
WAVES: Automatic Synthesis of Client-side Validation
Code for Web Applications

Nazari Skrupsky
University of Illinois

Chicago, USA
nskroups@cs.uic.edu

Maliheh Monshizadeh
University of Illinois

Chicago, USA
mmonsh2@uic.edu

Prithvi Bisht
University of Illinois

Chicago, USA
pbisht@cs.uic.edu

Timothy Hinrichs
University of Illinois

Chicago, USA
hinrichs@uic.edu

V.N. Venkatakrishnan
University of Illinois

Chicago, USA
venkat@cs.uic.edu

Lenore Zuck
University of Illinois

Chicago, USA
lenore@cs.uic.edu

Abstract

The current practice of web application devel-

opment treats the client and server components

of the application as two separate but interacting

pieces of software. Each component is written

independently, usually in distinct programming

languages and development platforms — a pro-

cess known to be prone to errors when the client

and server share application logic. When the

client and server are out of sync, an “impedance

mismatch” occurs, often leading to software vul-

nerabilities as demonstrated by recent work on

parameter tampering. This paper outlines the

groundwork for a new software development ap-

proach, WAVES, where developers author the

server-side application logic and rely on tools

to automatically synthesize the corresponding

client-side application logic. WAVES employs

program analysis techniques to extract a logi-

cal specification from the server, from which it

synthesizes client code. WAVES also synthesizes

interactive client interfaces that include asyn-

chronous callbacks whose performance and cov-

erage rival that of manually written clients while

ensuring no new security vulnerabilities are in-

troduced. The effectiveness of WAVES is demon-

strated and evaluated on three real-world web ap-

plications.

I INTRODUCTION

Current practices in mainstream web development
isolate the construction of the client component of
an application from the server component. Not only
are the two components developed independently, but
they are often developed by different teams of de-
velopers, some projects going so far as to outsource
the client development [1]. Partly this is just good

project management, but it is also a byproduct of
the fact that the client component is often written
using a different programming language and platform
(HTML and JavaScript in a web browser) than the
server (e.g., PHP, Java, ASP), therefore necessitating
developers with different skill sets. When the client
and server are supposed to share application logic but
do not, an “impedance mismatch” occurs.

In this paper we are concerned with a specific kind of
application logic: the input validation logic. Exam-
ples of input validation include input character val-
idation (“username does not contain special charac-
ters”), required fields (“phone number is required”)
and logical checks (“credit card expiry date in past”).
Input validation on the client improves the user ex-
perience because it provides the user immediate feed-
back about errors; furthermore, it often reduces net-
work and server load. Input validation on the server
is necessary for security. For if the server assumes
all the data it has been sent has been validated by
the client, a malicious user can circumvent the client,
submit invalid data to the server, and exploit the
lack of server-side validation. Recent work on pa-
rameter tampering [2–5] has uncovered impedance-
mismatch vulnerabilities that enable takeovers of ac-
counts and unauthorized financial transactions in
commercial and open-source websites as well as third-
party cashiers (such as PayPal and Amazon Payments).

Recently web development frameworks have begun
to address the problem of application logic shared
across client and server. For example, the Google
Web Toolkit allows a programmer to put shared code
into a special directory that is then replicated on
both the client and server. For legacy applications,
however, new programming language idioms are of
little help, and manually retrofitting an application
with extensive client-side and server-side validation is
error-prone and expensive, especially since the client

1
c©ASE 2012

and server validation must be synchronized every
time the application is updated.

In this paper, we address the impedance mismatch
problem for legacy web applications that have no in-
teractive client-side input validation. We first note
that these applications that were commonplace be-
fore Web 2.0 paradigm of development began and are
still in deployment today. Our approach is to auto-
matically examine the source code of a web applica-
tion, identify the server-side input validation logic,
and replicate that logic on the client. While de-
signed for legacy applications, our approach can also
be deployed in modern web development frameworks,
thereby enabling a developer writing a new applica-
tion to author only the server-side validation code
while the framework automatically installs the cor-
responding client-side validation code. While such
technology is most obviously beneficial because it
simplifies a web developer’s job, it can also help to
improve the security of newly written applications. If
the developer can focus all her energies on writing the
input validation logic for the server (instead of split-
ting her time between the client and server), she is
more likely to include all the validation necessary for
the security of the application. Thus our approach
has several high-level benefits:

• Improved Usability. Applications whose client
input validation has been automatically gener-
ated provide end users with all the input vali-
dation expected of today’s web apps.

• Greater Development Efficiency. Developers
no longer write the same validation code twice
since the client code is automatically synthe-
sized from the server code.

• Improved Security. The development team can
devote more resources to the design and im-
plementation of the server code, thereby being
more likely to include all the input validation
necessary for the application’s security.

Our realization of this approach, WAVES, uses
program analysis to automatically extract a log-
ical representation of the input validation checks
on the server and then synthesizes efficient client-
side input validation routines. Of particular note
is that WAVES also generates code for validation
checks that involve server-side state by utilizing asyn-
chronous requests (AJAX) to perform the required
validation. Because such validation routines can in-
crease server and network load, WAVES allows a de-

veloper to choose the extent to which such validation
checks are generated.

This paper is organized as follows: Section II presents
the problem by means of a running example and
the challenges our approach must overcome. In Sec-
tion III we present a high level overview of our ap-
proach. In Section IV we present a detailed descrip-
tion of the different components of our approach.
Section V presents an evaluation. We evaluate our
approach and tool over three real-world web applica-
tions. Our experience indicates that our approach of-
fers a promising improvement to current mainstream
web development practices. Section VI presents a dis-
cussion and security analysis of our approach. In Sec-
tion VII we present related work, and in Section VIII
we conclude.

II EXAMPLE AND CHALLENGES

Figure 1 presents the client side interface of a simple
user registration application. We will use this ap-
plication as the running example throughout the pa-
per. In this application, a user supplies her user ID
and her password twice (for confirmation purposes).
There are three validation checks performed by this
application:

1. The characters in user ID belong to a specified
character set, which in this case is all alphanu-
meric characters along with a hyphen and un-
derscore.

2. The two supplied passwords match.

3. The user ID is available for creating an account
(i.e., it is not already taken by another user).

Suppose the developer authors the server component
of the application and implements these checks in
server code. Our goal is to automatically synthesize
the corresponding client side input validation rou-
tines. The high-level challenges in achieving our goal
include:

• Automatic inference of server-side constraints.
While the client side validation constraints are
expressed in terms of form fields, the server side
validation may be performed in terms of server-
side variables within deeply nested control flows
of the application. The server-side constraints
must be extracted and expressed in terms of the
form fields.

2
c©ASE 2012

Figure 1: Running example of a registration application

• Validation involving the server. Sometimes val-
idation involves server-side state (such as the
database), but moving that data to the client
is often impractical because of performance, se-
curity, privacy, and/or staleness issues. For
example, when a user ID is submitted to the
server, the server checks if the ID is unique in
the database. Moving all the user IDs to the
client is impractical; thus, some clients asyn-
chronously contact the server to check if the
ID is unique. The code that is generated must
allow the client to asynchronously contact the
server (and for the developer to control which
asynchronous validations are performed).

• Preservation of application logic and security.
The code that is generated must neither com-
promise the security of the application nor dis-
able existing functionality.

III OUR APPROACH

This paper presents an approach for improving the
web application development process that alleviates
the problem of inconsistent client and server input
validation: WAVES (Web Application Validation
Extraction and Synthesis). Unlike traditional ap-
proaches that require developers to write and main-
tain the input validation routines in both the client
and the server codebases, WAVES requires develop-
ers to only maintain the input validation code on the
server. WAVES then automatically synthesizes the
corresponding validation code for the client.

Figure 2 shows the desired transformation of the run-
ning example1. The non-interactive version of the
web application is shown on the left and is comprised
of the client-side code (register.html) and server-side

code (register.php). Guided by validation checks in
register.php, WAVES generates the interactive ver-
sion of this application shown on the right (newly
added code in bold font). The retrofitted client vali-
dates each of its three fields as soon as the data in any
field changes. For instance, when the user changes
uid, the client checks that only alphanumeric charac-
ters, hyphens, and underscores appear in the user ID;
additionally, the client asks the server if the user ID
is unique in the database.

WAVES breaks this transformation into four concep-
tually distinct phases:

(1) Server analysis. WAVES performs dy-
namic program analysis—submitting form inputs to
the server and inspecting the sequence of instructions
that the server executes. The key insight is that when
the server is given an input it accepts, the sequence of
if-statements it executes contain all the input valida-
tion constraints it checks. So after submitting form
field inputs that the server accepts and rewriting the
if-statements in terms of the original form field in-
puts, we have a list of potential input validation con-
straints. We then analyze each one to determine if it
is truly an input validation constraint—a constraint
that when falsified causes the server to reject the in-
put. Once the list has been reduced to the set of ac-
tual input validation constraints, we identify which
constraints are dependent on the server’s environ-
ment (the dynamic constraints) and which are not
(the static constraints).

In our running example, we first submit legitimate
values for uid and the two passwords. The server
checks if the uid contains only the permitted char-
acters, that the uid is unique in the database, and
that the passwords match. The server will undoubt-
edly execute other if-statements, which must be an-

1For concreteness, the example shows the client implemented in JavaScript, and AJAX, and the server implemented in PHP.
While these languages are the ones addressed by our current prototype, the underlying techniques used by our approach are
agnostic to programming languages. Our implementation can be easily extended to other server platforms (e.g., JSP, .NET)
and client platforms (e.g., ActionScript).

3
c©ASE 2012

$userId = $_POST['uid'];
$paswd1 = $_POST['pwd1'];
$paswd2 = $_POST['pwd2'];
if (! alphanumeric($userId))
 exit (" invalid set of chars ")
if(userInDB ($userId))
 exit (" userid already taken")
if($paswd1 != $paswd2)
 exit (" passwords mismatch")
...
mysql_query("insert...");

register.php

<form action="register.php">
 <input id='uid'>
 <input id='pwd1'>
 <input id='pwd2'>

register.html

Non-interactive
Web Application

Interactive
Web Application

WAVES

Client-side
code

Server-side
code

<form action="register.php">
 <input id='uid' onchange=valUid(uid)>
 <input id='pwd1' onchange=valPwd(pwd1, pwd2)>
 <input id='pwd2' onchange=valPwd(pwd1, pwd2)>

register.html

register.php

$userId = $_POST['uid'];

if (!alphanumeric ($userId))
 exit("error");

if (userInDB($userId))
 exit("error");

exit ("noerror");

ajaxStub.php
$userId = $_POST['uid'];
$paswd1 = $_POST['pwd1'];
$paswd2 = $_POST['pwd2'];
if (! alphanumeric($userId))
 exit (" invalid set of chars ")
if(userInDB ($userId))
 exit (" userid already taken")
if($paswd1 != $paswd2)
 exit (" passwords mismatch")
...
mysql_query("insert...");

Developer

Figure 2: WAVES: synthesizing client-side validation code.

alyzed to find the constraints of interest. Finally,
we separate the static constraints (the alphanumeric
constraint on uid and the password equivalence con-
straint) from the dynamic constraints (the fact that
the uid is unique in the database).

(2) Client-side code generation. In WAVES,
once the static and dynamic constraints have been ex-
tracted from the server, we synthesize client-side code
to check those constraints. The static constraints can
be checked directly by JavaScript code, but the dy-
namic constraints can only be checked after commu-
nicating with the server. So for each form field, we
generate code that performs two tasks: checking if
any errors arise because of static constraints and if
not, checking if any errors arise because of dynamic
constraints by asynchronously contacting the server.
In our example, the client code for the uid field first
checks if the value contains only the permitted char-
acters and if so asks the server if the value is unique
in the database. It also checks that the two pass-
words are the same (whenever there are values for
both fields).

(3) Server-side code generation. The asyn-
chronous messages sent by the client to check the
dynamic constraints for a form field can only be re-
sponded to by special-purpose server-side code. (The
original code assumes the user provided values for
all form fields, but the client’s asynchronous mes-
sages aim to check constraints even before the user
completes the form.) These server stubs behave the
same as the original server code but operate properly
when data for only one or two form fields is provided.
Different techniques can be used to generate server

stubs, but we recommend code slicing. To minimize
server communication, we also recommend checking
all of the dynamic constraints for a form field via one
asynchronous message. In our example, we generate
a single server stub that checks if the given uid is
unique in the database. Unlike the original server
code, that stub does not perform any checks on the
password fields.

(4) Integration. Once the new client and server
code has been generated, it must be integrated into
the existing client and server codebases. In this step,
the developers can choose to disallow some generated
code parts to be integrated into the application since
there are some constraints which may reveal informa-
tion about the server state or data. How the integra-
tion is done depends on the programming languages
for client and server, but ideally regenerating client
and server code to reflect changes in the application
will require minimal additional integration effort.

IV TECHNICAL DESCRIPTION

In this section we describe each of the four phases of
our approach in more detail.

1 SERVER ANALYSIS

The server analysis phase of WAVES aims to dis-
cover all of the constraints on form fields that the
server enforces (Algorithm 1). Besides the URL of
the web form, WAVES is given inputs for the form
that the web server accepts, i.e., a single error-free

4
c©ASE 2012

input. WAVES begins by submitting this initial in-
put (the success input) to the server, which returns a
trace of the instructions that the server executed in
response (Algorithm 1 Line 1). Instrumenting the
server to return such a trace is done offline and was
described in prior work [3]. Since the success input
is accepted by the server, those inputs satisfy all of
the constraints the server enforces, and consequently
all the input validation constraints will appear as if-
statements in the resulting server trace. By rewrit-
ing those if-statements in terms of the original inputs
(using taint analysis of [3]), WAVES extracts the set
of conditions that were true of the form field inputs:
{C1, . . . , Cn} (Line 2).

Not each of the resulting conditions, if falsified, leads
to an error. For example, consider an additional con-
dition in the register.php file that writes informa-
tion to a log under certain conditions. Those condi-
tions also appear as if-statements but are irrelevant
for input validation purposes. Thus, WAVES next
identifies which of the conditions (Ci) if falsified lead
to an error. For each Ci, WAVES constructs in-
puts that satisfy ¬Ci using a string solver [6] (Line
5) but is otherwise as similar to the original success
input as possible (Line 6). The intent is that this
failure input, if rejected by the server, demonstrates
that ¬Ci is an error condition. If the server rejects a
failure input, we know that the conjunction of condi-
tions in that trace (after rewriting them in terms of
the original form field inputs) is an error condition:
D1 ∧ · · · ∧Dm (Line 7-8). That is, every input satis-
fying D1 ∧ · · · ∧Dm contains at least one error. The
constraints that WAVES extracts is a collection of
such error conditions (Algorithm 1 Line 13).

Simplification. The algorithm described above
is sound by construction (proof in Appendix IX) :
if WAVES finds an error condition, then any input
satisfying that condition will cause an error. But in
practice each of these error conditions is usually too
weak to be useful because it includes checks on all of
the form fields. The only time the error condition is
satisfied is therefore when all of the form fields have
values. One of the design goals of WAVES is to give
the user real-time feedback each time she enters a new
form field value, a goal that the error conditions de-
scribed so far fail to achieve. To illustrate the issue,
consider a failure input where the user ID satisfies the
necessary conditions but where the two passwords are
unequal. The above algorithm would identify the fol-
lowing conjunction as an error condition.

(uid ∈ [0-9a-zA-Z -]*) ∧ isUnique(uid) ∧
(pwd1 6= pwd2)

The problem is that this constraint can only be eval-
uated once there are values for all three form fields.
Moreover, this constraint only ensures that if uid is
alphanumeric and not already present in the database
then the passwords must be equal. While the correct
simplification of this example is obvious from our de-
scription of the application (pwd1 6= pwd2), in general
we cannot soundly eliminate conjuncts from an error
condition.

Simplification is therefore crucial to the practical util-
ity of WAVES. The basic premise behind our simpli-
fication routine is that we have two kinds of server
traces: those with errors and those without errors.
The conjunction of conditions in a trace with errors
is an error condition: any input that satisfies all the
constraints is rejected by the server. The conjunc-
tion of conditions in a trace without errors is a safe
condition: no input that satisfies a safe condition is
rejected by the server. Thus, we can simplify an error
condition by removing all safe conditions contained
within it (Algorithm 1 Line 13).

Unfortunately, it is just as important and difficult to
simplify a safe condition as it is to simplify an error
condition. All we know is that no input satisfying
all the conjuncts together causes an error. But if
WAVES knows which form fields are independent of
which others in terms of all control paths (the indep
argument to Algorithm 1), it can break large safe
conditions and error conditions into independent con-
junctions of constraints (Lines 3, 9). WAVES then
records each independent conjunction of constraints
as either a safe condition (Line 11) or as an error
condition (Line 13). Any error condition that is also
a safe condition is eliminated as an error condition
(Line 13). We found this independence information
crucial to generating practically useful error condi-
tions.

Static and Dynamic Constraints. The con-
straints WAVES extracts from the server are one of
two kinds: static or dynamic. Dynamic constraints
depend on the server’s environment (e.g., file system
or database), while static constraints do not. The
difference is important because static constraints will
never change and hence can easily be synthesized on
the client, but dynamic constraints change each time
the server’s environment changes and hence for cor-
rectness can only be checked by the server. The way
WAVES identifies dynamic constraints is straightfor-

5
c©ASE 2012

Algorithm 1 WAVES (url, suc input, indep)

Returns: Client validation code in JavaScript and server stubs in PHP.
1: trace := submit(url, suc input)
2: C1 ∧ · · · ∧ Cn := constraints(trace)
3: safe := partition(C1 ∧ · · · ∧ Cn, indep)
4: for all Ci do
5: bl := Solver(¬Ci)
6: bl := bl ∪ eliminateVars(suc input, vars(bl))
7: trace := submit(url, bl)
8: D1 ∧ · · · ∧Dm := constraints(trace)
9: P = partition(D1 ∧ · · · ∧Dm, indep)

10: if serveraccepted(trace) then
11: safe := safe ∪ P
12: else
13: errors := errors ∪ (P − safe)
14: (static, dynamic) := splitStaticDynamic(errors)
15: return (genClient(static),genServer(dynamic))

ward: any constraint referencing the server’s environ-
ment (e.g., the database, files, sessions, global vari-
ables, time, etc.) is a dynamic constraint; all others
are static (Algorithm 1 Line 14).

Discussion. One of the limitations of server-side
analysis is that if the constraints enforced by the
server are complex enough, it may be that a single
success input is insufficient to extract all of the con-
straints enforced by the server. While we did not
encounter this limitation in the applications we eval-
uated, to address such forms we would apply the al-
gorithms we developed in prior work to construct ad-
ditional success inputs automatically [3].

2 CLIENT-SIDE CODE GENERATION

Generating the client code to check a collection of
static and dynamic constraints is broken into two dis-
tinct components: generating code that checks the
static constraints and generating code that checks
the dynamic constraints. Recall that the static con-
straints can be checked directly on the client, and the
dynamic constraints require communicating with the
server. For each form field, WAVES generates an
event handler that first checks the static constraints
for an error and if none is found then checks the dy-
namic constraints.

Static constraints. Each static constraint is basi-
cally a conditional test on form fields that can include
any number of string and integer manipulation func-
tions (e.g., len(trim(x)) > 6 ensures the length of
field x after removing whitespace from both ends is

greater than 6). Formally, each constraint is repre-
sented in the logic of strings and integer arithmetic.
Loosely, this means these are the usual boolean con-
nectives (∧, ∨, ¬) together with a collection of string
and integer operations that are found in many pro-
gramming languages.

Given the static constraints that must hold of the
form, we must identify which constraints are per-
tinent to each form field so that each time that
form field changes we can check the right constraints.
Choose too many, and the user may see error warn-
ings for form fields that she has not even filled in;
choose too few, and she will not be warned of errors
when they exist. This identification is quite simple
after converting the constraints to a canonical form
(conjunctive normal form): for form field f collect all
those constraints where f occurs.

There are some static constraints which may reveal
secret information about the server. For example, the
constraint password == "secret" (revealing the hard-
coded password “secret”, which is a poor security
practice) should not be added to client-side code.
These constraints occur rarely, and we have not en-
countered any warnings of this type. The string
solver can recognize constraints in which a form field
value is checked against a constant value, however
it cannot identify whether this constant value is a
server-related secret. Therefore, the developer should
choose to allow these type of static checks to appear
on the client-side or not. In practice, The number of
these warnings is insignificant compared to the ben-
efits of using WAVES.

6
c©ASE 2012

Generating client-side code that checks the con-
straints for a given form field is a linear time
and space procedure, assuming the client has im-
plementations of all the string and integer func-
tions. Each form field reference is translated into
a lookup of that field’s value (e.g., uid becomes
document.getElementById(’uid’)). Each boolean con-
nective is translated to the client’s version of that
connective (e.g., ∧ becomes &&). Each string or in-
teger function is translated to a client implementation
of that function (e.g., uid ∈ [0-9a-zA-Z -]* becomes
uid =∼ / [0-9a-zA-Z -]*/).

Dynamic constraints. A dynamic constraint is
essentially a static constraint, which is additionally
deemed to be volatile. More precisely, constraints
which directly involve the server’s environment (e.g.,
session data, database and file operations) are clas-
sified dynamic. Nested constraints are also consid-
ered dynamic when present within the scope of a dy-
namic condition. Because the server’s environment
may change from the time a form is generated to
the time it is submitted (e.g., the set of available
user names changes), dynamic constraints can only
be checked by consulting the server.

To this end, WAVES generates and makes use of
server-side stubs, which check dynamic constraints on
the server (described in §3). When the client needs
to check a form field with a dynamic constraint, it
communicates with the server asynchronously. The
client-side code for checking dynamic constraints con-
sists of sending requests with form field values to the
server and processing status changes from the server’s
responses into real-time feedback for the user.

Triggering Validation. Once the client-side code
is generated, we must instruct the client to execute
that code at the appropriate time and inform users
when constraints have been violated. For modern
web clients, it is usually a simple matter to provide
snippets of code to be executed for each of a fixed
number of events (e.g., each time the user changes the
uid). Thus it is a simple matter to tell the client to
run the code that checks the appropriate constraints
each time a form field changes and provide error mes-
sages when appropriate.

Figure 3 gives the JavaScript validation generated by
WAVES for the running example. valUid is called
when uid data is supplied and valPwd is called when
pwd2 is supplied.

3 SERVER-SIDE CODE GENERATION

The main goal in this step is to create server code
that responds to an asynchronous client request to
check the dynamic constraints for a given form field.
That code invokes a stub for each of the dynamic
constraints extracted by WAVES. If any of the stubs
produces an error, the server returns an error. Stub
generation is a three-step process, which we explain
below with our running example.

Dependency Analysis. Given a dynamic con-
straint in the server code, WAVES first performs a
data and control dependency analysis to compute the
set of all program variables (not just form fields) on
which the dynamic constraint depends (either implic-
itly or explicitly). We call these the related variables.
We do this via backward analysis, starting from the
dynamic constraints and working backwards in the
server code. In the running example for the dynamic
constraint userInDB($userId), the set of related pro-
gram variables includes $userId and $ POST[‘uid’].

Program Slicing. WAVES then employs off-the-
shelf program slicing techniques [7] to generate the
server stubs. More precisely, we begin at the top
of the code and prune out any instructions not rele-
vant to the related variables, stopping once we reach
the dynamic constraint. The efficiency of the result-
ing stubs is a direct consequence of how effective our
pruning of the server code is. Prune too little, and
the stub is inefficient; prune too much, and the stub
is unsound. Our pruning process was guided by the
following three criteria.

First, the server stub includes all those instructions
that the result of the dynamic constraint depends on.
All assignments that have a related variable on the
left hand side are retained in the server stub. For
our running example, this ensures the assignment
$userId = $ POST[’uid’]; is not pruned from the stub.

Second, the server stub includes environment vari-
ables and functions that affect these variables, such
as functions that read or write session values. These
functions and variables may indirectly change the
control flow of the server code.

Third, some instructions change the state of the
server while executing, e.g., inserts and updates in
database operations, database schema changes, writ-
ing to files, as well as changing and setting session
and cookie variables. Including statements with side-
effects can lead to inconsistent server state, since the
user has not actually submitted the form, but exclud-

7
c©ASE 2012

<script type="text/javascript">

function valUid() {

var uid = document.getElementById(’uid’).value;

var { textRE} = /(a-zA-Z0-9_-)*/;

var bReturn = textRE.match(uid);

if(!bReturn)

alert("Error: No special characters in user id.");

else

checkExistingUser(uid);

return bReturn ;

}

function valPwd() {

var pass1 = document.getElementById(’pwd1’).value;

var pass2 = document.getElementById(’pwd2’).value;

var bReturn = pass1 != pass2 ;

if(bReturn){

alert("Error: Passwords don’t match.");

return !bReturn ;

}

function checkExistingUser(uid) {

xmlhttp.open ("GET","unamecheck.php?uid="+uid,true);

xmlhttp.onreadystatechange = function () {

... recvStat(xml http response); };

xmlhttp.send();

}

function recvStat(uidStatus) {

if(uidStatus == "error")

alert("Error: user id not available.");

}

</script>

Figure 3: JavaScript validation for running example.

ing such statements can lead to security vulnerabili-
ties (e.g., an application outfitted to defend against
denial-of-service attacks by logging IP addresses and
dropping large bursts of requests from a single IP).
Thus, WAVES allows a developer to choose whether
statements with side-effects are allowed in stubs or
not. If side-effects are not allowed, and a stub in-
cludes a side-effect after pruning, that stub is elim-
inated and the dynamic constraint is not checked.
Note that failure to check a dynamic constraint is a
source of incompleteness, not unsoundness. In ad-
dition, none of our test applications (§V) required
allowing the use of side effects.

Simplification and Optimization. There are
some cases in which constraints on unrelated form
fields may appear in a server stub. This happens
because of control dependencies introduced by if-else
constructs in the server code, which will cause un-

wanted errors. As discussed in Section 1, we can alle-
viate this problem by using independence information
for the form fields.

4 INTEGRATION

WAVES is designed to incorporate client side valida-
tion code in new as well as legacy applications. In the
previous steps, WAVES generated the code necessary
to enable client-side validation of user inputs. The in-
tegration of this generated code in an application re-
quires minimal changes to the application’s codebase.
Installing the server code only requires uploading it
to application’s directory on the server. Installing
the client code is almost as easy—it simply requires
augmenting the client’s source code to include the
JavaScript file containing the generated code. Thus
when that file is loaded by the browser, it attaches

8
c©ASE 2012

all the event handlers to appropriate fields to perform
validation.

V EVALUATION

Implementation. The server-side analysis is im-
plemented in Java and Lisp and builds upon our prior
work WAPTEC [3] as well as the state-of-the-art
SMT solver Kaluza [6]. The client-side code genera-
tion is implemented in LISP and Java and builds on
Plato [8] (a web form generator), php.js [9] (a library
of PHP functions implemented in JavaScript), and
the jQuery validation module [10]. The server-side
code generation is implemented in Java and builds
on Pixy [11] (a tool for PHP dependency analysis).

Test suite. We selected three medium to large and
popular PHP applications. Table 1 provides back-
ground information on these applications (number of
files, effective lines of code – without comments and
empty lines, and functionality). The application test
suite was deployed on a Mac Mini (1.83 Ghz Intel, 2.0
GB RAM) running the MAMP application suite, and
the WAVES prototype was deployed on an Ubuntu
virtual machine (2.4 Ghz single core Intel, 2.0 GB
RAM).

Experiments. We chose one form in each of
the three applications. Two of the chosen forms (
B2Evolution and WeBid) do not contain any client-
side validation; the other form (WebSubRev) already
includes client-side validation. The first two forms al-
lowed end-to-end testing of our prototype tool while
the third form allowed us to compare WAVES syn-
thesized code with validation code written manually
by developers. We discuss our experiments and ex-
periences below.

1 EFFECTIVENESS

For each of the selected forms, we first manually an-
alyzed the server-side code for processing the chosen
form and identified the constraints being checked —
we call this the “ideal” synthesis and use it to as-
sess effectiveness of WAVES. For each application,
Column 2 of Table 2 shows the ideal number of con-
straints (static + dynamic). Static constraints, those
that do not rely on server-side state, dominated the
total number of constraints synthesized by WAVES
(27 / 35). As shown in the next column, WAVES
was able to synthesize over 83% of the constraints
identified by the ideal synthesis.

False Negatives. WAVES suffered from a small
number of false negatives due to missed constraints
(Column 4 of Table 2). Constraints that WAVES
failed to synthesize were those it failed to extract dur-
ing the server analysis phase. One of the problems
encountered was that WAVES generated form field
inputs intended to detect whether or not a particular
constraint leads to an error, but the form field in-
puts happened to falsify a different constraint, hence
WAVES never inferred the original constraint that
caused an error. For example, a constraint in WeBid

required the e-mail field to include the @ character
while another constraint required the e-mail field to
satisfy a regular expression. WAVES was unable
to uncover the regular expression constraint, because
the input used to test if the regular expression con-
straint was actually an error condition so happened
to include no @, therefore, the server rejected due
to the first constraint and not the second. We at-
tempted to avoid this problem by generating inputs
that satisfy the combination of the two constraints,
where one was negated and the other was not, but
found that such constraint sets were often too com-
plex for Kaluza to solve efficiently.

The second reason for missing constraints was a
fundamental mismatch between the constraints we
needed to solve and the language supported by
Kaluza. For example, the PHP function explode

takes a string and splits that string into an array of
strings. Since Kaluza does not implement the theory
of arrays, we could not encode explode into its con-
straint language, and hence simply ignored any con-
straint with explode. We expect that as SMT solvers
that support the theory of strings mature (there have
only been two developed to date), many of these is-
sues will be overcome, and the results for WAVES
will improve as a consequence. At this point, the
important observation is that our basic approach is
successful for a majority of the constraints, and there
is no fundamental reason those results cannot be im-
proved in practice.

False Positives. Cases where the synthesized client
ends up rejecting inputs that the server actually ac-
cepts are considered to be false positives (Column
5 of Table 2). In our experiments, we did not en-
counter any false positives; however, we discuss at
least one conceivable case that could cause false pos-
itives. When input validation is performed inside a
loop, the number of iterations can influence the con-
straint that gets extracted from a particular trace.
For example, the constraint extracted from a loop
that iterates over the characters of an input of length

9
c©ASE 2012

Application Files Size(eLoc) Use

B2Evolution
v0.8.6

127 20.4k Blog

WeBid v0.5.4 403 51.5k Auction
WebSubRev
v0.63

114 12.7k Conference
Mgmt

Table 1: Application testsuite for evaluating WAVES.

Application Ideal
Syn-
the-
sis

WAVES
Syn-
thesis

False
Neg-
a-
tives

False
Pos-
i-
tives

Existing
Vali-
dation

B2Evolution 10+1 7+1 3 0 0
WeBid 17+8 16+6 3 0 0
WebSubRev 5+1 4+1 1 0 5+0

Table 2: WAVES synthesized over 83% constraints successfully.

n will check exactly n characters each time regard-
less of the subsequent lengths. In this case, any in-
put whose length is not the same would be rejected
by the client. Properly handling this type of valida-
tion contained within loops would require assistance
from developers in the form of loop invariants. An
automatable approach is to discard constraints that
are derived from within loops. We would like to note
that such a solution would decrease false positives at
the expense of increasing false negatives – an advan-
tageous tradeoff which would produce all the benefits
of client validation without any impedance of usabil-
ity. In practice, however, we did not observe inputs
being validated in this way but instead by built in
library functions, which we handle correctly.

Form Interactivity. One of the benefits from using
WAVES is that forms retrofitted with interactivity
should improve the overall usability of the applica-
tion. A synthesized client provides instant feedback
as the user interacts with the form. For example,
when the user inputs valid data, a green check mark
will appear next to the form field; conversely, invalid
data will appear next to a red X, and an error mes-
sage will convey the mistake.

Applications that rely solely on the server to validate
form input can be discouraging for the end-user. For
example, in the WeBid application, we noticed that
the server sends a single error message at a time. This
particular form contains 25 constraints, so the user
may need to resubmit that many times–correcting
a single invalid value each time. In addition, the

values of 2 password fields within this form are not
saved when the user goes back to correct the form,
making it necessary to re-enter passwords each time.
This problem is eliminated when WAVES introduces
validation into the client, because by the time the
user submits the form, the values will already be
error-free. Our approach helps hide the drawbacks
of poorly written web applications that improperly
deal with errors.

Improved Performance. The above WeBid ex-
ample also illustrates that insufficient client-side val-
idation can cause repeat submissions, which result in
additional server workload and bandwidth use. In
the original form submission logic, whenever the user
commits an error she needs to retransmit all form
data to the server, and the server needs to reprocess
the input. Since WAVES effectively offloads valida-
tion onto the client, the server spends less resources
on form processing, and the overall performance of
the application improves. In general, the reduction of
resource consumption at the server is expected when
most of the constraints are static, but if there are
many dynamic constraints, our approach could have
the opposite effect. In our experiments, we observed
over 75% of form fields have no dynamic constraints;
moreover, WAVES allows the developer to choose
which form fields to outfit with dynamic constraint
checks.

10
c©ASE 2012

Offline Online

Application
Static

Complexity
Dynamic

Complexity
Synthesis
Time (sec)

Avg Stub
Size

(eLOC)

Avg
Server
RT (ms)

Avg Stub
RT (ms)

B2Evolution 52 9 522 27 (26%) 65 43
WeBid 17 18 281 40 (16%) 373 164

WebSubRev 25 5 12921 29 (25%) 633 76

Table 3: Offline and online performance measures

2 SYNTHESIZED CODE VS. DEVELOPER
WRITTEN CODE

We also compared the code WAVES synthesized
with code written manually by application develop-
ers. The third application in our test suite, WebSubRev,
rejected invalid inputs by employing JavaScript. For
this form, the server-side code checked 6 constraints
(Column 2 Table 2), and the developer written client-
side code checked 5 constraints (all of which were
static). WAVES generated 4 static constraints and
1 dynamic constraint, therefore synthesizing 80% of
the static constraints and 100% of the dynamic con-
straints.

The one static constraint that WAVES could not
synthesize was a regular expression check on an ar-
ray obtained from the explode function, which as de-
scribed previously was problematic for Kaluza. The
one dynamic constraint discovered by WAVES but
not included in the manually written client dictates
which filename extensions are accepted by the server.
This constraint was not included in the manually
written client because (i) the list of permitted exten-
sions is stored in the database and (ii) the constraint
is only checked by the server when the administrator
has configured the application so that the file field
is mandatory. Checking this constraint dynamically
can yield a potentially large savings since before a
potentially large file is transmitted to the server, the
form can warn the user about an improper file type,
thereby saving a potentially lengthy wait for the user
while the file is transmitted over the network. The
server and network also benefit from decreased loads.

3 OTHER EXPERIMENTAL DETAILS

We evaluated WAVES prototype on our test suite
and recorded various performance measures during
execution (Table 3). In the offline phase, when
WAVES performs code analysis, client and server
code generation, and installation, we measured the

formula complexity of static and dynamic constraints.
The second and third columns show static and dy-
namic formula complexities, which are the total num-
ber of boolean operators and atomic constraints. The
total time taken by WAVES to extract the formula
and synthesize the client is shown by the fourth col-
umn. We noted that WAVES spent most time in ei-
ther analyzing traces or solving constraints. Because
WAVES is designed as an offline program transfor-
mation tool, even if these numbers are not reduced via
additional system engineering, they should be accept-
able in many situations. For each dynamic constraint,
WAVES synthesized an AJAX stub. As shown in the
fifth column, the generated stubs were much smaller
in size than the portion of the application relevant to
validation – in most cases less than 25% of the orig-
inal LOC (stub sizes measured in effective Lines of
Code using CLOC [12]).

Once WAVES finishes execution and the results are
installed, the application is ready for production. The
seventh column of Table 3 shows average round trip
time taken by stubs in responding to AJAX requests.
The round trip time averaged in the range of 43 to 164
milliseconds. For comparison, the sixth column shows
the average round trip time taken between client and
server when users submit the full form. We believe
that in real deployment scenarios such overheads are
acceptable as user interactions typically last in the
order of a few seconds and will overshadow delays
associated with AJAX requests.

VI DISCUSSION

Security Analysis. Since our approach involves
generating new code on the server and client, we
must consider the security of the augmented web ap-
plication. Our claim is that WAVES introduces no
new security flaws into the application—that the aug-
mented application is as secure (but no more secure)
than the original.

11
c©ASE 2012

It is easy to see that static checks do not change the
security of the overall application, unless knowledge
of the static constraints enforced by the server is a se-
curity vulnerability. It is of course a simple matter to
allow the developer to choose which static constraints
to enforce on the client. Dynamic constraints are
more problematic because they introduce additional
entry points (stubs) to the server, which can create
security vulnerabilities if not properly protected [13].
Our stub generation includes all authorization checks
(cookie validity and other server side checks) per-
formed by the original server, ensuring that the gen-
erated stub code is no weaker in security than the
server code it is derived from. Ultimately, the secu-
rity of the original server code dictates the security
of our approach. While the WAVES augmented ap-
plication is indeed vulnerable to the same attacks as
the original server code, we believe that WAVES de-
creases the likelihood of security flaws, by altering
the web development process to allow the developer
to specify all input validation constraints once on the
server.

CSRF Protection (CSRF). Token-based CSRF
protections involve the server adding a hidden token
to each form and ensuring that a valid token is in-
cluded with each form submission. CSRF defense is
an important consideration for WAVES because it is
adding code to the server (AJAX stubs) and intro-
ducing additional HTTP requests from the client to
that server code. WAVES must ensure (i) the AJAX
stubs are properly defended against CSRF attacks,
(ii) the additional HTTP requests to those stubs in-
clude the right CSRF tokens, and (iii) the presence of
additional HTTP requests does not change how the
server processes the submission of the form’s data.
Here we distinguish two classes of token-based CSRF
protections (proxy-based and app-based) and discuss
how WAVES operates in the context of each.

Proxy-based CSRF protections perform both the
token-addition and token-validation operations
within a proxy that is deployed as a wrapper around
a given web application. The proxy provides CSRF
protection that is transparent to the underlying ap-
plication by ensuring that the CSRF tokens are never
seen by the application. The application is unaware
that the tokens are being inserted and validated
by the proxy. Proxy-based CSRF protection and
WAVES do not interfere with one another as long as
the proxy properly addresses AJAX requests, such
as [14]. The fact that WAVES outfitted the original
application to include additional JavaScript on the
client and AJAX stubs on the server is irrelevant to

the proxy; the developer could have added that code
herself.

App-based CSRF protections are those where the
token-addition and token-validation operations are
implemented by the application itself. This means
that when WAVES creates new AJAX stubs, those
stubs must include the proper token-validation oper-
ations and when WAVES generates JavaScript code
that makes AJAX calls, that code must include the
appropriate token in the call. Here we distinguish
app-based protections in terms of whether a token is
unique for each session (session-tokens) or for each
form (nonce-tokens). Session-specific tokens are far
more common and handled properly by WAVES. (i)
Each AJAX stub includes all the operations from the
original server code that are dependent on server-
state; hence, they include token-validation checks.
(ii) Each AJAX call includes all the fields on the form
(including fields for all the parameters passed in the
target URL of the form). As long as the token is em-
bedded directly in the HTML (and not inserted into
the submission payload by JavaScript), the AJAX
call will therefore include the appropriate token in ev-
ery request. (iii) Since the token is valid for the dura-
tion of the session, using it in AJAX calls before form
submission does not change its validity during form
submission. In contrast, nonce-tokens expire after a
single use; hence, even if the first AJAX request con-
tains the proper token, no subsequent AJAX request
will include the proper token, and more importantly
the final form submission will not contain a valid to-
ken. Of course, a developer will know if the appli-
cation has app-based, nonce-token CSRF protection
and can simply tell WAVES to ignore all dynamic
constraints during code generation.

Static vs Dynamic Analysis. WAVES uses dy-
namic analysis for extracting constraints and static
analysis for stub generation. The choice of these dif-
ferent techniques is motivated by the original prob-
lems themselves. In the case of constraint extraction,
we are interested in extracting each constraint in the
server (expressed in terms of server side variables)
precisely in terms of form inputs. Dynamic analysis is
a good candidate for problems that require such pre-
cision. In the case of stub generation, we require that
all instructions ever needed to check the constraint to
be reported by the analysis, suggesting that we need
to be conservative about the set of instructions that
encompass the stub. Static analysis therefore is the
natural choice, and the loss of precision in this case
only results in slightly worse performance for stub ex-
ecution (due to additional instructions). Our experi-

12
c©ASE 2012

mental evaluation shows that the stub code generated
for our examples is small, and the performance over-
heads due to any imprecision are relatively minor.

Other Client Functionality. It is worth not-
ing that WAVES attempts to synthesize only the in-
put validation code for the client—code that is deriv-
able from the server code. We are not proposing
to automate the entire client development process.
The JavaScript code needed for displaying, organiz-
ing, and presenting rich client interfaces (e.g., menus,
styles and similar UI elements) still needs to be de-
veloped through the usual process. It is worth noting
that developing such display elements can be pur-
sued through current development methods as they
are tangential to server side development concerns.

VII RELATED WORK

We broadly divide the work related to WAVES into
two categories: a) applicable to legacy applications,
and b) applicable to newly written code. For each
category we discuss the introduction of interactivity
and its security implications.

1 LEGACY APPLICATIONS AND INTERAC-
TIVITY

Legacy applications were (and still are) often written
by developing the client-side and server-side code-
bases separately, many times using JavaScript to
build interactivity on the client. Separate develop-
ment of the client and server requires diligence in
terms of writing proper server-side validation routines
and ensuring that client-side and server-side valida-
tion are consistent. When the developer fails in these
two tasks, the following two problems arise.

Improper Input Validation. Improper input
validation, where the server fails to reject malicious
inputs, allows for the possibility of well known se-
curity vulnerabilities such as SQL-injection, Cross-
site scripting, etc. Many existing works try to reason
about missing and/or insufficient validation to detect
as well as prevent these problems e.g., [15–20]. The
goal of WAVES is orthogonal to these prior works,
because it allows the developer to devote the entirety
of her input validation development to the server and
rest assured that the client validation code will be
correct by construction.

Inconsistent Client- and Server-side Valida-
tion. Inconsistent client and server validation can

lead to problems, such as the parameter tampering
vulnerabilities (inputs the client rejects but the server
accepts) that our recent work [2,3] established as per-
vasive in open source and commercial applications.
WAVES avoids these inconsistencies for applications
where the server validation code is correct by sim-
ply replicating that code for the client. Two related
works also avoid these inconsistencies but for appli-
cations where the client validation is correct: Rip-
ley [21] and [22]. These two classes of work are
therefore complementary for legacy applications. In
terms of techniques, other prior works have investi-
gated analysis that spans multiple modules e.g., [23].

2 NEW APPLICATIONS AND INTERACTIVITY

The key goal of WAVES is to enable developers to
write input validation routines once (on the server)
and have them replicated elsewhere (on the client).
The most germane work, Ripley [21] and [22], could
seemingly be used to meet the same objective: write
validation code once (on the client) and allow the sys-
tem to automatically replicate it elsewhere (on the
server). However, there is a crucial benefit to writ-
ing validation code on the server instead of the client:
all constraints, whether static (not dependent on the
server’s database, file system, etc.) or dynamic (de-
pendent on the server’s state) can uniformly be writ-
ten on the server, but only the static constraints can
easily be written on the client. Implementing dy-
namic constraints on the client requires AJAX and
server-side support; thus, dynamic constraints cannot
be implemented solely on the client. Furthermore,
even if they could be implemented on the client there
may be privacy or security reasons to avoid doing so.

Outside the research arena, the most sophisticated
tools to aid web development are found within web
development frameworks like Ruby on Rails (RoR)
[24], Google Web Toolkit (GWT) [25], and Django
[26]. Google Web Toolkit allows a programmer to
specify which code is common to the client and the
server. However, it offers no support for a program-
mer in the problem of identifying and extracting
static or dynamic checks that can be performed by
the client. We are only aware of the following two
tools that allow a developer to write validation in one
place and have it enforced in other places: (a) Ruby
on Rails with the SimpleForm plugin [27], and (b)
Prado [28]. With RoR, a developer writes the con-
straints that data should satisfy on the server, and
SimpleForm enforces those constraints on the client.
The limitation, however, is that the constraints ex-

13
c©ASE 2012

tracted are limited to a handful of built-in valida-
tion routines and are implemented on the client us-
ing built-in validation of HTML5. Prado’s collection
of custom HTML input controls allows a developer
to specify required validation at server-side which is
also replicated in the client using JavaScript. How-
ever, it also allows developers to specify custom val-
idation code for server and client thus introducing
avenues for inconsistencies in client and server valida-
tion. WAVES, in contrast, extracts any constraints
checked by the server and implements them on the
client using custom-generated JavaScript code. In
the future we plan to investigate how to extend RoR
so that developers write either custom Ruby valida-
tion code or validation constraints in formal logic, and
RoR generates clients that automatically perform the
requisite validation.

VIII CONCLUSION

In this paper, we introduced a new methodology for
developing client validation code for web applications.
Our approach allows the developer to improve secu-
rity of the web application by focusing only on the
server side development of validation. We developed
novel techniques for automatic synthesis of the client
side validation. Our experimental results are promis-
ing: they indicate that automated synthesis can re-
sult in highly interactive web applications that are
competitive in terms of performance and rival human-
generated code in terms of coverage.

ACKNOWLEDGEMENTS

This work was partially supported by National Sci-
ence Foundation grants CNS-0845894, DGE-1069311,
CNS-1065537, CNS- 1141863 and CCF-1018836 and
US Air Force Research Laboratory grant FA-8750-12-
C-0156.

14
c©ASE 2012

References

[1] “Outsource JavaScript AJAX
Development Services.”
http://outsourcejavascriptajax.webs.com.

[2] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrow-
icz, and V. Venkatakrishnan, “NoTamper: Au-
tomatic Blackbox Detection of Parameter Tam-
pering Opportunities in Web Applications,” in
CCS’10: Proceedings of the 17th ACM Confer-
ence on Computer and Communications Secu-
rity, (Chicago, IL, USA), 2010.

[3] P. Bisht, T. Hinrichs, N. Skrupsky, and
V. Venkatakrishnan, “WAPTEC: Whitebox
Analysis of Web Applications for Parameter
Tampering Exploit Construction,” in CCS’11:
Proceedings of the 18th ACM Conference
on Computer and Communications Security,
(Chicago, IL, USA), 2011.

[4] R. Wang, S. Chen, X. Wang, and S. Qadeer,
“How to Shop for Free Online – Security Analy-
sis of Cashier-as-a-Service Based Web Stores,” in
Oakland’11: Proceedings of the 2011 IEEE Sym-
posium on Security and Privacy, (Oakland, CA,
USA), 2011.

[5] M. Alkhalaf, T. Bultan, S. R. Choudhary,
M. Fazzini, A. Orso, and C. Kruegel, “View-
Points: Differential String Analysis for Discov-
ering Client and Server-Side Input Validation
Inconsistencies,” in ISSTA’12: Proceedings of
the 2011 International Symposium on Software
Testing and Analysis, (Minneapolis, MN, USA),
2012.

[6] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. Mc-
Camant, and D. Song, “A Symbolic Execution
Framework for JavaScript,” in SP’10: Proceed-
ings of the 31st IEEE Symposium on Security
and Privacy, (Oakland, CA, USA), 2010.

[7] F. Tip, “A survey of program slicing tech-
niques,” Journal of programming languages,
vol. 3, pp. 121–189, 1995.

[8] T. L. Hinrichs, “Plato: A Compiler for Interac-
tive Web Forms,” in PADL’11: Proceedings of
the 13th International Conference on Practical
Aspects of Declarative Languages, (Austin, TX,
USA), 2011.

[9] “php.js project.” http://phpjs.org/, 2011.

[10] “jQuery.” http://jquery.com.

[11] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy:
A Static Analysis Tool for Detecting Web Ap-
plication Vulnerabilities,” in SP’06: Proceedings
of the 27th IEEE Symposium on Security and
Privacy, (Oakland, CA, USA), 2006.

[12] “CLOC: Count Lines of Code.”
http://cloc.sourceforge.net.

[13] A. Guha, S. Krishnamurthi, and T. Jim, “Using
Static Analysis for AJAX Intrusion Detection,”
in WWW’09: Proceedings of the 18th Interna-
tional Conference on World Wide Web, (Madrid,
Spain), 2009.

[14] R. Pelizzi and R. Sekar, “A server- and browser-
transparent CSRF defense for web 2.0 applica-
tions,” in Proceedings of the Annual Computer
Security Applications Conference, pp. 257–266,
2011.

[15] P. Saxena, S. Hanna, P. Poosankam, and
D. Song, “FLAX: Systematic Discovery of
Client-side Validation Vulnerabilities in Rich
Web Applications,” in NDSS’10: Proceedings of
the 17th Annual Network and Distributed System
Security Symposium, (San Diego, CA, USA),
2010.

[16] D. Balzarotti, M. Cova, V. Felmetsger, N. Jo-
vanovic, C. Kruegel, E. Kirda, and G. Vigna,
“Saner: Composing Static and Dynamic Anal-
ysis to Validate Sanitization in Web Applica-
tions,” in SP’08: Proceedings of the 29th IEEE
Symposium on Security and Privacy, (Oakland,
CA, USA), 2008.

[17] Y. Xie and A. Aiken, “Static Detection of Se-
curity Vulnerabilities in Scripting Languages,”
in SS’06: Proceedings of the 15th USENIX Se-
curity Symposium, (Vancouver, B.C., Canada),
2006.

[18] Y. Minamide, “Static Approximation of Dy-
namically Generated Web Pages,” in WWW’05:
Proceedings of the 14th International Conference
on World Wide Web, (Chiba, Japan), 2005.

[19] G. Wassermann and Z. Su, “Sound and Pre-
cise Analysis of Web Applications for Injec-
tion Vulnerabilities,” in PLDI’07: Proceedings
of the 2007 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementa-
tion, (San Diego, CA, USA), 2007.

[20] W. Xu, S. Bhatkar, and R. Sekar, “Taint-
Enhanced Policy Enforcement: A Practical Ap-
proach to Defeat a Wide Range of Attacks,” in

15
c©ASE 2012

http://phpjs.org/

SS’06: Proceedings of the 15th USENIX Security
Symposium, (Vancouver, B.C., Canada), 2006.

[21] K. Vikram, A. Prateek, and B. Livshits, “Rip-
ley: Automatically Securing Distributed Web
Applications Through Replicated Execution.,”
in CCS’09: Proceedings of the 16th Confer-
ence on Computer and Communications Secu-
rity, (Chicago, IL, USA), 2009.

[22] D. Bethea, R. Cochran, and M. Reiter, “Server-
side Verification of Client Behavior in Online
Games,” in NDSS’10: Proceedings of the 17th
Annual Network and Distributed System Secu-
rity Symposium, (San Diego, CA, USA), 2010.

[23] D. Balzarotti, M. Cova, V. V. Felmetsger, and
G. Vigna, “Multi-Module Vulnerability Analysis
of Web-based Applications,” in CCS’07: Pro-
ceedings of the 14th ACM Conference on Com-
puter and Communications Security, (Alexan-
dria, VA, USA), 2007.

[24] “Ruby on Rails.” http://rubyonrails.org/.

[25] “Google Web Toolkit.”
http://code.google.com/webtoolkit/.

[26] “django: Python Web Framework.” https:

//www.djangoproject.com/.

[27] “Simpleform website.” http://blog.

plataformatec.com.br/2010/06/

simpleform-forms-made-easy/, 2011.

[28] “Component Framework for PHP5.”
http://www.pradosoft.com.

IX PROOFS

Definition 1 (Constraint Semantics). Each con-
straint over variables X describes a possibly infinite
set of variable assignments to X. If C is the con-
straint, we denote the set of variables appearing in
C as V ars(C) and the set of assignments described
by C as V A(C). The semantics of a conjunction of
constraints (which we also consider a constraint) is
defined as usual.

V A(C1(x̄, ȳ) ∧ C2(x̄, z̄)) =
{x̄/ā, ȳ/b̄, z̄/c̄ | x̄/ā, ȳ/b̄ ∈ V A(C1(x̄, ȳ)),

x̄/ā, z̄/c̄ ∈ V A(C2(x̄, z̄))}

Definition 2 (Input Semantics). The input seman-
tics for a form is the (possibly infinite) set of variable
assignments permitted by that form. A variable as-
signment X/A is consistent with the input semantics

∆ if there is an extension of X/A that belongs to ∆.
A variable assignment X/A is inconsistent if there is
no extension of X/A belonging to ∆.

Definition 3 (Error and Safe Conditions). A con-
straint C is an error condition for input semantics ∆
if every v ∈ V A(C) is inconsistent with ∆. A con-
straint C is a safe condition for ∆ if every v ∈ V A(C)
is consistent with ∆.

Definition 4 (Success and Failure Traces). The con-
junction of constraints checked on a success trace is
a safe condition, and the conjunction of constraints
checked on a failure trace is an error condition.

Definition 5 (Independence). A set of variables X
is independent of the set of variables Y (where X
and Y are assumed disjoint) for input semantics ∆ if
whenever the variable assignment X/A is consistent
with ∆ and the variable assignment Y/B is consistent
with ∆ then the assignment {X/A, Y/B} is consis-
tent with ∆. We say that a partitioning of variables
X1 ∪ · · · ∪Xn is independent if Xi is independent for
Xj for every i 6= j. We say a partitioning is strongly
independent if Xi is independent of

⋃
j 6=i Xj.

Note that not all independent partitionings are
strongly independent. Consider 3 variables
x,y,z where ∆ is all variable assignments except
{x/a, y/b, z/c}. Then {x}, {y}, {z} is an independent
partitioning because any variable assignment for x,y
can be extended to an assignment in ∆; any vari-
able assignment for x,z can be extended; and any
variable assignment for y,z can be extended, but
{x/a, y/b, z/c} cannot be extended to an assignment
in Delta.

Theorem 1. Suppose ∆ is the input semantics for a
web form. Suppose D1 ∧ · · · ∧Dk ∧Ck+1 ∧ · · · ∧Cn is
the conjunction of constraints for some failure trace
for that form, where V ars(D1) ∪ · · · ∪ V ars(Dk) ∪
V ars(Ck+1) ∪ · · · ∪ V ars(Cn) is a strongly indepen-
dent partitioning for ∆ and for V A(D1 ∧ · · · ∧Dk ∧
Ck+1 ∧ · · · ∧ Cn). Suppose that for each Di there is
some Ei where (i) Ei∧F1∧· · ·∧Fm are the constraints
checked on a success trace, (ii) V ars(Ei) is indepen-
dent of the rest of the variables in the conjunction for
V A(Ei ∧ F1 ∧ · · · ∧ Fm), and (iii) V A(Di) intersects
V A(Ei). Then Ck+1 ∧ · · · ∧Cn is an error condition
for ∆.

Proof. Let X = V ars(D1∧· · ·∧Dk∧Ck+1∧· · ·∧Cn).
Since D1 ∧ · · · ∧Dk ∧Ck+1 ∧ · · · ∧Cn is the conjunc-
tion of constraints for a failure trace, D1 ∧ · · · ∧Dk ∧
Ck+1 ∧ · · · ∧ Cn is an error condition, ensuring that

16
c©ASE 2012

http://rubyonrails.org/
http://rubyonrails.org/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
http://blog.plataformatec.com.br/2010/06/simpleform-forms-made-easy/
http://blog.plataformatec.com.br/2010/06/simpleform-forms-made-easy/
http://blog.plataformatec.com.br/2010/06/simpleform-forms-made-easy/

each X/A in V A(D1 ∧ · · · ∧Dk ∧ Ck+1 ∧ · · · ∧ Cn) is
inconsistent with ∆.

Consider an assignment V ars(D1)/B such that
V ars(D1)/B is in the intersection of V A(D1) and
V A(E1). Since E1 ∧ F1 ∧ · · · ∧ Fm is on a success
trace, it is a safe condition, ensuring that each as-
signment in V A(Ei∧F1∧· · ·∧Fm) is consistent with
∆. Since V ars(D1)/B ∈ V A(Ei) and V ars(Ei) is in-
dependent of the variables in F1 ∧ · · · ∧Fm, we know
that V ars(D1)/B ∈ V A(Ei∧F1∧· · ·∧Fm) and hence
V ars(D1)/B is consistent with ∆.

By strong independence of V ars(D1) and V ars(D2∧
· · · ∧ Dk ∧ Ck+1 ∧ · · · ∧ Cn), we know that we
can combine V ars(D1)/B and any assignment (X −
V ars(D1))/C in V A(D2∧· · ·∧Dk∧Ck+1∧· · ·∧Cn) to
produce an assignment in V A(D1∧ · · ·∧Dk ∧Ck+1∧
· · · ∧ Cn); thus, {V ars(D1)/B, (X − V ars(D1))/C}
must be inconsistent with ∆. By strong independence
with respect to ∆, we see that either V ars(D1)/B
or (X − V ars(D1))/C or both must therefore be
inconsistent (since if both were individually consis-
tent, their combination would be consistent. Since
V ars(D1)/B is consistent by construction, we know
that (X − V ars(D1))/C must be inconsistent, i.e.,
every element of V A(D2 ∧ · · · ∧Dk ∧Ck+1 ∧ · · · ∧Cn)
is inconsistent, and thus D2∧· · ·∧Dk∧Ck+1∧· · ·∧Cn

is an error condition. Since we chose D1 arbitrarily,
the argument applies to all Di and hence by straight-
forward induction we conclude that Ck+1 ∧ · · · ∧ Cn

is an error condition.

17
c©ASE 2012

	Introduction
	Example and Challenges
	Our Approach
	Technical Description
	Server Analysis
	Client-side Code Generation
	Server-side Code Generation
	Integration

	Evaluation
	Effectiveness
	Synthesized Code vs. Developer Written Code
	Other Experimental Details

	Discussion
	Related Work
	Legacy Applications and Interactivity
	New Applications and Interactivity

	Conclusion
	Proofs

