
Secure (S)Hell: Introducing an SSH Deception
Proxy Framework

Daniel Reti∗, David Klaaßen∗, Simon Duque Anton∗†, Hans Dieter Schotten∗†
∗Intelligent Networks Research Group, German Research Center for Artificial Intelligence, Kaiserslautern

†Chair for Wireless Communication and Navigation, Technische Universität Kaiserslautern
Email: firstname.lastname@dfki.de

Abstract—Deceiving an attacker in the network security do-
main is a well established approach, mainly achieved through
deployment of honeypots consisting of open network ports with
the sole purpose of raising an alert on a connection. With
attackers becoming more careful to avoid honeypots, other decoy
elements on real host systems continue to create uncertainty for
attackers. This uncertainty makes an attack more difficult, as
an attacker cannot be sure whether the system does contain
deceptive elements or not. Consequently, each action of an
attacker could lead to the discovery. In this paper a framework
is proposed for placing decoy elements through an SSH proxy,
allowing to deploy decoy elements on-the-fly without the need for
a modification of the protected host system.

Index Terms—security, deception, honeypot, honeytoken, decoy
elements, SSH proxy, deception proxy

I. INTRODUCTION

Security of productive IT-systems is never complete. Despite
employing best practices and up-to-date Intrusion Detection
System (IDS) and Intrusion Prevention System (IPS) tools,
attacks will continue to be executed successfully. Best prac-
tices such as segmentation, strict firewall and traffic rules make
it harder for an attacker and are capable of eliminating the
majority of automated attempts to attack a system. However,
a focused attack is harder to detect and mitigate. A first
step for an organisation to take countermeasures against an
attack is obtaining knowledge that there is an ongoing attack.
The average time of detection of a data breach is 280 days,
according to a study performed by IBM in 2020 [1]. Thus,
detection is an important, yet difficult first step in mitigation
of an attack. Deception technologies can be employed as
sensors with relatively low false positives and exceptional
detection capabilities. The most common deception technique
are honeypots which simulate a host on the network with
the purpose to raise an alert on interaction while wasting
the attacker’s resources. Ideally, an attacker cannot distinguish
between a productive and a deceptive resource. If any in-
teraction with the deceptive resource occurs, the attacker’s
presence is made aware to the operators, while at the same
time collecting information about the attacker’s goals, methods
and tools. Such resources are a valuable tool in IT-security. In
this work, the introduction of deceptive techniques into SSH-
communication is presented. A proxy server is used to inject
deceptive elements into the SSH communication. While a valid
user solely interacts with productive elements, an attacker
is likely to be lured to interact with interesting-sounding

elements, which in turn alerts operators of a malicious activity.
The contributions of this paper are the following:

• Give a literature review on the usage of SSH Proxies and
Deception Proxies

• Introduce an SSH deception proxy to inject decoy ele-
ments into SSH traffic

• Give insights from the writing a PoC SSH Deception
Proxy based on Python Paramiko

• Discuss the implementation on a detailed level
The remainder of this work in structured as follows: In Section
II decoy elements and deception are introduced. In Section III
an attacker model is given and used to explain the benefits
of the proposed concept. In Section IV is explained how the
proposed concept was implemented. In Section V the benefits
and difficulties are discussed and in the conclusion as short
summery of the work and the results is given.

II. BACKGROUND

A. Deception Technology

Deception Technology, which is also referred to by the term
Cyber Deception, describes the application of fake resources
and obfuscation in IT environments [2]. A popular example
is a honeypot which typically simulates open TCP ports
and raises an alert upon connection. The typical goals of
deception are to learn about attack techniques, waste attackers
resources and time, create uncertainty and detect malicious
activity while distracting from real targets. The most common
taxonomy by Whaley et al. distinguishes the deception cate-
gories simulation and dissimulation, where dissimulation can
be further described by the three categories masking, repacking
and dazzling, while simulation is categorised into mimick-
ing, inventing and decoying [3]. Traditionally, deception is
commonly applied by honeypots or as so-called honeytokens,
which are lures and fake resources on a system. In this work,
an SSH proxy is introduced that injects these kinds of lures
and fake information into the shell responses of a connected
host system. This allows to convert every Linux based system
with SSH connectivity to be turned into a high-interaction
honeypot and to plant honeytokens without the need to modify
the system with a minimal configuration overhead.

B. Secure Shells in Deception

SSH is short for Secure SHell and describes a network
protocol which is typically used for remote, network based

ar
X

iv
:2

10
4.

03
66

6v
1 

 [
cs

.C
R

] 
 8

 A
pr

 2
02

1



command line interfacing with a machine. In contrast to its
predecessor Telnet, SSH supports several encryption protocols,
protecting it from man-in-the-middle attacks. By the time of
writing, the search engine Shodan lists over 18 million devices
connected to the Internet with the SSH default TCP port 22
open and over 16 million devices stating using the OpenSSH
implementation in the SSH welcome banner. As this service
allows to remotely control a machine, connecting over SSH is
a common target for attackers. Therefore, a host with an open,
internet-facing SSH port is constantly visited by bots trying
to connect with default credentials in order to acquire further
systems to add to botnets. For this reason, popular honeypots
such as cowrie simulate a host with an open and often weakly
secured SSH port. In order to manage the connection between
clients and honeypots, SSH proxies are already available, such
as HonSSH [4] or the Cowrie Proxy Mode [5]. This work
proposes an SSH proxy as shown in Figure 1, which injects
false information into and obfuscates real information in
shell responses while maintaining legitimate interaction with
the host system for legitimate users. Administrators seeking
information concealed by the proxy should know about the
deception and thus not trust it.

C. Attacker Model

Attacker models are used to describe and classify an attacker
in terms of knowledge, resources, and objectives. Fraunholz et
al. present a methodology consisting of a capability and threat
rating, which in turn are based upon skill and resources, as well
as motivation and intention respectively [6]. However, they
discuss that especially intention and motivation are difficult
to infer from Indicators of Compromise (IoC). Deception
technologies, especially honeypots, are capable of monitoring
activities and allow for the inference of an objective of the
attacker. Still, there is guesswork involved. Apart from attacker
models that focus on the attacker, attack models that are used
to describe the attack, rather than the attacker, are employed.
Famous attack models are and the Lockheed Martin Cyber Kill
Chain [7] and the MITRE ATT&CK matrix [8] which is based
on the Cyber Kill Chain. Both models structure the behaviour
of an attacker, regardless of objective, resources or skill level.
Generally, an attacker first has to breach the perimeter, usually
after reconnaissance and development of a suitable attack,
and then move laterally towards the target, while establishing
persistence, escalating privileges and executing actions on
the infected machines. An attacker that is detected by an
SSH-proxy will assume to have obtained initial access to a
machine and will consequently try to establish persistence,
execute actions, escalate privileges, or, if the attacker’s motive
is curiosity, exfiltrate data that is available. All of these
options can be mimicked by the proxy, so the objective of
an attacker can be derived from the actions performed. Data
bases, personal files as well as opportunities for exfiltration
can be provided given an attacker tries to steal data. Kernel
information, program versions and availability of credentials,
configuration files and programs can deceive an attacker to

SSH ConnectionSSH Connection

Client SSH Deception Proxy Host

Database Server

Log Data

Fig. 1. Traffic flow of the proposed SSH deception Proxy

perform privilege escalation attacks given a persistent or higher
privileged access is the objective.

D. Proxies for Deception

The first publications to describe reverse proxies for de-
ception were published in 2017 independently by Han et
al. [9] and by Ishikawa et al. [10]. Theses proxies inject
additional cookies, forms, and HTTP parameters into HTTP
traffic. A similar concept was described in 2018 independently
by Fraunholz et al. and Papalitsas et al. [11] [12]. Both works
describe a deception reverse proxy altering HTTP and other
application protocols by hooking packets. Han et al.’s proxy is
based on hoxy, the proxy presented by Fraunholz et al. is based
on mitmproxy, both being HTTP sniffing and manipulation
libraries for debugging purposes. The proxy developed by
Papalitsas et al. is dissecting HTTP packets with a self-
written plugin and is limited to structured data such as JSON
and LDAP. To the authors’ best knowledge no publication
describes the manipulation of SSH traffic trough a proxy. Other
uses of proxy servers in the context of deception exist, for
example honeypots that are based on an open proxy server to
attract spammers [13] or SSH proxies that are used to forward
traffic to a honeypot like the cowrie proxy mode.

III. ARCHITECTURE

In this chapter the overall architecture of the proposed
SSH deception proxy is described. Each required architectural
characteristic is presented in the following subsections. As
shown in Figure 1, the proxy is placed as a reverse proxy,
i.e. in front of the host with every client connection having to
pass the proxy. The traffic passed through the proxy is logged
and modified by adding honey tokens into the shell responses.
A detailed depiction on the design decisions is given in the
remainder of this chapter.

A. Design Guidelines

These guidelines describe a desired solution. While most of
these guidelines will be followed, a trade-off between imple-
mentation effort and fulfillment of requirements is made for
the actual implementation. This in turn affects the architecture
and the reasons for these decision will be explained.



1) Modification of Host: It is desireable for the host to be
unaffected by the proxy. Some changes are unavoidable, such
as log files on the host no longer representing the actual source
of connections made to it as all connections to the host are
made through the proxy.

2) Ease of Deployment: The proxy should require as little
configuration as possible. However, since SSH represents an
encrypted stream, knowledge about the host is required in
order to correctly interpret the stream in real time. Common
problems are:

• recognizing the beginning of a command
• recognizing the end of command output
• providing file interaction for decoy files
• dealing with scripts

Solutions for these problems will be discussed in detail in
Section IV.

3) Modularity for new rules: Rules concerning the manip-
ulation of commands should be easy to implement and follow
a common scheme.

4) Interference with Legitimate Use: Legitimate users
should not be impacted by the proxy. As such, the proxy may
only provide additional functionality or - where it is explicitly
defined by the configuration set up by the administrator -
block certain actions which are not required by legitimate
users.

5) Transparency for Attackers: Attackers should not notice
any interference by the reverse proxy. Any additional func-
tionality implemented by the proxy, such as adding files to
the output of ls, must be accompanied by features which
complete the illusion, e.g. simulate the presence of these files
on the host file system. These decoy files are saved on the
proxy and whenever a command sent to the host by the
client requires any of these files, features must be provided to
implement this functionality. It is assumed that any interaction
with decoy files is malevolent.

B. Transparent Reverse Proxy

A normal proxy is invisible to the host. A client connects
with the proxy and it forwards the packets in both directions.
The host is not aware that it communicates with a proxy.
Reverse proxies are invisible to the client. The client connects
with the reverse proxy, mistaking it to be the host. Since it is
a transparent proxy, the client does not notice any difference
to communicating with the normal host.
SSH adds several complications.

C. Command and Output Manipulation

The manipulation of the SSH stream is the main feature
of the proxy. What this feature can do is recognize specific
commands such as uname -s and instead of returning the
true kernel name, as would be expected, return a fake kernel
name which invited the attacker to try exploits the actual kernel
is not vulnerable to. // While manipulation of the stream is
powerful enough to manipulate the attacker’s perception of the
host system completely, legitimate use would be impeded. E.g.

for some hosts their legitimate users may require information
about the kernel’s version number, in order to accomplish their
tasks. A trade-off is made.
It is also possible to catch commands that are deemed suspi-
cious and, as described earlier, ban or deceive the responsible
IP address.

D. Deception Tokens

Fake files should seem to be part of the host’s file system.
This lends itself readily? for several features:

a) Honey Files: Honey files can be added to command
output. For example fake credentials in /passwords.txt
can be added. When using these credentials to connect to
the host, the proxy catches their usage and can stop the IP
from reconnecting, redirect the connection into a sandbox, or
implement other appropriate countermeasures.

b) Overwriting critical information contained in files:
Some files, such as /proc/version, contain critical in-
formation which can reveal weaknesses about the host. These
files can be either overwritten with wrong information, making
the attacker waste time on exploiting vulnerabilities fixed in
previous versions or their content can be hidden completely.
Since ”everything is a file” in Linux, most configuration
information can be faked.

This feature implies the implementation of other features
to avoid easy detection. Pipes and programs on the host may
be ordered to use fake files. While pipes can be implemented
easily enough, programs on the host require either the fake
file to be copied from the proxy to the host, or detection is
unavoidable. Even in these cases a generic error message could
replace the program’s error message in order to deceive the
attacker.

E. Bannergrabbing on the SSH proxy

Bannergrabbing from the host is caught by the proxy. This
may lead to easy detection if the returned banner does not fit
the features provided. There are two ways to deal with this.
The first is to simply return the banner of the host, the second
is return a modified banner. Returning the true banner will
avoid detection, but e.g. lowering the minor version number
may lead to wasting time on already patched vulnerabilities,
though that is unlikely with SSH.

IV. IMPLEMENTATION

A. Basic Structure

This implementation runs on Linux and is implemented
in Python3. The python package Paramiko [14] implements
SSHv2 and is used to create both an SSH server for the client
to connect to and an SSH client in order to connect to the
host.
When a client connects to the host, a handler function
is called in a new thread and passed the raw socket as a
parameter. The handler then creates the adapted Paramiko
server object and checks whether the credentials and the IP
are eligible for a connection.
When the handler receives a command, the appropriate



command handler is chosen and, if necessary, the
output modified accordingly. The configuration is done via
a Config.py file which contains a python dictionary. In
the following, config refers to this dictionary, handler
refers to the handler function invoked in the main thread
and command handler refers to functions modifying the
output according to the command they were created for.
Output is the stream from the host to client forwarded through
the proxy. It refers to the output that specific commands
trigger.

B. Paramiko Server

This Paramiko server had to be customized to provide
banner grabbing and credential checking.

1) Bannergrabbing: Since this is the server the client
connects to, its banner is the one the client receives when
grabbing for banners. The config currently contains the
banner for OpenSSH 7.9p1 running on Debian and this banner
is sent.

2) Credentials: The credentials are checked by trying to
create a connection to the host with the given credentials.
Should this not be possible, the credentials are wrong and this
is returned. In the case that the credentials are honey tokens in
form of fake credentials, as described above, the login attempt
can be assumed to be adversarial.

C. handler function

The handler function, as depicted in Figure 2, is
responsible for dealing with an individual connection. It is
called with a raw socket and checks whether the IP address
is eligible for connection. If yes, a Paramiko server object
is created in order to deal with the SSH connection. The
credentials the client entered are used to authenticate to the
host.
Usually, SSH servers will now send a MOTD (”message of
the day”) which may contain sensitive information such as
the last time a user logged in. This is forwarded in order to
avoid detection.

The handler-function is responsible for the following three
tasks in the communication.

1) Recognizing the end of command output: One of the
biggest challenges in dealing with a bidirectional stream is
that there is no way of knowing for sure that command has
finished executing. While no good solution was found, the best
working solution is to wait for a prompt.
Waiting for the command output is necessariy in the case that
a command handler recognizes the command because the
manipulation of many commands requires the actual output.
E.g. the output of ls is sorted and thus the output has to be
known in order to not be immediately obvious to any attacker
by appending the fake file names to the output.

2) Recognizing a prompt: The typical prompt has the
form:
username@host:path$

Connection received,
start handler

received 0x04? close connection
yes

wait for prompt

is command
recognized?

no

start 
command handler:

1. receive actual output
2. modify output

3. save in variables

yes

forward input 
and output forward modified output

no

set up client-proxy and 
proxy-server SSH connections

Fig. 2. Overview of the Control and Data Flow in the handler

A regular expression is used to check whether the current
buffer of received symbols ends with a prompt. Since this
prompt can have several forms, knowledge about the host
system is necessary. E.g. the prompt could end with a #, or
take an altogether different from.
This form of output recognition has the weakness that
whenever a prompt is displayed, e.g. due to being entered
into a text editor, the current buffer ends with a prompt.
Thus, a new command is expected, causing difficulties and
commands may evade the command handler functions as
they are treated as output rather than commands.

3) Unrecognized commands: Recognized commands will
be sent to the appropriate command handler which is
described below. Unrecognized commands cannot be dealt
with by waiting for the correct output and then sending it
because it is not known whether the command opens an
interactive program such as VIM or not. Interactive programs
require the bidirectional stream to be forwarded into both
directions. This is done until the forwarded characters end
with a prompt, as it announces that the interactive program
has finished executing and the terminal is waiting for a new
command to be sent.
Difficulties arise if unrecognized commands are called with
decoy files as arguments. Two solutions present themselves



and were discussed earlier.

D. command handler Functions

The correct command handler is chosen according
to the command it is supposed to deal with. In the current
implementation this is done with if, elif, else, where
if and elif recognize commands and else deals with
unrecognized commands as described above.

1) command handler structure: Modularity is desired
and as such there is a common scheme for all command
handler functions:

1) receive actual command output
2) modify command output according to rules
3) set send_before_modified_response,

modified_response,
send_after_modified_response. This allows
for chaining command handler should it be desirable.
E.g. the command head can be implemented by calling
the handler for cat and then removing every line in
modified_response after the first ten lines.

2) Honey File Injection: Currently, only command
handlers for dealing with ls, cat and pipes are im-
plemented. As such, basic functionality for decoy files is
implemented as a proof of concept.
The honey files on the proxy are organized by providing the
config with a path to a folder that serves as the root for
a decoy file system. The files contained therein are overlaid
onto the real files on the host. Decoy files take priority over
real files in order to be able to overwrite them.
Another solution would be to have two file system roots in the
config: one for hiding files, e.g. by deleting entries from ls,
and another root for adding decoy files which do not overwrite
files. This would be a better solution as overwriting files can
interfere with legitimate use. Currently, file names have to be
chosen with care.
While it is possible to create entire honey directories, the
current implementation does not support that feature.
Most shells feature as a character that is short for the
current user’s home directory. Since this home directory is
not immediately obvious to the stream, pwd is called in the
beginning to be able to translate absolute file paths containing
into the proxy’s file system path. Another solution would be
choosing /home/(username)/ as a heuristic.

E. Linux Terminal special commands

The stream of characters encoded by SSH is parsed by
(in this case) Linux terminals. Linux terminals have several
special characters [15] which require work to be parsed into a
command correctly. E.g. backspace (0x07) deletes a character
and moves the cursor to the left. Without parsing this, any
command with a backspace would not be recognized correctly.
passs0x07wd 6= passwd

1) Current Implementation: If dealing with single line
inputs, it is sufficient to project the 2D Linux terminal into
a single line. The current implementation uses two arrays of
characters, one to the left and one to the right of the cursor
position and each special character modifies these arrays
accordingly. This deals with special characters related to cursor
position as well as normal characters by appending them to
the left array.

2) Other Special Characters: Some special characters, e.g.
color commands, have no effect on the cursor position or the
buffers. However, when sorting ls output according to files
names, both removing color from the output as well as coloring
added honey files/executables and restoring the former color
to all entries is necessary.

F. Command History and TAB Autocompletion

Shells have several features which are commonly used and
as such need to be implemented in order to not be immediately
obvious to the user.

1) Command History: When pressing the UP key, previ-
ously entered commands are shown. If executing own com-
mands, they are usually entered into the command history. If
the implementation is keeping track of the command history, it
is possible to ”skip” own commands by sending an additional
UP or DOWN key to the host.
In the current implementation a SPACE is prepended to
the command and on the current host system this prevents
commands from being entered into the command history.
This may not be possible on other devices if no additional
configuration effort is undertaken.

2) TAB Autocompletion: Autocompletion should work on
both honey and real files. As autocompletion results are usually
alphabetically sorted it is possible to insert honey files at the
right location and avoid detection.

G. PostgreSQL logging

The current implementation supports logging via
Psycopg2’s [16] logging module offers the possibility
to extend logging.Handler into subclasses. The
implementation makes use of this. Database address, name,
username and password are saved in the config.
The implementation tracks suspicious commands, such as
usage of honey files, and sends the suspected attacker’s IP,
username and the transgression to the database. Other events
could also be tracked, e.g. suspiciously high amounts of
logins from one IP address, blocking of IPs, etc.

V. DISCUSSION

The SSH deception proxy is a promising approach and
has been shown to be feasible in a proof of concept imple-
mentation. Not needing to modify the host and the simple
deployment are big advantages as well as the possibility
to log commands. Still, there are drawbacks regarding the
detectability by adversaries and possibilities to bypass the
proxy. The problem is that only a limited set of commands is



being caught by the proxy, therefore using commands that are
not in set set allows to bypass the proxy and eventually notice
the proxy. For example listing all files in a directory with ls
will have all honey files injected by the proxy, while echo

* will also list all files while bypassing the proxy. Another
possible way to bypass the proxy could be the use of aliases or
creating another remote connection from the host that bypasses
the proxy. Additional filters and restrictions would have to be
put in place to restrict these bypasses.

Nonetheless the drawbacks considered bearable, as in the
worst case the security of the system only falls back to the state
of having no deception proxy is in place, therefore the proxy
could still be considered a security improvement when only a
small number of attackers are successfully deceived. Therefore
it might be possible for careful attackers to recognize and
bypass the deception in place, but it still has value for detecting
all other adversaries.

VI. CONCLUSION

In this paper an SSH based deception proxy was proposed
and a proof of concept implementation was described. As
deception is a promising technique for attacker detection and
distraction, the SSH deception proxy allows to combine these
features of deception with the advantages of a proxy, which
are ease of deployed and replacing the need for modifying the
host. Although a bypass of the deception proxy is theoretically
possible, it would only reduce the security of the protected
host to the state it was before the deception proxy was in
place. Future work includes identifying and evaluating the
best deception techniques that could be used using the SSH
deception proxy.

VII. ACKNOWLEDGEMENT

This research was supported by the German Federal Min-
istry of Education and Research (BMBF) within the IUNO
Insec project under grant number 16KIS0932, and within
the SCRATCh project under grant number 01IS18062E. The
SCRATCh project is part of the ITEA 3 cluster of the
European research program EUREKA. The responsibility for
this publication lies with the authors.

REFERENCES

[1] IBM Security, “Cost of a data breach report 2020,”
2020. [Online]. Available: https://www.ibm.com/security/digital-assets/
cost-data-breach-report/

[2] D. Fraunholz, S. D. Anton, C. Lipps, D. Reti, D. Krohmer, F. Pohl,
M. Tammen, and H. D. Schotten, “Demystifying deception technology:a
survey.” [Online]. Available: http://arxiv.org/pdf/1804.06196v1

[3] B. Whaley, “Toward a general theory of deception,” Journal of Strategic
Studies, vol. 5, no. 1, pp. 178–192, 1982.

[4] Thomas Nicholson, “Honssh,” 2016. [Online]. Available: https:
//github.com/tnich/honssh

[5] Cowrie, “Cowrie.” [Online]. Available: https://github.com/cowrie/cowrie
[6] D. Fraunholz, D. Krohmer, S. Duque Anton, and H. D. Schotten, “Yaas

- on the attribution of honeypot data,” International Journal on Cyber
Situational Awareness, vol. 2, no. 1, pp. 31–48, 2017.

[7] Lokheed Martin, “The cyber kill chain,” last visited 03-11-2020.
[Online]. Available: https://www.lockheedmartin.com/en-us/capabilities/
cyber/cyber-kill-chain.html

[8] “Mitre att&ck enterprise matrix,” last visited 03-11-2020. [Online].
Available: https://attack.mitre.org/matrices/enterprise/

[9] X. Han, N. Kheir, and D. Balzarotti, “Evaluation of deception-based
web attacks detection,” in Proceedings of the 2017 Workshop on Moving
Target Defense, H. Okhravi and X. Ou, Eds. New York, NY, USA:
ACM, 10302017, pp. 65–73.

[10] T. Ishikawa and K. Sakurai, “Parameter manipulation attack prevention
and detection by using web application deception proxy,” in Proceedings
of the 11th International Conference on Ubiquitous Information Man-
agement and Communication. New York, NY, USA: ACM, 01052017,
pp. 1–9.

[11] D. Fraunholz, D. Reti, S. Duque Anton, and H. D. Schotten, “Cloxy,”
in Proceedings of the 5th ACM Workshop on Moving Target Defense,
M. Albanese and D. Huang, Eds. New York, NY, USA: ACM,
10152018, pp. 40–47.

[12] J. Papalitsas, S. Rauti, J. Tammi, and V. Leppänen, “A honeypot proxy
framework for deceiving attackers with fabricated content,” in Cyber
Threat Intelligence, ser. Advances in Information Security, A. Dehghan-
tanha, M. Conti, and T. Dargahi, Eds. Cham: Springer International
Publishing, 2018, vol. 70, pp. 239–258.

[13] R. E. Mushtakov, D. S. Silnov, O. V. Tarakanov, and V. A. Bukharov,
“Investigation of modern attacks using proxy honeypot,” in 2018 IEEE
Conference of Russian Young Researchers in Electrical and Electronic
Engineering (EIConRus). IEEE, 29.01.2018 - 01.02.2018, pp. 86–89.

[14] J. Forcier, “Paramiko: A python implementation of sshv2.” [Online].
Available: http://www.paramiko.org/

[15] Linux Kernel, “Linux manual page: console codes.” [Online]. Available:
https://man7.org/linux/man-pages/man4/console codes.4.html

[16] T. P. T. Daniele Varrazzo, “Postgresql driver for python — psycopg.”
[Online]. Available: https://www.psycopg.org/

https://www.ibm.com/security/digital-assets/cost-data-breach-report/
https://www.ibm.com/security/digital-assets/cost-data-breach-report/
http://arxiv.org/pdf/1804.06196v1
https://github.com/tnich/honssh
https://github.com/tnich/honssh
https://github.com/cowrie/cowrie
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://attack.mitre.org/matrices/enterprise/
http://www.paramiko.org/
https://man7.org/linux/man-pages/man4/console_codes.4.html
https://www.psycopg.org/

	I Introduction
	II Background
	II-A Deception Technology
	II-B Secure Shells in Deception
	II-C Attacker Model
	II-D Proxies for Deception

	III Architecture
	III-A Design Guidelines
	III-A1 Modification of Host
	III-A2 Ease of Deployment
	III-A3 Modularity for new rules
	III-A4 Interference with Legitimate Use
	III-A5 Transparency for Attackers

	III-B Transparent Reverse Proxy
	III-C Command and Output Manipulation
	III-D Deception Tokens
	III-E Bannergrabbing on the SSH proxy

	IV Implementation
	IV-A Basic Structure
	IV-B Paramiko Server
	IV-B1 Bannergrabbing
	IV-B2 Credentials

	IV-C handler function
	IV-C1 Recognizing the end of command output
	IV-C2 Recognizing a prompt
	IV-C3 Unrecognized commands

	IV-D command handler Functions
	IV-D1 command handler structure
	IV-D2 Honey File Injection

	IV-E Linux Terminal special commands
	IV-E1 Current Implementation
	IV-E2 Other Special Characters

	IV-F Command History and TAB Autocompletion
	IV-F1 Command History
	IV-F2 TAB Autocompletion

	IV-G PostgreSQL logging

	V Discussion
	VI Conclusion
	VII Acknowledgement
	References

