiveness’ is
named as such due to the similarity to approaches found in
actuarial science. These involve delimiting a series of insured
individuals into categories, then looking at the expected result
across each category. For example, a mortality table represents
the survivorship of people from each age range. As they age,
people ‘move’ between age categories and their life expectancy
changes accordingly.

In a similar way, for a security control, C, we can divide the
sample into two categories: those who do not have the control
and those who have the control, with corresponding average
losses λ0 and λ1 respectively. A control here may consist of
an individual control or a collection thereof — recognising
that a collection may capture the interdependence of different
controls, but will likely result in small sample of organisations
with that collection.

We assume that by implementing the control C an organ-
isation’s new expected loss is the average of all organisations
who have that control. This assumption leads to

Benefits of Investment = λ0 − λ1

With λ0 = (c1, c2, c3) and λ1 = (c′1, c
′
2, c
′
3), we set pact as

pact = (
c′1
c1
,
c′2
c2
,
c′3
c3

)

to ensure that this result holds.

Note that ALEact = λ1, so that

ROSIact =
λ0 − λact − c

c

IV. DISCUSSION

In this section we discuss the previous example, giving con-
sideration to the strengths and weaknesses of each approach.

When calculating λ, there is a trade-off between the
similarity of firms in the sample and the size of the sample.
A large sample harnesses the law of large numbers, while a
smaller sample guarantees that the other data points in the
sample are relevant. For example, historical data becomes less
relevant to predicting future claims with time.

The ‘subjective effectiveness’ approach carries the stigma
associated with subjectivity. However, the skeptical reader
should remain cognisant that risk management often splits the
probability of breach into low, medium and high probability
based on individual judgment [20]. The security profession-
als carrying out the risk assessment possess knowledge and
experience of the particular organisation that may be relevant.

Providers of the data used in the ‘external effectiveness’
approach tend to aggregate data from a wide range of or-
ganisations and contexts, arguably losing relevance to the
particular circumstances. The effectiveness of a control α is
often produced by firms in the security industry, without peer
review and (arguably) with an agenda. Meanwhile, academic
studies tend to involve experiments, which do not adequately
simulate ‘the wild’. Estimating the proportion of losses β
that can be attributed to a particular attack is non-trivial. In
addition, the challenge of listing all of the relevant attacks a
given control mitigates. Further, even if a control effectively
mitigates an attack, it is not clear that another attack vector
would not instead be used by the attacker.

The ‘actuarial effectiveness’ approach assumes that, by
implementing a control C, an organisation’s new expected loss
is the average of all organisations who have that control, which
may attribute causation to correlation. Considering individual
controls obscures how controls relate to each other, which was
identified as a challenge in cyber insurance assessment in [18];
the marginal benefit of a second firewall is smaller than putting
in place the original, for example. Selecting sets of controls
results in small sample sizes that are relatively more influenced
by the random nature of cyber losses. Further, only considering
existing data may disincentivise novel controls in which the
sample size of organisations with the control is too small to
gain a meaningful expected loss. This could lead to herding
behaviour as organisations converge on the practices of the
best risk class. This would, of course, stifle innovation.

These strength and weaknesses must be considered in the
context of the security control being evaluated. Consequently,
the method of calculating breach probability can be chosen
according to the investment and, importantly, according to the
decision maker. For example, we believe that the phishing
awareness campaign suits the ‘external approach’ because it
accurately simulates ‘the wild’. Another decision maker may
possess experience with the control in question and so the
‘subjective approach’ might be more appropriate. Finally, the
data might be a particularly good fit for a particular investment,
so that the ‘actuarial approach’ is appropriate. Our approach
allows for a ‘mix and match’ approach, in which an investment
quantified using a subjective assessment can be compared with
one that is grounded in data.



V. INDUSTRY ROAD-MAP

In this section we outline a brief research agenda to
maximise the utility of cyber insurance data for decision
making. Much of this relates to data collection processes, as
standardisation enables collaborative research and large-scale
analytics.

1) Standardisation: Meland et al. [21] identified a “lack
of standardized indicators” when assessing cyber risk. The ex-
ante assessment process involves applicants filling out self-
assessed forms that vary greatly between organisations [13,
18]. If these forms followed a common standard, then they
could provide risk profiles for the actuarial effectiveness ap-
proach: organisations could be grouped according to the results
of the assessment process.

Another area that would benefit from standardisation is
the wording of the coverage, which defines the risks that the
policy covers. Standardising the wording would give a clearer
mapping between the amount claimed and the losses faced; this
delineation of types of loss is one of the strengths of insurance
data. If coverage does not extend to risks not currently covered,
like intellectual property and reputation damage [22], then the
approach we outline cannot account for these risks.

2) Ex-Post Forensics: The standardised collection of foren-
sic evidence could allow researchers to link threats and vulner-
abilities to losses. At present, this evidence is largely collected
by security vendors who often will not have a complete picture
regarding the impact of a given security event. One solution is
to build forensics into the claims process, either through loss
adjustors or via a forensics section in the claims form. This
data could then be used as an input for the external approach.

For example, if x% of data breaches involved human
engineering, we could better assess investing in employee
training — especially if the data revealed that one area of
coverage was more vulnerable to a given attack than another.
This forensic evidence could also help settle exclusions dis-
putes and provide a mechanism to combat moral hazard, which
is a problem identified in [23].

3) Policy Landscape: Many initiatives that support our
road-map are already being discussed by various stakeholders.
Standardisation was identified as a policy objective by both
policy-makers and industry bodies [12]. For example, Lloyd’s
of London has led the development of core data require-
ments that both “AIR and the RMS/Cambridge team” agree
upon [24]. In addition ACORD, a global insurance standards
body, has begun a project to standardise proposal forms [25].

In addition, there is political will to make insurance data
available for academic research. This can be seen in the 2015
report by the UK Government stating that “The Government
will work together with the insurance industry, including the
ABI and Lloyd’s, to establish a forum for data and insight
exchange and for policy discussions” [26]. These initiatives
highlight that there is pre-existing buy-in from stakeholders.

VI. CONCLUSION

We have constructed a hypothetical example to illustrate
how cyber insurance data can be used to produce ROSI
calculations. This involves using claims data as an input for the

‘set loss’ parameter and classifying three distinct approaches
to an input for ‘probability of breach’. We also described how
future steps might improve insurance processes to increase data
utility, linking this to a number of current policy initiatives.

The discussion identified a number of weaknesses in each
of the approaches to estimating the effectiveness of a given
control. Future work could identify alternative data sources
for external effectiveness and develop a clearer heuristic for
subjective effectiveness. Real insurance data may determine
whether actuarial effectiveness is a viable option.

The road-map provides an opportunity for further research;
developing a standardised forensics section that will collect
data in a way that is useful for the external effectiveness
approach and for wider academic research is an important next
step in this respect.
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