
Author’s accepted version - DOI: https://doi.org/10.1109/CyberSecPODS.2018.8560680
IEEE International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2018)

Sub-file Hashing Strategies for Fast Contraband
Detection

Sean McKeown
School of Computing

Edinburgh Napier University
Edinburgh, Scotland

s.mckeown@napier.ac.uk

Gordon Russell
School of Computing

Edinburgh Napier University
Edinburgh, Scotland
g.russell@napier.ac.uk

Petra Leimich
School of Computing

Edinburgh Napier University
Edinburgh, Scotland

p.leimich@napier.ac.uk

Abstract—Traditional digital forensics processes do not scale
well with the huge quantities of data present in a modern
investigation, resulting in large investigative backlogs for many
law enforcement agencies. Data reduction techniques are required
for fast and effective digital forensics triage, and to reduce the
time taken to conduct an investigation. This work explores the
potential of sub-file cryptographic hashing strategies, where small
fragments of files are hashed in lieu of processing the file in
its entirety, for contraband detection. Results show that sub-
file hashing techniques perform well, particularly on solid state
media, while also retaining a high degree of discriminating power.
Such strategies may offer an opportunity to take advantage of
the performance characteristics of non-mechanical media, stre-
amlining future investigations and greatly reducing investigation
times.

Index Terms—sub-file signatures, partial-file analysis, hashing
strategies, digital forensics, cryptographic hashing

I. INTRODUCTION

Digital data is present in an abundant volume in modern
society, as mobile devices and personal computers permeate
all facets of life. The pervasiveness of digital devices, and their
increasing data capacities, has created a scalability problem
for law enforcement agencies, which are struggling to cope
with the deluge of evidence [1]. In some jurisdictions this has
created delays in processing evidence of up to four years [2],
potentially allowing criminals the opportunity to reoffend.

Existing solutions to tackle this data overload include
random sampling, parallelisation, data mining, and machine
learning [3]. However, a review [1] of these approaches has
found that there are still several areas of weakness, with
additional work being required to improve data reduction
and triage techniques. As such, it is critical that continued
research is undertaken to tackle this problem. In doing so,
investigators can be supplied with more effective tools to
reduce the turnaround times for evidential analysis, facilitating
a reduction in existing forensics backlogs.

A. Problem Definition and Contribution

Many public sector digital forensics investigations focus on
the detection and analysis of contraband images and other
media. To automate this process, cryptographically secure
hash signatures are used as a means of identifying exact

binary copies of previously encountered contraband [4]. When
analysing a new piece of evidence, such as a mobile device
or hard drive, each file on the device is hashed separately and
compared to a database of known contraband. When a match
is discovered, the software then marks the file for the attention
of the investigator.

This paper explores a data reduction approach wherein parts
of files are cryptographically hashed in lieu of entire files,
allowing for fast lookups of known contraband items. As the
IO overhead of the storage media is typically the bottleneck in
digital forensic processing, this approach offers the possibility
of substantially reducing the time taken to process files on a
device, aiding in the reduction of law enforcement backlogs.

The main contribution of this work is the analysis of
several sub-file, file type agnostic, forensic hashing strategies,
with: i) an analysis of the discriminating power of signatures
generated by sub-file hashing strategies, and ii) an evaluation
of the performance of sub-file hashing strategies relative to
full file hashing, for both a Hard Disk Drive (HDD) and Solid
State Drive (SSD) using the NTFS and EXT4 file systems.

Experiments were carried out using two datasets: Flickr 1
Million [5], containing 1 million JPEGS and the Govdocs [6]
dataset, with all images converted to PNG to create a dataset
with larger file sizes.

II. RELATED WORK

A. Generating Forensic File Signatures

Data signatures are integral to the digital forensics process,
being used to whitelist or blacklist previously encountered
files, and to verify that the integrity of digital evidence has not
been compromised. Such signatures are typically created by
calculating cryptographically secure hash digests, producing
signatures which are both distinct and incredibly difficult to
replicate without the original data. The traditional approach is
to hash every bit of data in the input file or media, however, as
noted by Kornblum [7], such signatures can easily be foiled by
modifying any given bit of data. A mitigation strategy may be
found in piecewise hashing, dividing the input data stream into
a number of chunks, calculating multiple independent hash
signatures. Kornblum [7] expands on this idea by calculating
a rolling hash which is used to generate cut-off points for sub-
hashes. This technique, as implemented in the ssdeep tool,978-1-5386-5541-2/18/$31.00 ©2018 IEEE

produces a similarity score which provides an estimate of
the number of identical bytes when comparing a file and a
signature.

The occurrence of repeating, non-distinct, blocks in a data-
set may produce false positives when using piecewise hashing
techniques. To combat this, Roussev [8] uses statistically im-
probable features when deriving data signatures, implemented
in the sdhash tool. An alternative solution can be implemented
at the block level, with Garfinkel et al. [4] choosing to
evaluate the discriminative power of differently sized data
blocks, generating heuristics to identify common, non-distinct,
patterns which do not serve to identify a particular file.

Breitinger et al. [9] stratify signature generation approaches
into: i) full file cryptographic hashing, ii) bytewise approxi-
mate matching, for approaches like ssdeep and sdhash, and
iii) semantic approximate matching, where image signatures
are derived from their visual, rather than binary, properties.
These approaches were directly compared, with binary met-
hods proving to be very fast, and effective at detecting file
fragments, while semantic approaches are much more resi-
lient to content preserving binary manipulations. The authors
suggest a tiered approach for detecting contraband, based on
the strength of each hashing category. Low hanging fruit is
detected by full file hashing, followed by semantic approaches
to detect image variants, with bytewise approximate matching
conducted last to detect partial or damaged files.

A different form of signature generation is used by Mc-
Keown et al. [10], falling somewhere between bytewise ap-
proximate and semantic techniques. This approach exploits
PNG encoding metadata, found in the file header, to generate
signatures, combining this information with a small sample of
compressed pixel data to boost the discriminating power of
the technique. While this approach does not generate unique
signatures for images using the same encoder, it is more
resistant to binary level modifications, and greatly reduces
processing times over full file hashing approaches, as only
a small portion of the file is required. The authors suggest
that the bulk of non-contraband can be ruled out quickly,
with hits being confirmed with more expensive processing
afterwards. A similar approach for JPEGs [11] makes use
of optimised Huffman tables, found in the JPEG header, and
used to decode image data. When JPEGs are optimised for
maximal compression, these tables possess a high degree of
discriminating power, producing unique signatures for the
Flickr 1 Million dataset, while requiring only a small fraction
of the file to be read.

Forensic signatures can be generated in many ways, and
from different aspects of the file. Partial file signatures trade
discriminating power for processing speed, as this is a pri-
mary concern with large quantities of data. The next section
discusses techniques which are optimised for quick initial
assessments of evidence.

B. Digital Forensic Triage

Digital forensic triage can be performed to provide early
results, which can then be used to inform further analysis,

resulting in reduced investigative times. Roussev and Qua-
tes [12] show that one way to achieve this is to use more
sophisticated processing techniques, with extensive use of
parallel processing facilitating quick initial assessments. A
case study is presented which evaluates the effectiveness of
sdhash in correlating evidence across a variety of devices.
Full disk hashes and bytewise similarity hashes are calculated
in parallel, which alleviates the initial wait time required to
forensically copy a disk. This method avoids the file system by
accessing data directly on the disk, and proved to be effective
with a multi-processor workstation.

Roussev et al. [13] discuss a parallel processing model
intended to allow data to be processed as fast as it can be
acquired from the storage media. Individual analyses, such
as hashing, parsing windows registry entries, text indexing,
and file decompression, are handled by separate worker nodes,
allowing for distributed analysis. However, the authors noted
that a typical 8-core workstation lacked the computational
power required to process data in real time, except when
calculating traditional cryptographic hashes or parsing small
quantities of data. Drastically more computational power, or
data reduction techniques, are required for a complete real
time analysis of a disk stream.

Garfinkel [14] describe the bulk extractor tool, which uses
a parallel processing model, to extract forensically relevant
information from the disk. Scanners were developed which
extract images, documents, and textual data such as email
addresses, telephone numbers, and credit card numbers. Infor-
mation critical to the investigation can then be identified via an
overview which provides histograms of potentially important
data, such as repeated uses of a particular email address.

Rather than focusing on processing large volumes of data
in a timely fashion, Penrose et al. [15] reduce the quanti-
ties of data to process by sampling small blocks from the
storage media, while maximising sequential throughput from
the device. Traditional cryptographic hashing is applied at the
block level, with bloom filter look ups being used to detect
fragments identified from known contraband. The choice of
block size is critical, as block alignment and non-probative
blocks are a concern, as in Garfinkel et al. [4]. However, this
method proved to be effective for contraband detection with
high statistical confidence, allowing for SSDs to be sampled in
seconds, and hard disk drives in under an hour in most cases.

Triage can be effected by increasing the utilisation of com-
putational resources, however this is fundamentally limited by
the read speed of the storage media. Probabilistic sampling
works within the same constraints, but acknowledges that it is
not necessary to read all data on a device to detect contraband.

III. APPROACH

In contrast to prior work in digital forensic triage, the
approach described in this work is not probabilistic, nor
does it require extensive computational power. Instead it is
acknowledged that not all data on the storage media needs
to be processed on a device and applies this concept at the
file level. We explore different strategies for using traditional

2

cryptographic hashing algorithms, such as SHA256, to extract
signatures from partial files in an efficient manner. Unlike
prior work in sub-file signature generation [10], [11], this
approach is file type agnostic. However, as image processing
is an integral part of many digital forensics investigations, the
experimental datasets chosen are comprised of images.

A. Sub-file Hashing Strategies

Three distinct sub-file approaches were used in this work,
with the generalised form containing a parameter, n, indicating
the number of bytes constituting a read block. This data is
then hashed using the SHA256 algorithm to produce a file
signature.

[First n]: Read n bytes from the beginning of the file.
This was exemplified by 4KiB and 80KiB in this work.
4KiB was chosen as it represents the fastest possible sub-file
hash, corresponding to the smallest read unit on contemporary
storage drives for both solid state and mechanical media. It
is also a good approximation for the performance of prior
sub-file signature generation schemes [10], [11]. The higher
boundary of 80KiB (20×4KiB data blocks) corresponds to
approximately 2/3 of the mean file size of images in the Flickr
1 Million dataset, and is chosen to represent the largest chunk
of a file which could still be considered to be ‘sub-file’ for
most images. These read blocks are always expected to be
byte aligned with modern hard disk sectors and SSD pages,
which are 4096 bytes.

[Last n]: Read n bytes from the end of the file, exemplified
by 4KiB and 12KiB in this work. The former value is chosen
to maximise speed, while the latter was chosen to highlight the
performance trade-off when the size is increased slightly by
one or more disk blocks. These read blocks are not expected
to align with disk sectors or SSD pages often (1/4096 of the
time), and in practice two or four sectors/pages, respectively,
would be accessed by the underlying storage media.

[First n+Last n]: Read n bytes from both the start and the
end of the file, resulting in twice the amount of data to be read
as the previous two methods. This technique is used both as a
method to potentially improve discriminative power, but also
to highlight block retrieval performance characteristics of non-
contiguous data blocks. n is 4KiB in this work, and was chosen
to represent the most effective performance/discrimination
trade-off. This results in 8KiB of data to hash, and often three
disk sectors/SSD pages to be accessed by the storage media.
This strategy is abbreviated to First+Last n in the following
discussion.

B. Datasets

Two datasets were used in this work: i) The Flickr 1
Million dataset [5], comprised of 1 million JPEG images
retrieved from the Flickr image hosting platform, and ii) The
Govdocs dataset [6], originally comprised of approximately
108,000 JPEG images, converted to the PNG format. Images
were converted to PNG using the Python Pillow library [16],
discarding four images which did not convert correctly, and
removing duplicates as determined by the SHA256 algorithm.

Dataset Size Range Median Mean Total

Flickr 1 Million 8KiB – 1.5MiB 117KiB 124KiB 120GiB
Govdocs PNG 170B – 38.2MiB 344KiB 1.4MiB 148GiB

TABLE I
FILE SIZE STATISTICS FOR THE FLICKR 1 MILLION AND GOVDOCS PNG
DATASETS USED IN THIS WORK. BOTH DATASETS HAVE SIMILAR TOTAL

SIZE, HOWEVER THE GOVDOCS DATASET HAS APPROXIMATELY 1/10th AS
MANY IMAGES.

This created a dataset with much larger file sizes than the
original, allowing for contrasts to be made with the Flickr
dataset, which contains much smaller files. File size statistics
for both datasets are provided in Table I.

C. Benchmark Set-up

In order to determine the potential processing speed impro-
vements of each sub-file hashing strategy, a direct comparison
is made with traditional full file hashing using the SHA256
algorithm, referred to in this work as Fullhash. Timed ben-
chmarks were carried out on a workstation (i5-4690k, 16GiB
DDR3 RAM) running Ubuntu 16.04 LTS, across both a hard
disk (Western Digital Red 4TB) and SSD (Crucial MX300
525GB). Neither drive hosted the Operating System, and the
SSD was tested using the NTFS and EXT4 file systems, as
performance differences were noted in the literature [11]. Code
was written in Python, and executed in the Python 2.7.12
interpreter. The built-in hashlib library, which performs
SHA256 calculations, is implemented in C on the back-end.
Datasets were copied to the drives sequentially, and file orders
were determined by Python’s os.listdir function. Volu-
mes were mounted with the -ro,noatime flags to prevent
modification. In copying files to an empty drive sequentially,
and using their ordering provided by the file system, sequential
read performance is maximised. That is, the experiments
here provide the best case scenarios for sequential read, and
therefore full file hashing, constituting a strong baseline to
compare sub-file techniques against. Reported times do not
include file enumeration times from os.listdir.

IV. FINDINGS

There are two important evaluation criteria for sub-file
hashing strategies: i) they must be highly discriminative,
allowing for contraband to be detected with a high degree
of accuracy, and ii) they must be considerably faster than
traditional full file hashing in order to justify the trade-off
in discriminating power. Both of these criteria are discussed
in turn.

A. Sub-file Signature Discriminating Power

The very nature of a signature demands that it be unique,
or almost unique, in the context of its use. In digital forensics
a higher degree of discriminating power results in a lower
number of false positives. Table II shows the number of unique
signatures for each sub-file hashing strategy on each dataset,
not including full file duplicates.

3

Number of Unique Signatures

Dataset First 4KiB First 80KiB First+Last
4KiB Last 4KiB

Flickr 1 Million
(no Fullhash
duplicates)

970633
(97.10%)

999349
(99.97%)

999622
(100%)

999622
(100%)

Govdocs PNG 108670
(99.80%)

108824
(99.94%)

108885
(100%)

108885
(100%)

TABLE II
THE NUMBER OF UNIQUE SIGNATURES FOR VARIOUS SUB-FILE HASHING
STRATEGIES ACROSS BOTH DATASETS. FIRST 80KIB INCLUDED TO SHOW

THAT EVEN READING A SUBSTANTIAL PART OF THE BEGINNING OF THE
FILE DOES NOT PRODUCE UNIQUE VALUES.

The results show that hashing from the start of the file is
highly discriminative with as little as 4KiB, however many
bytes are required before the signatures would become unique,
with 80KiB of data failing to produce completely unique
signatures for both datasets. Hashing 4KiB from the end of
the file, however, proved to be unique across both datasets,
precluding the need to process larger data blocks from the
end of the file. The first and last strategy is also unique as it
contains the Last 4KiB, with the possibility that it may scale
better to tens, or hundreds, of millions of files.

Without considering the performance trade-offs, reading
from the end of the file, or both the start and the end, are
the preferred options for high discriminative power. First+Last
4KiB is retained for performance analysis as it is potentially
a more robust mechanism for increasing discriminative power
than reading more blocks from the end of a file. Additionally,
it provides an insight into the performance characteristics of
acquiring non-contiguous small data blocks on a device.

B. Sub-file Signature Performance

Sub-file hashing strategies must be appreciably faster than
full file hashing to be useful, and should be effective across
different media types and file sizes. All hashing strategies were
applied to both datasets for varying thread counts, with each
combination being repeated 3 times, clearing memory caches
between runs. Performance metrics are provided in Table III
for the Flickr 1 Million dataset, and Table IV for Govdocs
PNG. The left-hand column for each technique indicates the
mean total time (seconds) for processing the dataset, while
the right-hand side contains performance factors, obtained by
dividing the time taken for sub-file strategies by the full file
hashing times. A performance factor of 10 means that the
approach is 10× faster than full file hashing. The Fullhash
technique has no performance factor, as it would simply be
compared to itself. The First 80KiB strategy was omitted as
it has little to gain over reading the First 4KiB of the file,
while 12KiB of data from the end of the file was tested to
determine the impact of additional small data blocks on the
most promising technique. Hard disk data is provided only for
NTFS runs with a single thread, as multiple threads decrease
performance in some cases, and sequential access is critical to
maximal throughput on hard disks.

Several factors affect the performance of all approaches:
Drive Type: The largest factor affecting performance is

the type of storage media, with sub-file approaches scaling
much better on the SSD than the HDD. This is because the
read head on a hard drive has to physically move to the
appropriate track, and then wait for the disk platter to spin
to the appropriate sectors before data can be retrieved. SSDs
have no mechanical components, no seek times, and can fetch
unrelated pages in parallel, resulting in much better small
block throughput. This behaviour is captured by the random
4KiB read performance of the device, which is typically much
lower than that of sequential read speeds. On the SSD random
4KiB read performance ranges from 6.6% to 50% of the
sequential read speed, while the HDD lies between 0.4%
and 1.5%, depending on queue depth and thread count, as
measured by CrystalDiskMark 5.5 [17].

File Size: The size of the files being processed influences
the behaviour a great deal. It appears that the overhead of non-
sequential access on the HDD mean that sub-file strategies are
actually less performant than simply reading the full file for
small files, as with Flickr 1 Million. This file system overhead
may be alleviated, as discussed below. However, when the file
size is increased with the Govdocs PNG dataset, gains of 2–3×
are possible, as this overhead is overwhelmed by the reduction
in data. On the SSD, performance is reasonable even with
small files, while increasing the mean file size by an order
of magnitude results in similar performance gains, with all
techniques performing well on the PNG dataset. The fraction
of data, and therefore the data reduction ratio, of reading a
single 4KiB block from each file depends on the file size.
For Flickr 1 Million, this corresponds to 3% of the total data,
while for Govdocs PNG it falls to 0.26%, resulting in a much
higher tolerance for low 4KiB read throughput.

File System: EXT4 benchmark times were lower than
NTFS across the board, with a particularly large performance
difference for all sub-file strategies. This appears to indicate
that the NTFS file system introduces substantial overheads
when accessing small parts of a file, though the worst case
SSD sub-file performance is still favourable when compared
to sequentially accessing all file data. NTFS overheads can
be avoided by parsing the MFT and obtaining a list of LBA
addresses for files, which can then be used to sequentially
order reads, resulting in greater performance [11]. This would
likely bring the sub-file NTFS HDD performance in line with
full file hashing for the Flickr Dataset.

No. Threads: All approaches scale well with thread count
on the SSD, however NTFS appears to plateau around 8 thre-
ads, with no additional benefit beyond this. EXT4 continues to
scale up to 32 threads, but returns appear to diminish somew-
hat after 16 threads. It should be noted that the workstation’s
processor has four cores and no hyper-threading.

The fastest technique, First 4KiB, achieves very good per-
formance compared to full file hashing, and leads the timed
benchmarks on all but the Flickr HDD run. However, it is fol-
lowed closely by the Last 4KiB strategy, which achieved better
discrimination in Section IV-A. Reading two further 4096 byte

4

Flickr 1 Million Benchmarks
Mean hash Time (s) and Relative Performance Factor to Fullhash

FS / Drive Threads First 4KiB First+Last 4KiB Last 4KiB Last 12KiB Fullhash

1 307.3 2.6 703.3 1.2 481.3 1.7 571.8 1.4 813.0
2 287.1 2.4 619.5 1.1 408.5 1.7 491.4 1.4 678.3

NTFS 4 275.7 2.5 542.6 1.3 347.5 2.0 448.7 1.5 690.8
SSD 8 270.2 2.7 488.7 1.5 305.5 2.4 405.7 1.8 724.1

16 270.4 2.7 493.2 1.5 309.2 2.4 410.7 1.8 735.0
32 271.6 2.8 524.9 1.5 319.7 2.4 411.6 1.9 766.7

1 257.8 3.4 502.7 1.8 282.0 3.1 393.4 2.2 882.8
2 139.3 4.1 282.0 2.0 153.2 3.7 225.6 2.5 565.0

EXT4 4 82.7 4.5 169.2 2.2 90.8 4.1 137.6 2.7 370.3
SSD 8 55.6 4.9 114.3 2.4 59.0 4.6 88.9 3.1 273.9

16 45.6 5.8 89.5 2.9 42.7 6.1 63.3 4.1 262.1
32 44.3 5.9 81.2 3.2 37.9 6.8 59.8 4.3 259.1

NTFS HDD 1 1593.2 0.8 1587.0 0.8 1605.6 0.8 1621.3 0.8 1284.9

TABLE III
BENCHMARK RESULTS TO READ AND HASH (SHA256) FOR THE FLICKR 1 MILLION DATASET. MEAN TIME IN SECONDS ON THE LEFT HAND SIDE FOR

EACH TECHNIQUE, FOLLOWED BY THE COLOUR CODED PERFORMANCE FACTOR ON THE RIGHT. PERFORMANCE FACTORS ARE RELATIVE TO FULLHASH
TIMES, WITH A FACTOR OF 10 INDICATING THE SUB-FILE TECHNIQUE IS TEN TIMES FASTER. THESE WERE CALCULATED BY DIVIDING THE TIME TAKEN

FOR FULL FILE HASHING BY THE TIME TAKEN FOR THE SUB-FILE TECHNIQUE.

Govdocs PNG Benchmarks
Mean hash Time (s) and Relative Performance Factor to Fullhash

FS / Drive Threads First 4KiB First+Last 4KiB Last 4KiB Last 12KiB Fullhash

1 30.7 25.1 94.0 8.2 48.5 15.9 55.8 13.8 770.3
2 27.9 21.4 74.4 8.0 39.1 15.2 47.6 12.5 595.3

NTFS 4 27.4 22.3 57.6 10.6 36.6 16.7 43.6 14.0 609.8
SSD 8 26.9 22.1 49.2 12.1 31.4 18.9 40.0 14.8 593.4

16 26.8 22.1 50.0 11.9 32.5 18.3 40.2 14.8 593.8
32 27.7 22.0 53.0 11.5 33.6 18.1 40.8 14.9 609.0

1 28.8 25.7 53.6 13.8 31.0 23.8 43.0 17.2 739.3
2 15.3 32.7 30.0 16.6 17.0 29.4 24.4 20.5 500.1

EXT4 4 9.0 39.7 18.0 19.8 10.0 35.7 14.9 24.0 357.8
SSD 8 6.0 54.2 12.0 26.8 6.5 49.9 9.5 33.9 323.1

16 4.8 65.9 9.2 34.3 4.6 68.6 6.6 47.6 315.2
32 4.7 66.6 8.0 38.7 4.4 70.6 5.8 53.4 310.5

NTFS HDD 1 691.6 2.6 818.9 2.2 665.9 2.7 673.6 2.6 1776.8

TABLE IV
BENCHMARK RESULTS TO READ AND HASH (SHA256) FOR THE GOVDOCS PNG DATASET. MEAN TIME IN SECONDS ON THE LEFT HAND SIDE FOR

EACH TECHNIQUE, FOLLOWED BY THE COLOUR CODED PERFORMANCE FACTOR ON THE RIGHT. PERFORMANCE FACTORS ARE RELATIVE TO FULLHASH
TIMES, WITH A FACTOR OF 10 INDICATING THE SUB-FILE TECHNIQUE IS TEN TIMES FASTER. THESE WERE CALCULATED BY DIVIDING THE TIME TAKEN

FOR FULL FILE HASHING BY THE TIME TAKEN FOR THE SUB-FILE TECHNIQUE.

File Size Fullhash Time Last 4KiB
Improvement Factor

(Flickr) 123 KiB 2.5 ms 7.9×
400 KiB 5.4 ms 17.0×
800 KiB 9.6 ms 30.1×

1 MiB 12.0 ms 37.4×
(Gov. PNG) 1.4 MiB 16.2 ms 50.8×

10 MiB 108.4 ms 339.4×

TABLE V
LINEAR REGRESSION PREDICTIONS FOR THE TIME TAKEN TO READ AND HASH FULL FILES OF VARIOUS SIZES, WITH THE RELATIVE BENEFIT OF LAST

4KIB HASHING. FIGURES ARE DERIVED FROM THE SAME DATA AS FIGURE 1 USING THE SSD WITH EXT4. IMPROVEMENT FACTOR IS CALCULATED BY
DIVIDING THE FULLHASH TIME BY THE CONSTANT TIME TO ACQUIRE AND HASH LAST 4KIB (0.32MS).

5

chunks from the end of the file results in some performance
degradation, but nothing substantial. The worst performing
sub-file hashing strategy, First+Last 4KiB performs an order
of magnitude faster than full file hashing on the SSD for the
PNG dataset, but barely edges it out on the Flickr dataset.

All sub-file approaches look viable on relatively large files,
but based on these findings it appears that the Last 4KiB
approach would be the best choice in terms of performance and
discrimination. On the SSD, this method approaches a factor
of 20× over full file hashing on NTFS, and an enormous 70×
on EXT4. The Last 4KiB approach performs similarly to prior
file type specific sub-file hashing schemes [10], [11], while
generalising the approach to any file type.

C. Performance Scaling With File Size

As file size has such a large influence on the performance
of sub-file hashing strategies, it was explored in more detail
by acquiring per-file benchmark estimates. In order to control
for the potential variance in measuring small IO operations,
files were grouped into bins of width 8192 bytes, discarding
bins with fewer than eight files. The average times for full file
hashing and Last 4KiB were then calculated from each bin on
the SSD with the EXT4 file system. Figure 1 is a scatter plot
of average per-file times for each bin.

The time taken to acquire the Last 4KiB of each file is
essentially a fixed cost which does not scale with file size,
with a mean of 0.32ms in this experiment. Full file hashing,
on the other hand, unsurprisingly scales linearly with the size
of the file, easily taking tens of milliseconds to process when
file sizes are in the Mebibytes.

Linear regression was then used to generate a predictive
model to obtain hash times and their respective Last 4KiB
performance factors, depicted in Table V. The equation for
these predictions, where x is the byte size of the file, is as
follows:
Fullhash time(s) = 1.02196× 10−8x+ 1.23139× 10−3

These predictions match up fairly well with the SSD EXT4
benchmarks with 32 threads, and therefore serve as a rea-
sonable indicator of performance. Files with 10MiB of data,
which may include very high resolution JPEGs, uncompressed
images, or short videos, would enjoy a performance increase
factor over 300×. This level of scaling means that when
file sizes are in the Mebibytes, sub-file hashing strategies
should perform much better than full file hashing, regardless
of storage device or file system.

D. Impact of Full File Confirmation Hashing

The Last 4KiB strategy generated unique signatures for all
unique files across both datasets, however, some conditions
may change this, with homogeneous data, similar files, or very
large volumes of images. This can be tackled by reading more
data from the end of the file, as with the Last 12KiB approach,
or using the less performant First+Last 4KiB strategy. In
some use cases it may still be prudent to fully hash the
entire file to confirm the original detection assessment. In
order to assess the impact of confirmation hashing, worst

Fig. 1. File size plotted against hash time for Last 4KiB and full file
hashing techniques. Mean file times are shown for file size bins of 8192
bytes, carried out single threaded on the SSD with EXT4.

case scenario estimates are provided in Table VI for 1%
and 10% confirmation rates. These estimates ignore disk or
memory caching for the file, which in reality may reduce the
confirmation overhead.

Even at a 10% confirmation rate, where 10% of files are
fully hashed, the only scenario which is slower than full file
hashing is on the hard disk with Flickr 1 Million. The best
case for Govdocs PNG and EXT4 is still an order of magnitude
faster than fully hashing all files, with the worst case for Flickr
on NTFS still taking around half of the time.

It is important to note that confirmation hashing does not
need to be conducted at the same time as the initial detection
scan. Sub-file strategies may be deployed to quickly process
the data, with confirmation hashing occurring after other up-
front processing has been conducted. In this sense, initial
results can be obtained quickly, with confirmation carried out
in the background afterwards. This fits in well with the triage
models in the literature, where early results are critical to
decision making.

V. CONCLUSIONS AND FUTURE WORK

This work has explored the potential of sub-file forensic
hashing strategies, where small fragments of a file are read
from the storage media and cryptographically hashed, as a
means of quickly detecting contraband files. The results show
that sub-file hashing is highly discriminative, with reading
4KiB of data from the end of the file producing a unique sig-
nature for 1.1 million images in this experiment. Performance
benchmarks show that various sub-file hashing strategies are
much faster than full file hashing on solid state drives, with
increases of up to 70×. Hard disk performance relative to
reading the entire file varies greatly with file size, as random
4KiB read performance is much lower on these devices. The
choice of file system is also shown to have a large impact,
with the approach working better on EXT4 than NTFS. Sub-
file hashing strategies are effective, and scale very well with

6

Impact of Full file confirmation hashing on Last 4KiB lookups
Time in seconds

Dataset FS / Drive Threads Last 4KiB
Base

Last 4KiB
1% Hit Rate

Last 4KiB
10% Hit Rate Fullhash

Flickr 1 Million
NTFS SSD 32 319.7 327.4 396.4 766.7
EXT4 SSD 32 37.9 40.5 63.8 259.1
NTFS HDD 1 1605.6 1618.4 1734.1 1284.9

Govdocs PNG
NTFS SSD 32 33.6 39.7 94.5 609
EXT4 SSD 32 4.4 7.5 35.45 310.5
NTFS HDD 1 665.9 683.7 843.6 1776.8

TABLE VI
THE WORST CASE SCENARIO TIMES FOR CONFIRMING A LAST 4KIB LOOKUP WITH FULL FILE HASHING, FOR 1% AND 10% DETECTION RATES.

CALCULATED BY ADDING PERCENTAGE OF FULLHASH ON TO LAST 4KIB TIMES.

file size, such that the time taken to process high resolution
images, or small video files, may be two orders of magnitude
faster on an SSD.

Many consumer devices rely solely on solid state technology
for their internal storage, particularly in the mobile and laptop
space. This work lays the foundation for digital forensic
techniques which take advantage of the performance charac-
teristics of NAND devices, greatly reducing the time taken
to conduct investigations and alleviating law enforcement
backlogs.

Future work in this area should explore the potential for
this approach on external media, mobile phones, and net-
worked storage. An additional opportunity may be found
in conducting experiments on recent storage developments,
such as the NVMe protocol or Intel Optane devices, which
have much higher performance than prior NAND media using
SATA interfaces. Hard disk drives are likely to remain in use
cases where high storage capacities are critical, however the
forensics community should prepare for the eventuality that
magnetic media may be a rarity in a typical investigation, and
adjust our processing approaches accordingly.

ACKNOWLEDGEMENT

This research was supported by a scholarship provided by
Peter KK Lee.

REFERENCES

[1] D. Quick and K.-K. R. Choo, “Impacts of increasing volume of digital
forensic data: A survey and future research challenges,” Digital Inves-
tigation, vol. 11, no. 4, pp. 273–294, Dec. 2014. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S1742287614001066

[2] D. Lillis, B. Becker, T. O’Sullivan, and M. Scanlon, “Current Challenges
and Future Research Areas for Digital Forensic Investigation,”
arXiv:1604.03850 [cs], Apr. 2016, arXiv: 1604.03850. [Online].
Available: http://arxiv.org/abs/1604.03850

[3] N. Beebe, “Digital forensic research: The good, the bad and
the unaddressed,” in IFIP International Conference on Digital
Forensics. Springer, 2009, pp. 17–36. [Online]. Available: http:
//link.springer.com/chapter/10.1007/978-3-642-04155-6 2

[4] S. Garfinkel, A. Nelson, D. White, and V. Roussev, “Using
purpose-built functions and block hashes to enable small block
and sub-file forensics,” Digital Investigation, vol. 7, pp. S13–S23,
Aug. 2010. [Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/S1742287610000307

[5] M. J. Huiskes, B. Thomee, and M. S. Lew, “New trends and
ideas in visual concept detection: the MIR flickr retrieval evaluation
initiative,” in Proceedings of the international conference on Multimedia
information retrieval. ACM, 2010, pp. 527–536. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1743475

[6] S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt, “Bringing
science to digital forensics with standardized forensic corpora,” Digital
Investigation, vol. 6, pp. S2–S11, Sep. 2009. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S1742287609000346

[7] J. Kornblum, “Identifying almost identical files using context triggered
piecewise hashing,” Digital Investigation, vol. 3, Supplement, pp.
91–97, Sep. 2006. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1742287606000764

[8] V. Roussev, “Data fingerprinting with similarity digests,” in IFIP Inter-
national Conference on Digital Forensics. Springer, 2010, pp. 207–226.

[9] F. Breitinger, H. Liu, C. Winter, H. Baier, A. Rybalchenko, and
M. Steinebach, “Towards a process model for hash functions in digital
forensics,” in International Conference on Digital Forensics and Cyber
Crime. Springer, 2013, pp. 170–186.

[10] S. McKeown, G. Russell, and P. Leimich, “Fast Filtering of Known
PNG Files Using Early File Features,” in Annual ADFSL Conference
on Digital Forensics, Security and Law, Daytona Beach, Florida, USA,
2017. [Online]. Available: https://commons.erau.edu/adfsl/2017/papers/
1/

[11] S. McKeown, G. Russell, and P. Leimich, “Fingerprinting JPEGs With
Optimised Huffman Tables,” Journal of Digital Forensics, Security and
Law, In Press.

[12] V. Roussev and C. Quates, “Content triage with similarity digests:
The M57 case study,” Digital Investigation, vol. 9, pp. S60–S68,
Aug. 2012. [Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/S1742287612000370

[13] V. Roussev, C. Quates, and R. Martell, “Real-time digital forensics
and triage,” Digital Investigation, vol. 10, no. 2, pp. 158–167,
Sep. 2013. [Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/S1742287613000091

[14] S. L. Garfinkel, “Digital media triage with bulk data analysis and
bulk extractor,” Computers & Security, vol. 32, pp. 56–72, Feb.
2013. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0167404812001472

[15] P. Penrose, W. J. Buchanan, and R. Macfarlane, “Fast contraband
detection in large capacity disk drives,” Digital Investigation, vol.
12, Supplement 1, pp. S22–S29, Mar. 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1742287615000080

[16] A. Clark, “Python-Pillow,” 2015. [Online]. Available: https://github.
com/python-pillow/Pillow

[17] N. Miyazaki, “CrystalDiskMark,” 2017. [Online]. Available: https:
//crystalmark.info/software/CrystalDiskMark/manual-en/

7

