Author’s accepted version - DOI: https://doi.org/10.1109/CyberSecPODS.2018.8560671
IEEE International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2018)

Reducing the Impact of Network Bottlenecks on
Remote Contraband Detection

Sean McKeown
School of Computing
Edinburgh Napier University
Edinburgh, Scotland
s.mckeown@napier.ac.uk

Abstract—Cloud based storage is increasing in popularity, with
large volumes of data being stored remotely. Digital forensics
investigators examining such systems remotely are limited by
bandwidth constraints when accessing this kind of data using
traditional tools. This paper explores the potential for sub-file
hashing strategies to decrease the time taken to detect contraband
on networked storage devices, while maintaining a high degree
of accuracy. Results show that sub-file hashing is faster than full
file hashing for both LAN and Internet server configurations,
with reduced bandwidth heavily favouring sub-file strategies.

Index Terms—networked storage, cloud storage forensics, file
server, sub-file signatures, partial-file analysis, hashing strategies,
digital forensics, cryptographic hashing, logical acquisition

I. INTRODUCTION

Digital forensics investigators have to cope with increa-
singly large volumes of data, as the number of devices per
case, and capacities of storage media, continue to increase
year on year [1]. In particular, digital forensics specialists
who deal with cases involving indecent images of children are
struggling to cope with the deluge due to time and resource
constraints [2]. These circumstances have resulted in substan-
tial law enforcement backlogs, where evidence is securely
stored for long periods of time until it can be forensically
analysed. In some cases backlogs stretch up to four years from
evidence seizure [3], a situation which not only damages the
course of justice, but potentially places victims at continued
risk.

The huge flood of evidence is no less pronounced in
investigations involving corporate assets, with the high pro-
file Megaupload case in 2012 involving the seizure of 150
terabytes of data [4]. The analysis of enterprise data is further
complicated in that it is not always possible to seize assets
which are required for critical business operations, meaning
that evidence must be examined live on running computers,
potentially without physical access to the device [5]. Even
with physical access and the ability to physically seize servers,
enterprise storage is becoming increasingly complex, with
virtualised and distributed storage systems that are difficult
to reconstruct from raw disk captures. As such, live analysis
by accessing servers over a network may be the most feasible

978-1-5386-5541-2/18/$31.00 ©2018 IEEE

Gordon Russell
School of Computing
Edinburgh Napier University
Edinburgh, Scotland
g.russell@napier.ac.uk

Petra Leimich
School of Computing
Edinburgh Napier University
Edinburgh, Scotland
p.leimich @napier.ac.uk

option. However, analysis over a network connection is much
slower than accessing disk drives directly, with network bott-
lenecks potentially placing increased pressure on an already
constrained investigation timeline.

This paper focuses on the problem of remotely detecting
contraband on live networked file servers in a manner that
does not require executing programs directly on the server
itself. Instead, data is accessed via a network storage protocol,
where the primary bottleneck is the throughput of the network
connection. Fast processing is achieved by utilising partial-file
cryptographic hashing techniques, such that entire files need
not be sent over the network, reducing the bottlenecking effect
of the network. Two scenarios are explored, with analysis
being conducted over a Local Area Network (LAN), and
over an Internet connection to a remote file server. Sub-
file hashing approaches allow for rapid contraband content
detection, taking far less time than traditional full file hashing
approaches.

The primary contribution of this paper is a fast and accurate
technique for discovering contraband data on networked file
storage. Timed benchmark results are provided for both Samba
and Network File System (NFS) servers to quantify speed
improvements. Experimental data is derived from the publicly
accessible Flickr 1 Million [6] and Govdocs [7] datasets.

The remainder of this paper is organised as follows:
Section II discusses related work in forensic contraband de-
tection and the acquisition of forensic evidence over network
connections. Section III outlines the sub-file hashing strategies
and experimental set-up used in this work, with findings
presented in Section IV. Finally, concluding comments and
suggestions for future work are provided in Section V.

II. RELATED WORK
A. Detecting Contraband

Illegal and copyrighted multimedia files are typically de-
tected by means of cryptographic hashing. Lookup databases
of known contraband are created by hashing files when they
are encountered, allowing for later automatic detection. When
processing a seized piece of evidence, such as a mobile phone
or Hard Disk Drive (HDD), each file on the device is hashed
separately and checked against this database, with matches
determining that contraband has been detected.

Modifications to this hashing process have largely focused
on detecting similar, rather than identical, files, either by featu-
res of their binary data [8]-[10], or by their semantic, human
facing, content [11]. However, such similar file detection is
slower to process than traditional cryptographic hashing [12].

Parallel processing models for traditional cryptographic
hashing have been explored to reduce the time taken to
forensically analyse storage media [13], [14], however they
are still fundamentally limited by the speed that data can be
acquired from the physical device. An alternative approach is
to reduce the amount of data which needs to be read from the
storage media while still maintaining high forensic accuracy.
Grier and Richard [15] proposed a model which makes use
of investigation-specific filters for acquiring evidence from a
digital device. By processing file system metadata, key areas
of the evidence can be identified and selectively acquired, with
analysis taking place on this evidential subset. This approach
was shown to reliably capture a large portion of the relevant
evidence while greatly reducing the amount of data needing
to be captured from a device.

Rather than parsing file system metadata to select data
subsets, Penrose et al. [16] uses statistical block sampling
and traditional cryptographic hashing to detect contraband
files at the block level, ordering disk reads for maximal
throughput. By selecting an appropriate sample size for the
target media, this approach generates fast results with high
levels of statistical confidence. One drawback of this approach
is the possibility of common blocks existing between unrelated
files, such that mitigation strategies are required to prevent
false positives [17].

A different approach is taken by McKeown et al. [18],
wherein evidential subsetting is applied at the file level, as
opposed to the disk level. The authors describe a method
for using PNG header features, and a small chunk of com-
pressed pixel data, to generate discriminative signatures for
filtering known contraband. A similar approach for the JPEG
file format [19] makes use of optimised Huffman tables for
signature generation, which were shown to be unique for over
1 million images. These approaches were shown to reduce
forensic processing time substantially, particularly on Solid
State Disks (SSDs).

Generalised sub-file signatures, which are not file type
specific, were explored in McKeown et al. [20], with an
evaluation of signature generation techniques which use both
the beginning and end of a file. Reading from the beginning
of the file failed to generate unique signatures for two large
datasets, even when processing a large number of data blocks.
However, reading as few as 4KiB of data from the end of
each file generated unique signatures for both datasets. Sub-
file signatures were shown to be a fixed cost to calculate, while
full file hashing scales linearly with file size. This approach
was also shown to have particularly large benefits on SSDs,
in line with prior work in this area.

As the quantity of data on storage media continues to grow,
reducing the amount of data to process will continue to be an
important area of research. In this paper, we further explore

the behavioural characteristics of the sub-file hashing strategies
introduced in McKeown et al. [20].

B. Networked Forensic Acquisition

The most common approach to analysing an electronic
device is to isolate the storage media by physically removing
it, then connecting it to a write blocker to acquire data from
it. However, it may not be practical to seize large volumes of
equipment due to physical storage limitations, easily damaged
equipment, or conflicting business requirements. In these cases
it is possible to collect evidence over a network connection for
later analysis.

Scanlon and Kechadi [21] describe the Remote Acquisition
Forensics Tool (RAFT), which makes use of a modified
Ubuntu Live CD to acquire evidence and send it to a forensic
server over the Internet. This approach is intended to expedite
the forensics process by reducing the time taken to seize and
physically transport evidence, but is limited by the bandwidth
of the available Internet connection. There is also the require-
ment that the analysed machine be booted via the live CD. A
similar approach is taken in Koopmans and James [22], which
uses a similar live CD to execute automated hash lookups and
string searches for the purposes of forensic triage. Collated
evidence is transferred to a forensic server using NFS, with
similar bandwidth limitations.

A proactive approach to evidence gathering may be taken by
a company in order to facilitate fast forensic analysis. Homem
et al. [23] describe the Live Evidence Information Aggregation
(LEIA), which makes use of a hypervisor on client machines
and a peer-to-peer network for distribution, with cloud based
storage back-ends. Known hashes and compression are used
to reduce the amount of data to acquire and the system
is designed for scalable data aggregation and analysis. All
systems to be analysed must run the hypervisor and connect
to the peer-to-peer network for distributed processing.

In some cases it may not be practical to power off core
busniness resources, meaning that evidence has to be acquired
on running servers without modification to the infrastructure.
Sealey [5] discusses a remote forensic acquisition process on
live servers using the Encase Enterprise Edition software from
Guidance Software. A servlet application is copied to a device,
which then extradites data across the network. This method
has the added benefit of not requiring physical access to the
machine or to other networked devices.

A key factor with all network based acquisition methods
is the bandwidth available for uploading evidence. Existing
approaches rely on running software directly on the machine
which is being investigated, with data reduction being achieved
by pre-processing data locally on the device. In contrast
to these approaches, this work examines the case where a
common interface is available for data being served from a
file server, but does not assume that the examiner has physical
access or can execute live programs on the device.

III. APPROACH

The speed at which forensic evidence can be acquired from
a networked device is dependent on the available network

throughput, be it the speed of the local network, or the
bandwidth of an Internet connection. Reducing the amount of
data which is sent over the network will reduce the impact of
this bottleneck, potentially resulting in lower processing times.
Prior work has used a servlet running on the target machine to
pre-process data, which can then send a data subset across the
network to the forensics workstation or server. In this work
data subsetting is achieved remotely by requesting that only a
small fraction of all files is transmitted over the network by
the network storage protocol.

A. Sub-file Hashing Strategies

Prior work [20] demonstrates that reading as few as 4096
bytes of data from the end of a file can be unique at the million
image scale, while reading a small number of bytes only from
the start of the file is less effective. This sub-file approach was
also shown to provide considerable speed gains over reading
the full file, particularly as file sizes increase. Based on these
observations, the work presented below utilises two general
sub-file hashing strategies which use data from the end of
the file, with data being hashed using SHA256 to produce
signatures. The strategies employed are:

[Last n]: Read n bytes from the end of the file. These
read blocks are not expected to align with hard disk sectors
or SSD pages often (1/4096 of the time, assuming a storage
block size of 4096 bytes). Timed benchmarks were conducted
for 1-4 data blocks, corresponding to 4KiB, 8KiB, 12KiB and
16KiB, in order to assess the performance degradation caused
by reading more data. While previous investigation has shown
that 4KiB is sufficient to uniquely identify every unique image
in the Flickr 1 Million dataset [20], larger block sizes were
tested to demonstrate scalability in scenarios which require
more data to generate unique signatures. As this acquisition
takes places at the logical level, no slack space is included.

[First n+Last n]: Read n bytes from both the start and
the end of the file, resulting in 2n bytes of data to hash. The
first chunk of data is expected to be block aligned on the
storage media, while the last block remains the same as Last
n. The value of n used in this work is 4096, meaning that
a total of 8KiB of data is required. While being potentially
more discriminative than Last n, this technique suffers larger
performance penalties, and was not tested with larger block
sizes. This technique is referred to as First+Last n for the
remainder of this document.

For both techniques, if the file size is smaller than the
requested block data the entire file is requested and hashed.
Rather than checking file size ahead of time it is faster to catch
exceptions when reading files, as this happens infrequently and
bypasses the additional overhead for requesting the file size
for all files across the network.

B. Datasets

Three datasets were used to evaluate the above sub-file
hashing strategies: i) The first 25,000 images in the Flickr 1
Million dataset [6] in numerical file name order (0.jpg, 1.jpg,
.. 24999.jpg). This dataset is comprised entirely of JPEGs

Dataset Size Range Median Mean Total
Flickr . . i] '
(25k Subset) 8KiB-718KiB 112KiB 118KiB 2.81GiB
Flickr PNG . .)) _
(25k subset) 33KiB-846KiB 295KiB 295KiB 7.04GiB
Govdocs PNG .)) _
(25k Subset) 377B-25MiB 152KiB 535KiB 12.7GiB
TABLE 1

FILE SIZE STATISTICS FOR THE DATASETS USED IN THIS WORK.

Machine Specification Software
Windows 7 Enterprise 64bit
. NFS v3 client
Client %i?ége]):ék.; (:g A(i\}/} OpenVPN Client
Workstation 1273708, #01 (AES 256/SHA256,
no compression, 2048bit key)
2x Intel Xeon E5-2697v4
LAN Server 334 GiB RAM vSphere 6.5.0
(Hypervisor) RAID 10 ESXi 6.5.0
10x 840 EVO 1TB SSD
LAN ESXi 6.5+ Virtual Machine Ubuntu 17.04 LTS
Virtual 1 Virtual CPU, 2GiB RAM Samba server 4.3.11-ubuntu
Machine 500GB SSD storage (EXT4) NFS server 1.2.8-9.2ubuntu2
Internet Digital Ocean $10 Droplet Ubuntu 16.04 LTS
Server 1 Virtual CPU, 2GiB RAM Samba server 4.5.8-ubuntu
50GB SSD storage (EXT4) NFS server 1:1.2.8-9ubuntul2.1
TABLE II
SPECIFICATIONS OF THE EQUIPMENT AND SOFTWARE SET-UP USED IN
THIS WORK.

collected from the Flickr image hosting service. ii) The Flickr
subset converted to the PNG format to create a dataset of larger
file sizes, and iii) The first 25,000 images of the Govdocs
dataset [7] converted to the PNG format, which contains files
larger than those in the Flickr PNG set. As Govdocs files
contain real file names, and are not numerically ordered, the
25k subset was determined from the file list order provided
by the python os.listdir function.

Conversion to PNG was facilitated using the Python Pillow
library [24]. PNG conversion allowed a variety of file sizes to
be explored while still making use of easily obtainable public
datasets. The end result is three datasets which roughly double
in size for each step up, increasing 2.5x by converting the
Flickr set to PNG, with the Govdocs PNG set being 1.8x
larger than that. File size statistics for each dataset are given
in Table 1.

C. Benchmark Set-up

Two experimental scenarios were chosen to reflect typical
methods of accessing a file server. i) Via a LAN connection,
with both a 1Gbps and 100Mbps connections being tested, and
i) a VPN connection over the Internet to a remote file server,
with a 100Mbps symmetric connection for the client. The LAN
server in the first scenario was on an isolated network and
connected to the client using a high performance switch, while
the Internet server was hosted on a local region Digital Ocean
droplet.

Timed benchmarks were performed for both scenarios using
the Samba and NFS file serving technologies in order to
assess their potential impact on the performance of sub-file
hashing strategies. The impact of file size for each combi-
nation was assessed using the three datasets described above
(Section III-B). As neither Samba nor NFS provide encrypted
transport, a VPN tunnel is required in order to securely access
files across the Internet. As such, in order to maintain a
realistic access scenario, OpenVPN [25] was used to create
a secure connection over the Internet. All software was left
with default configurations from a fresh install. Table II
provides hardware specifications and software versions for
both scenarios. While not all enterprise storage solutions are
expected to make use of SSDs, as with the servers in this
work, they are expected to have high performance, enabling
them to serve many employees simultaneously.

Benchmark code was written in Python 2.7, using the
built-in hashlib library to generate SHA256 hashes for
data blocks. File read orders were determined using Python’s
os.listdir function, and volumes were mounted read only
by the client. Reported times do not include file enumeration
from os.listdir. The mean value of three repeated runs
was taken for each set of parameters, with client side memory
caches being cleared before each run.

D. Preserving File Access Times

As the client device is not interacting with the target file
system directly, instead interfacing with a layer of abstraction
in the form of a file server, no guarantees can be made that file
system metadata will remain unchanged. Despite the Windows
client having read only access, the default configurations in
this experiment caused file access times to be modified in the
EXT4 directories containing the test data. Without access to
the server configuration it cannot be verified that modification
will not occur. It is therefore recommended that available file
metadata be collected prior to remotely hashing files on a
file server to prevent the loss of potentially useful forensic
information.

IV. FINDINGS

As the sub-file hashing techniques in this paper have
previously been shown to produce unique signatures for the
full versions of the datasets [20], their discriminating power
will not be discussed here. Instead, the focus will be on the
performance merits of both approaches. Various aspects of
performance are explored in Sections IV-A to IV-C, before
summarising the results and relative improvement factors over
full file hashing in Section IV-D. The impact of possible
follow-up full file confirmation hashing on detected files is
then assessed in Section IV-E.

A. Scaling With Number of Threads

Multi-threaded file requests can maximise the throughput
from an IO device, such that it is always kept busy with con-
current requests. The thread scaling performance of file serving
protocols will be limited by the software implementations on

Govdocs PNG: Internet Thread Scaling

Time (5]

5
=4
S
4
B

-
ra
¥
|
=
m
w
=)

Threads

Fulhzh_NFS eege= Fulhash_Samba e Last 4K B_NFS e L st 4K B_Samba

Fig. 1. The impact of thread count on performance of the Last 4KiB
and Fullhash techniques for the Internet File Server. Relative values are
representative for all three datasets and LAN configurations.

both client and server, as well as the physical limitations of
the network and underlying physical storage configuration.

Figure 1 shows the thread scaling performance of both NFS
and Samba for the Govdocs PNG dataset accessed across the
Internet. This graph is representative of the behaviour for all
tested connection set-ups and datasets, with Last 4KiB being
chosen to represent all sub-file approaches for clarity.

The scaling of NFS is much more pronounced than Samba,
with relatively poor performance for 1-2 threads, and surpas-
sing Samba thereafter. Samba does benefit from scaling to
32 threads, however the single threaded nature of the Samba
implementation is likely a limiting factor when increasing the
number of concurrent file requests, causing relatively small
gains. In both cases, the performance scaling of the sub-file
approach mimics that of the full file hashing approach, but
with less of a performance penalty for low thread counts on
NFS.

B. Performance Scaling With File Size

One of the benefits of the sub-file signature approach in this
work is that their processing costs should be independent of
file size. That is, reading a 4KiB chunk of a file should take the
same length of time regardless of the size of the file. Figure 2
shows this to be the case for both of the network file storage
protocols. This observation also holds for the First+Last 4KiB
approach.

Full file hashing appears to scale linearly with file size on
networked file systems, which is in line with prior observations
for local SSDs [20]. This linear scaling means that the gap in
performance between full file hashing and sub-file approaches
increases with file size, with the time difference already
being substantial at the mean file size of 535KiB for these
experiments. For larger files, such as high resolution photos,
or even video files, sub-file approaches would tend towards a
tiny fraction of the processing time of full file hashing.

1Gbit LAN File Size Scaling - 32 Threads

Time [s)

& o <
& & &
100 200 300 400 500 600
FileSize (KiB)
Fulhzsh _NFS aege=Fulhash_Samba

v st 4K B_NFS o L35t 4K B_Samba

Fig. 2. The scaling of the 32 thread performance of Last 4KiB and
Fullhash across each dataset for the Internet file server. Relative values
are representative for LAN configurations.

This file size scaling effect is amplified as the total throug-
hput of the network is reduced. Going from 1Gbit to 100Mbps
on the LAN connection increased full file hashing times by
approximately 10x, while Last 4KiB only suffered a 2-3x
performance penalty, with a 3-6x penalty for Last 16KiB.
This is because the primary limiting factor for the sub-file
approaches in this case is the file server itself, rather than the
bandwidth of the connection. However, increasing the block
size used in the sub-file approaches also has a corresponding
bandwidth penalty.

C. Sub-file Hashing Techniques Compared

Figure 3 depicts the Samba processing times for sub-file
approaches across each connection type. When bandwidth
is not the primary bottleneck, the performance of all sub-
file approaches converges at 32 threads, as in Figure 3a.
When bandwidth is a limiting factor, as with Figure 3b,
the volume of data to be transferred becomes a bottleneck,
with each additional 4KiB block in the Last n technique
resulting in a small performance penalty. The 8KiB of data
hashed by First+Last 4KiB places its performance between
Last 8KiB and Last 12KiB, as the Last n data block benefits
from contiguity, and therefore an increased sequential read
performance.

However, total bandwidth is not the only property of the
network connection which seems to have an effect. Rather,
the total round trip cost of each transaction, i.e. from the
client request to the client receiving the data for each file,
appears to impact the overall performance. Figure 3c for the
100Mbit Internet connection shows behaviour more similar to
the 1Gbit LAN (3a) scenario than to the equivalent 100Mbit
of the LAN connection (3b). A single transaction may involve
multiple round trip requests at the file system level, as file
handles are opened, and file seeks are performed. As a
result, the fraction of the transaction which is attributed to
transferring the small data blocks is proportionally less. This

difference is not attributable to the underlying storage media
as both the LAN and Internet servers were theoretically able
to saturate their network connections, with 4KiB random read
performance from the SSD storage measured at 1.1Gbit/s and
175.7Mbit/s respectively, using the iops tool [26].

The cost of each transaction also explains why the Internet
connection is an order of magnitude slower in acquiring data
than the 100Mbit LAN scenario, despite having the same
theoretical bandwidth.

D. Sub-file Hashing vs. Full File Hashing

A performance summary of the tested sub-file techniques
is provided in Table III for the 32 thread configurations. A
performance factor of 10 indicates that the technique is 10x
faster than the equivalent full file hashing benchmark.

All sub-file approaches prove viable in all scenarios, with gi-
gabit LAN and Internet connection performance being roughly
equivalent for all sub-file methods, approximately 3-10x
depending on the dataset for Samba, and 5-25x for NFS.
However Last 4KiB has the clear advantage when bandwidth
is the limiting factor as with the 100Mbit LAN connection,
reaching up to 82x on NFS, and 41x on Samba. Increasing
the data block size to 16KiB results in roughly half the per-
formance in this scenario, while First+Last 4KiB is typically
around 2/3 of the speed.

Sub-file hashing strategies are capable of substantial reducti-
ons in the time taken to detect contraband on a networked
file server. As the underlying storage performance increases,
the network becomes the bottleneck for full file hashing, such
that these results should only improve when used with higher
performance corporate storage solutions.

E. Impact of Full File Confirmation Hashing

Sub-file approaches are designed for fast contraband de-
tection when dealing with large data volumes, while providing
a high degree of accuracy. However, in some cases it may be
prudent to perform full file hashing on detected contraband as
a verification step. As this step is to eliminate false positives,
it is not required for non-contraband files.

Table IV provides projected worst case scenario perfor-
mance values when performing confirmation hashing with
detection rates of 10% and 33% on NFS over a gigabit LAN.
These suggested detection rates are likely much higher than
the base rate of detection in real cases, but help to offer an
insight into the scaling of confirmation hashing. This total time
was calculated by adding the appropriate percentage of the
Fullhash benchmark time to the processing time of the sub-
file technique, and therefore ignores the benefit of caching
effects.

The performance impact of confirmation hashing increases
with file size, however even with a high detection rate of 33%
sub-file processing is still approximately twice as fast as full
file hashing. This confirmation step can be done separately
from the initial triage phase, allowing for the fast delivery of
initial results.

a) 1Gbit LAN Sub-file Samba

90.0 180.0

b) 100Mbit LAN Sub-file Samba

C) 100Mbit Internet Sub-file Samba
2100.0
1800.0

< 500 e Frst+Last4KB — 1000 —8—FrsrilastdkB | 12000 === First+Last 4KB
o Last 2K o Las KB F Las 4KB
= 200 Last 8KB S Lot 8KB - Lo BKB
- g L5t 12K B w—tpm L35t 12K o i 552 16K B
o mpem Lt 16K B £ pem L2t 16K B . e Lt 12K 8
100 N 300.0
’ 1 2 4 8 16 32 - 1 2 4 B 16 32 . 1 2 4 8 16 32
Threads Threads Threads
Fig. 3. Sub-file techniques compared for the Samba protocol across connection types. Behaviour is representative for NFS.
Dataset Technique Samba Performance Factor NFS Performance Factor
1Gbit LAN 100Mbit LAN 100Mbit Internet ~ 1Gbit LAN ~ 100Mbit LAN 100Mbit Internet
Flickr Last 4KiB 3.72 10.20 3.13 6.18 18.29 6.77
Last 16KiB 3.75 5.42 2.75 423 6.77 5.07
First+Last 4KiB 3.95 6.81 2.79 4.94 13.06 7.55
Flickr PNG Last 4KiB 6.31 23.45 6.13 14.84 45.54 14.75
Last 16KiB 6.37 12.46 5.25 10.17 16.84 10.30
First+Last 4KiB 6.70 15.64 5.49 11.87 3251 16.39
Govdocs PNG Last 4KiB 9.44 41.62 10.22 26.43 82.37 24.27
Last 16KiB 9.52 22.10 8.99 18.10 30.46 18.37
First+Last 4KiB 10.01 27.76 9.14 21.13 58.81 27.79
TABLE III
A TABLE OF RELATIVE PERFORMANCE FACTORS TO FULLHASH FOR EACH TECHNIQUE. VALUES PRESENTED ARE FOR 32 THREADS.
1Gbit LAN NFS Performance Factor perform better on NFS than Samba, with limited bandwidth
Technique Hit Rate Flicke Flickr PNG GOVdI;)IfICGS over a 100Mbit LAN creating a dr?lmatlc gulf in performance
between sub-file and full file hashing approaches.
0% 6.18 14.84 26.43 The physical storage media is typically the performance
I 10% 3.82 397 725 pottleneck for forensic processing. However, in a world where
33.3% 2.02 2.50 2.70 .. .
large quantities of data are being stored remotely on cloud
. 0% 4.23 10.17 1810 gervices, network performance may present itself as a frequent
Last 16KiB 10% 2.97 5.04 6.44 . . .
33.3% 176 232 558 bottleneck in the forens19 process. Sub-file hashlng can bf’ u§ed
0% 194 187 L o greatly decrease Fhe 'tlme tz'lken to perform an 1nvest1gat¥on
First+Last 4KiB 10% 331 5.43 679 over a network, which is particularly important when dealing
33.3% 1.87 2.40 2.63 with hundreds of terabytes of data on large scale storage
TABLE IV networks.

THE IMPACT OF CONFIRMING DETECTED CONTRABAND WITH FULL FILE
HASHING AT DETECTION RATES OF 10% AND 33.3%. VALUES ARE ONLY
SHOWN FOR NFS ON THE 1GBIT LAN CONNECTION.

V. CONCLUSIONS AND FUTURE WORK

This work demonstrates that sub-file hashing strategies
can be used to rapidly investigate remote networked storage.
Experiments were performed on Samba and NFS servers over
the Internet and two LAN configurations, showing up to an
82x performance increase over full file hashing on standard
resolution image files. Sub-file techniques were shown to

Future work can investigate the possibility of applying
sub-file approaches to commercial cloud storage providers,
such as Dropbox and One Drive. Sub-file hashing approaches
offer a great deal of potential to reduce forensics processing
times over a network, with many possible network and server
configurations to explore. This approach may also have the
potential to be applied to large scale file de-duplication, which
has similar characteristics to contraband detection.

ACKNOWLEDGEMENT

This research was supported by a scholarship provided by
Peter KK Lee. We are also grateful to Peter Aaby for access
provided to the LAN server used in this work.

[1]

[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

REFERENCES

D. Quick and K.-K. R. Choo, “Impacts of increasing volume of digital
forensic data: A survey and future research challenges,” Digital Inves-
tigation, vol. 11, no. 4, pp. 273-294, Dec. 2014. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S1742287614001066

V. N. Franqueira, J. Bryce, N. Al Mutawa, and A. Marrington,
“Investigation of Indecent Images of Children cases: Challenges
and suggestions collected from the trenches,” Digital Investigation,
Dec. 2017. [Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/S1742287617302669

D. Lillis, B. Becker, T. O’Sullivan, and M. Scanlon, “Current Challenges
and Future Research Areas for Digital Forensic Investigation,”
arXiv:1604.03850 [cs], Apr. 2016, arXiv: 1604.03850. [Online].
Available: http://arxiv.org/abs/1604.03850

J. Saarinen, “FBI Ordered to Copy 150 Terabytes of Data Seized From
Megaupload,” 2012. [Online]. Available: https://www.wired.com/2012/
06/megaupoad-data/

P. Sealey, “Remote forensics,” Digital Investigation, vol. 1, no. 4,
pp. 261265, Dec. 2004. [Online]. Available: http://linkinghub.elsevier.
com/retrieve/pii/S1742287604000854

M. J. Huiskes, B. Thomee, and M. S. Lew, “New trends and
ideas in visual concept detection: the MIR flickr retrieval evaluation
initiative,” in Proceedings of the international conference on Multimedia
information retrieval. ACM, 2010, pp. 527-536. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1743475

S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt, “Bringing
science to digital forensics with standardized forensic corpora,” Digital
Investigation, vol. 6, pp. S2-S11, Sep. 2009. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S1742287609000346

J. Kornblum, “Identifying almost identical files using context triggered
piecewise hashing,” Digital Investigation, vol. 3, Supplement, pp.
91-97, Sep. 2006. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1742287606000764

V. Roussev, G. G. Richard, and L. Marziale, “Multi-resolution
similarity hashing,” Digital Investigation, vol. 4, pp. 105-113, Sep.
2007. [Online]. Available: http:/linkinghub.elsevier.com/retrieve/pii/
S1742287607000473

V. Roussev, “Data fingerprinting with similarity digests,” in IFIP Inter-
national Conference on Digital Forensics. Springer, 2010, pp. 207-226.

A. Hadmi, A. A. Ouahman, B. A. E. Said, and W. Puech,
Perceptual image hashing. INTECH Open Access Publisher,
2012. [Online]. Available: http://cdn.intechopen.com/pdfs/36921/

InTech-Perceptual_image_hashing.pdf

F. Breitinger, H. Liu, C. Winter, H. Baier, A. Rybalchenko, and
M. Steinebach, “Towards a process model for hash functions in digital
forensics,” in International Conference on Digital Forensics and Cyber
Crime. Springer, 2013, pp. 170-186.

V. Roussev, C. Quates, and R. Martell, “Real-time digital forensics
and triage,” Digital Investigation, vol. 10, no. 2, pp. 158-167,
Sep. 2013. [Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/S1742287613000091

S. L. Garfinkel, “Digital media triage with bulk data analysis and
bulk_extractor,” Computers & Security, vol. 32, pp. 5672, Feb.
2013. [Online]. Available: http:/linkinghub.elsevier.com/retrieve/pii/
S50167404812001472

J. Grier and G. G. Richard, “Rapid forensic imaging of large disks
with sifting collectors,” Digital Investigation, vol. 14, pp. S34-S44,
Aug. 2015. [Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/S1742287615000511

P. Penrose, W. J. Buchanan, and R. Macfarlane, “Fast contraband
detection in large capacity disk drives,” Digital Investigation, vol.
12, Supplement 1, pp. S22-S29, Mar. 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1742287615000080

S. Garfinkel, A. Nelson, D. White, and V. Roussev, “Using
purpose-built functions and block hashes to enable small block
and sub-file forensics,” Digital Investigation, vol. 7, pp. S13-S23,
Aug. 2010. [Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/S1742287610000307

S. McKeown, G. Russell, and P. Leimich, “Fast Filtering of Known
PNG Files Using Early File Features,” in Annual ADFSL Conference
on Digital Forensics, Security and Law, Daytona Beach, Florida, USA,
2017. [Online]. Available: https://commons.erau.edu/adfsl/2017/papers/
1/

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. McKeown, G. Russell, and P. Leimich, “Fingerprinting JPEGs With
Optimised Huffman Tables,” Journal of Digital Forensics, Security and
Law, In Press.

S. McKeown, G. Russell, and P. Leimich, “Sub-file Hashing Strategies
for Fast Contraband Detection,” in International Conference on Cyber
Security and Protection of Digital Services (Cyber Security 2018).
Glasgow, UK: IEEE, Jun. 2018.

M. Scanlon and M.-T. Kechadi, “Online Acquisition of Digital
Forensic Evidence,” in Digital Forensics and Cyber Crime, S. Goel,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, vol. 31,
pp. 122-131, dOI: 10.1007/978-3-642-11534-9_12. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-11534-9_12

M. B. Koopmans and J. I. James, “Automated network triage,” Digital
Investigation, vol. 10, no. 2, pp. 129-137, Sep. 2013. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S1742287613000273

I. Homem, S. Dosis, and O. Popov, “LEIA: The Live Evidence Informa-
tion Aggregator: Towards efficient cyber-law enforcement,” in Internet
Security (WorldCIS), 2013 World Congress on. 1EEE, 2013, pp. 156—
161.

A. Clark, “Python-Pillow,” 2015. [Online]. Available: https://github.
com/python-pillow/Pillow

J. Yonan, “OpenVPN - Open Source VPN,” 2002. [Online]. Available:
https://openvpn.net/

B. Schweizer, “iops: Benchmark disk 10s,” Feb. 2010, original-date:
2011-09-03T13:08:48Z. [Online]. Available: https://github.com/cxcv/
iops

