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Abstract—Cloud computing has emerged as a popular comput-
ing paradigm in recent years. However, today’s cloud computing
architectures often lack support for computer forensic investiga-
tions. A key task of digital forensics is to prove the presence of a
particular file in a given storage system. Unfortunately, it is very
hard to do so in a cloud given the black-box nature of clouds and
the multi-tenant cloud models. In clouds, analyzing the data from
a virtual machine instance or data stored in a cloud storage only
allows us to investigate the current content of the cloud storage,
but not the previous contents. In this paper, we introduce the
idea of building proofs of past data possession in the context of
a cloud storage service. We present a scheme for creating such
proofs and evaluate its performance in a real cloud provider. We
also discuss how this proof of past data possession can be used
effectively in cloud forensics.

I. INTRODUCTION

In the recent years, cloud computing has gained popularity as
a high-performance and low-cost computing paradigm, which
provides better utilization of resources using virtualization.
Small and medium scale companies find cloud computing
highly cost effective as it replaces the need of building costly
physical and administrative infrastructure, and offers the pay-
as-you-go structure for payment. These attractive features of
cloud computing will increase both the private and federal
cloud computing market intensively in near future.[1], [2].

However, the characteristics of cloud computing not only
attract the business organizations, but also attract the malicious
individuals to use clouds to evade the law. An attacker can target
an application deployed in cloud, or she can use the cloud to
launch an attack. This new attack surface has opened a new area
in digital forensics – Cloud Forensics. According to an annual
report of Federal Bureau of Investigation (FBI), the size of the
average digital forensic case is growing at 35% per year in the
United States. From 2003 to 2007, it increased from 83GB to
277 GB in 2007 [3]. This rapid increase in digital forensics
evidence drove the forensic experts to devise new techniques
for digital forensics. At present, there are several established,
proven digital forensics tools in the market. Unfortunately,
because of the characteristics of cloud computing, many of the
assumptions of digital forensics are not valid in cloud paradigm,
e.g., in cloud environment we do not have the physical access to
the evidence, which we take for granted in traditional privately
owned computing system. Hence, cloud forensics brings new
challenges from both technical and legal point of view and
opens new research area for security and forensics experts.

The process of digital forensics starts with acquiring the
digital evidence. In a cloud, the evidence could be the image

of virtual machine, files stored in cloud storage, and logs
provided by cloud service providers (CSP). But if an adversary
shuts down the virtual machine or removes files from cloud
storage, then there is no way to prove what file she possessed
previously. To overcome this problem, Birk et al. propose
continuous synchronization [4]. However, there is no solution
which states how to do the continuous synchronization and
how to prove the past data possession.

In this paper, we take the first step towards building proofs
of past data possession (PPDP). Such a proof can be used by
forensic investigators to prove that a suspect stored a given
file with a service provider at a past time period. To illustrate
the problem, we present the following a hypothetical scenario:

Alice got access to some illegal insider trading [5] informa-
tion of XYZ corporation. Alice used this non-public information
to gain illegal advantage in trading of stock and bonds. She
hosted the file in a cloud storage and removed the file after
trading to hide her tracks. After repeating this incident for
several times, she got the attention of law enforcement agency
and they assigned Bob to investigate the case. Bob acquired
the possible insider trading information from XYZ corporation
but could not prove whether Alice had access to and stored
those files, as she deleted those after trading. If Alice used
her personal computer to store the information, then the task
for Bob would be easy. Using some current forensic tools,
he could retrieve the deleted files or prove their existence in
Alice’s computer. But as Alice used the cloud storage, there was
no way for Bob to prove the data possession. Cloud provider
could store all the deleted files, but this would increase the
storage cost extensively. Moreover, if cloud provider published
the proof of the files insecurely, an intruder, Charley could get
information of the files possessed by Alice. On the other hand,
Alice might claim that Bob colluded with the cloud provider
to prove a false allegation.

To mitigate the challenges discussed in the above scenario,
we propose the notion of a proof of past data possession in
this paper.
Contributions: The contributions of this paper are as follows:
1) We introduce the notion of a Proof of Past Data Possession
(PPDP) in the context of digital forensics;
2) We propose an efficient and secured cryptographic scheme
for creating a PPDP; and
3) We evaluate the proposed PPDP scheme using a commercial
cloud vendor.
Organization: The rest of this paper is organized as fol-
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lows. Section II provides some background informations and
challenges of cloud forensics and section III describes the
threat model. Section IV presents our PPDP scheme, security
analysis, and performance evaluation of the scheme in a real
cloud environment. Section V discusses the applicability of such
proofs. Section VI, presents an overview of related research in
cloud forensics, and finally, we conclude in Section VII.

II. BACKGROUND AND CHALLENGES

In this section, we present the definitions of digital forensics
and cloud forensics, motivation of our work, and discuss about
the challenges of cloud forensics.

A. Digital Forensics
Digital forensics is the process of preserving, collecting,

confirming, identifying, analyzing, recording, and presenting
crime scene information. Wolfe defines digital forensics as “A
methodical series of techniques and procedures for gathering
evidence, from computing equipment and various storage
devices and digital media, that can be presented in a court of
law in a coherent and meaningful format” [6]. According to a
definition of NIST [7], computer forensic is an applied science
to identify a incident, collection, examination, and analysis
of evidence data. While doing so, maintaining the integrity
of the information and strict chain of custody for the data is
mandatory.

B. Cloud forensics
Cloud forensics can be defined as applying computer

forensics procedures in cloud computing environment. As cloud
computing is based on extensive network access, and as network
forensics handles forensic investigation in private and public
network, Ruan et al. defined cloud forensics as a subset of
network forensic [8]. They also identified three dimensions in
cloud forensics – technical, organizational, and legal. Cloud
forensics procedures will vary according to the service and
deployment model of cloud computing. For Software-as-a-
Service (SaaS) and Platform-as-a-Service (PaaS), we have very
limited control over process or network monitoring. Whereas,
we can gain more control in Infrastructure-as-a-Service (IaaS)
and can deploy some forensic friendly logging mechanism. The
first three steps of computer forensics will vary for different
service and deployment model. For example, the evidence
collection procedure of SaaS and IaaS will not be same. For
SaaS, we solely depend on the CSP to get the application log,
while in IaaS, we can acquire the Virtual machine instance
from the customer and can enter into examination and analysis
phase. On the other hand, in private deployment model, we
have physical access to the digital evidence, but we merely
can get physical access to public deployment model.

C. Motivation
Though cloud computing offers numerous opportunities to

different level of consumers, many security issues of cloud
environment have not been resolved yet. According to a recent
IDCI survey, 74% of IT executives and CIO’s referred security
as the main reason to prevent their migration to the cloud
services model [9]. Some recent and well-publicized attacks on
cloud computing platform justify the concern with security, e.g.,

a botnet attack on Amazon’s cloud infrastructure was reported
in 2009 [10]. Besides attacking cloud infrastructure, adversaries
can use the cloud to launch attack on other systems. For
example, an adversary can rent hundreds of virtual machines
to launch a Distributed Denial of Service (DDoS) attack. After
a successful attack, she can erase all the traces of the attack
by turning off the virtual machines. A criminal can also keep
her secret files (e.g., child pornography, terrorist documents) in
cloud storage and can destroy all her local evidence to remain
clean. When law enforcement investigates such a suspect, the
suspect can deny having the illegal content in her cloud storage.
At present, there is no way to claim that an adversary owns
certain data at a given time. Researchers are working to protect
the cloud environment from different types of attack. But in
case of an attack, we also need to investigate the case, i.e.,
we need to carry out a digital forensic investigation in the
cloud. Besides protecting the cloud, we need to focus on
this issue. Unfortunately, there have been little research on
adapting digital forensics for use in cloud environments. In this
paper, we address this problem, which has significant real-life
implications in law enforcement investigating cybercrime and
terrorism.

D. Challenges
The inherent characteristics of a cloud have made it quite

difficult to prove the possession of data at a past time period.
For example, how can an investigator prove that the suspect
stored an incriminating file last month in the cloud, a file
she has recently deleted from the cloud storage? We must
find secure techniques for creating such proofs of past data
possession which will be admissible in a court of law as valid
evidence. Many things can complicate such a proof. Clients
may question the integrity of any such proofs, claiming that
the forensic investigators or the prosecution and the CSP have
colluded to plant an evidence in the cloud or have simply lied
about the presence of the incriminating files in the cloud. The
following reasons also make the PPDP challenging.
Less Control in Clouds: In traditional computer forensics,
the investigators have full control over the evidence (e.g., a
hard drive confiscated by police). In a cloud, unfortunately, the
control over data varies in different service models. Consumers
have highest control in IaaS and least control in SaaS. This
physical inaccessibility and lack of control over the system
make evidence acquisition a challenging task in cloud forensics.
For example, in our hypothetical case, Bob could have easily
used traditional forensics tools to recover the deleted files if he
had the physical access to cloud storage. Sometimes, it is even
impossible to locate where the data actually reside physically.
For this less control issue, we need to depend on the cloud
service providers (CSP) for evidence acquisition. Which in
turn brings the honesty issue of the CSP’s employee, who is
not a certified forensic investigator. Additionally, CSPs are not
always obligated to provide all the necessary logs.
Multi-tenancy: In cloud computing, multiple virtual machines
(VM) can share the same physical infrastructure, i.e., data for
multiple customers may be co-located. While generating the
proof of data possession for one user, other users’ data can
be mingled with the proof. An alleged user can claim that
the proof contains information of other user, not her. The



investigator needs to prove it to the court that the proof indeed
contains the information of the malicious user. Moreover, we
need to preserve the privacy of the other tenants.
Chain of custody: Chain of custody should clearly depict
how the evidence was collected, analyzed, and preserved in
order to be presented as admissible evidence in court [11]. In
traditional forensic procedure, it starts with gaining the physical
control of the evidence, e.g., computer, hard disk. However,
in cloud forensics, this step is not possible due to the multi
jurisdictional laws, procedures, and proprietary technology in
cloud environment [12], [13]. The PPDP must clarify certain
things to maintain the chain of custody, e.g., how the proof
was generated, stored, and accessed.
Presentation: The final step of digital forensic investigation
is presentation, where an investigator accumulates his findings
and presents to the court as the evidence of a case. Challenges
also lie in this step of cloud forensic [14]. If an investigator
retrieves some deleted files from a personal computer, it will
be easily presentable to the court. As we cannot retrieve the
deleted files from the cloud storage, the proof of data possession
must be presented to the court in a convenient way.

III. THREAT MODEL

Before describing the threat model, we first define the
important terms to clarify the threat model.
A. Definition of terms

• User: A user is a customer of the cloud service provider
(CSP), who uses the CSP’s storage service. A user can
be malicious or honest.

• Evidence: An evidence can be a file, virtual machine
image, log files, and any other digitally acquired data.

• Proof of Past Data Possession (PPDP): The PPDP
contains the proof of data possession to verify whether
the user actually possessed the evidence or not.

• CSP: The Cloud Service Provider (CSP) will generate
the PPDP and provide an web interface to users and
investigators for verifying the evidence.

• Investigator: An investigator is a professional forensic
investigator, who needs to verify the evidence from PPDP.
An investigator can also be malicious or honest.

• Intruder: An intruder is a malicious person, who wants to
reveal some information of the evidence from the PPDP.

B. Attacker’s Capability
In our threat model, we assume that the users and the

investigators do not trust the CSP, and both of them can be
malicious. A user can delete records from her storage but
cannot change the PPDP by herself. An investigator can plant
a false evidence only when he colludes with the CSP, and
cannot change the PPDP by himself. A CSP can produce false
PPDP only after colluding with a user or an investigator. The
CSP can deny hosting any evidence or repudiate any published
PPDP. An intruder can acquire the PPDPs of user to learn
about the evidence or evidence change history from the proofs.
C. Possible Attacks

There can be different types of attacks on past data posses-
sion. A user can deny any evidence ownership, an investigator
can produce invalid proof, even a CSP can deny hosting a file.
Below we mention the possible attacks:

• Denial of possession: A user can delete file from her cloud
storage. Later, if an investigator found other evidence of
her deleted file, she denies to have the file. In a variation
of this, a colluding investigator can also delete evidence
from the user’s storage and deny to find the evidence.

• False presence: If an investigator is not trustworthy, he
can plant a false evidence. A user can also present a false
proof, which can make her free from the accusation.

• Evidence contamination: User and investigator can modify
the evidence to prove their claim.

• Repudiation by CSP: An otherwise honest CSP can deny
hosting a file or can deny a published PPDP after-the-fact.

• Repudiation by User: As data are co-mingled in the
cloud, a malicious user can claim that the published proof
contains other cloud user’s data.

• Privacy violation: As the CSP published the proof of past
data possession publicly on the web, any malicious person
can acquire the published PPDP and try to learn about
the evidence from the proof. This attack can violates the
privacy of user data hosted in the cloud.

D. System Property
Our mechanism should prevent any malicious party to pro-

duce a false PPDP. A false PPDP attests the user’s possession
of record, which the user does not actually own. Once the proof
has been published, the CSP can neither modify the proof nor
repudiate any published proof. We must also prevent false
implications by dishonest forensic investigators. Our system
provides the following integrity and confidentiality properties:
I1: An investigator or user whether acting alone or colluding
together cannot remove any evidence.
I2: Two colluding investigator and user, or investigator and
user acting alone cannot plant any invalid evidence.
I3: An investigator or user whether acting alone or colluding
together cannot change any existing evidence.
I4: After publishing the proof of evidence, the CSP cannot
deny hosting any evidence.
I5: The CSP cannot repudiate any previously published proof.
C1: From the published proof, no adversaries can recover any
evidence.
C2: Adversaries will not be able to learn about the change
history from the published proof.

IV. PROOF OF PAST DATA POSSESSION

In this section, we present the PPDP scheme, implementation,
evaluation, and security analysis of the scheme.
A. The Scheme

We propose our scheme based on Bloom filters. A Bloom
filter is a probabilistic data structure with no false negatives rate,
which is used to check whether an element is a member of a
set or not [15]. Bloom filter stores the membership information
in a bit array. Bloom filters decrease the element insertion
time and membership checking time. The only drawback of
the Bloom filter is the probability of finding false positives.
However, we can decrease the false positive probability by
using a large bit array. In our scheme, we maintain separate
Bloom filters for each users.
Proof Insertion: Figure 1 shows the flow of PPDP generation
and below is the description of the process flow.
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Fig. 1: PPDP Generation Process Flow

(a) A user can upload a file to a cloud server, create a new
file, or a new log file can be generated in cloud environment.

(b) After acquiring any new or updated file, the CSP will
get the last Bloom filter of that user, which is actually the bit
array positions for all the previously inserted records of that
user.

(c) The CSP will then hash the file including the user’s
information, generate the bit positions from the hash value,
and update the bloom filter with the latest bit positions.

(d) Next, the CSP will store the updated bloom filter in the
bloom filter storage.

(e) At the end of each day, the CSP will retrieve the Bloom
filter entry of each user. We denote this as DSu.

(f) Next, the CSP will hash the DSu and sign it with its
private key. This will be the PPDPu of that day.

PPDP u = <H(DSu), SPKC(H(DSu)), t> (1)

Where t is the proof generation time, H(DSu) represents the
hash of DSu, and SPKC(H(DSu)) represents the signature on
the H(DSu) using the private key of the CSP, PKC.

(g) After computing the proof of data possession, the CSP
will publish the PPDPu and its public key PK on the web.
These informations can also be available by RSS feed to protect
it from manipulation by the CSP. The CSP will keep the DSu
and PKC secret to itself.

A more advanced version of the above process can be used
to prevent the repudiation by user attack for multi-tenancy case.
As multiple users’ data are co-located in same infrastructure,
a user can claim that the proof contains information of her
neighbour’s file. To prevent this claim, all the evidence can be
signed by the user’s private key. Instead of hashing the file,
the CSP now hashes the signature of the file to get the bit
positions.

The false positive probability is proportional to the number

of elements contained in the Bloom filter. There will be a
change in the flow when the total number of evidence crosses
the expected number of elements for the Bloom filter. If the
expected number of elements is n, total number of bits required
is m, and number of hash functions is k then the false positive
probability p is determined by the following equation [16].

p = (1 − e
−k∗n

m )k (2)

According to the above equation, if the number of elements
increases, the false positive probability will also increase.
Eventually, increasing false positive probability will increase
the chance of planting false evidence attack. There are two
options to mitigate this problem:
Option A: After acquiring a file, the CSP will always check
whether the current number of elements crosses the expected
number of elements for the new file. If it does not cross the
limit, then we can continue from step (b) of the above process
flow. On the other hand, if it crosses the limit, then without
getting the last bloom filter of the user, the CSP will create a
new empty Bloom filter for the user and continue from step
(c) using the newly created Bloom filter.
Option B: As the above option add an extra checking before
each proof insertion, it will increase the overhead of proof
insertion. Another option can be creating a new Bloom filter of
a user after a certain time. If a user creates w number of files on
average in every month then we can create a new Bloom filter
for her after every n

w months. Using a fixed amount of time for
creating new empty Bloom filter can generate two problems –
for a user with low w, the space will be misused and for a user
with high w, the false positive probability will increase. So
creating a new Bloom filter after every n

w months can balance
the space requirement and the false positive probability.
Verification: Figure 2 shows the verification process flow and
below is the details of the process.

User/ 
Investigator/ 
Court CSP 

Bloom Filter  
Storage 

(a) 

(b) 

(c) 

(d) 

(f) 

(e) 

Web 

Fig. 2: Evidence Verification Process Flow

(a) User, investigator, or court – any party can verify the
validity of evidence. In the first step, they take the published
PPDPu from the web.



(b) The verifying party will then check the validity of the
PPDPu. To check the validity, they first decrypt the signature
of the hashed bloom filter by using the public key of the CSP.
If the decrypted value and the hashed bloom filter are same,
then they will proceed to next step.

(c) Next, the verifying party will upload the file with the
user information from the management panel of the CSP.

(d) The CSP will then pick the last bloom filter entry, the
hashed value of which was published on the web.

(e) Next, the CSP will hash the uploaded evidence with
the user information, calculate the bits positions, and compare
these bit positions with the retrieved Bloom filter entry. If all
the calculated bit positions are set in the latest Bloom filter
entry, we can say that the user actually possessed the file. One
single false bit position means the evidence is not valid.

(f) After comparison, the CSP reports a positive or negative
matching result to the verifying party.

Evidence Time-line Analysis: As the CSP publishes the
PPDP everyday, we can identify the generation time of evidence.
We can either identify the exact generation time or a time range
in which an evidence was present.

To identify the generation time of an evidence, investigator
will first send the evidence and user information to the CSP.
The CSP will then acquire all the Bloom filter of the user and
start searching to get a positive match. Positive match can be
found for multiple PPDPs, but the generation time of the oldest
PPDP will be the generation time for the evidence.

Investigator or court may also want to know whether a
evidence was present in a particular time range. In that case,
they will send the evidence, user information, and the desired
time range to the CSP. After acquiring all the necessary
informations, the CSP will retrieve the Bloom filters of that
user, which lie in the particular date range. The CSP then starts
a binary search to find a positive match. If a positive match is
found, then we can say that the evidence was present in the
selected time range.

B. Security Analysis
In our collusion model, there are three entities involved

– CSP, user, and Investigator. All of them can be malicious
individually or can collude with each other. We denote an
honest CSP as C, a dishonest CSP as C̄, an honest user as
U, a dishonest user as Ū , an honest investigator as I, and a
dishonest investigator as Ī . Hence, there can be total eight
possible combination.
CUI For the first case, where everybody is honest, there is
nothing to worry about. In that case, there is no chance of
evidence contamination.
C̄UI A CSP can produce incorrect PPDP, which is not a feasible
scenario, as there is no benefit for CSP to be malicious alone.
CŪI In this case, where only the user is dishonest, she can
delete a file from his cloud storage and later claim that she
did not have that file. For example, a malicious user might
have hosted a child pornography site, and later she deleted all
the evidence. If the investigator comes with some contraband
images, then using our scheme he will be able to verify whether
the user actually possessed those files or not. The CSP picks up
the last Bloom filter entry, generates the hash of the evidence

that the investigator provided, and by comparing it with the
retrieved Bloom filter it can say whether the user is honest
or not. It proves our claim for the I1, I2, and I3 integrity
properties when the user is malicious alone.
CUĪ In this scenario, where only the investigator is dishonest,
she can come up with a false evidence to frame an honest user.
Our system will prevent this case from happening. Using the
last Bloom filter of the user, the CSP can easily verify that
the false evidence does not actually present in user’s storage.
A dishonest investigator can also deny a valid evidence, but
using our system, the users will be able to establish their claim.
Hence, we can ensure the I1, I2, and I3 integrity properties
when the investigator is malicious alone.
CŪĪ In this case, a malicious user can collude with a
dishonest investigator to make herself free from an accusation.
However, as long as the CSP does not collude with them,
user or investigator cannot prove their false claim. If user
and investigator agree on removing an evidence, they cannot
prove it to court as long as the PPDP is valid. Thus, our
system ensures the I1, I2, and I3 integrity properties when the
investigator and the user collude.
C̄UĪ A dishonest CSP and a malicious investigator can collude
to plant a false proof. In that case, the CSP was honest
before colluding with the investigator, but becomes dishonest
afterwards. Which means, the proof generated previously were
correct but the proof generated after the colluding point will
be incorrect. Here, we are proposing a scheme for proof of
past data possession, that means the proof were valid at the
time of generation so that nobody can establish an invalid
evidence after a valid proof generation. Using the advance
version of PPDP generation, we can even block the future
false proof generation for this collusion combination. A CSP
or an investigator cannot sign the file by user’s private key.
Therefore, storing the signature of the file in the Bloom filter
can prevent producing any false evidence by a colluding CSP
and an investigator.
C̄ŪI A dishonest CSP and a malicious user can collude together
to remove valid evidence or plant invalid evidence. Before
colluding with the user, the CSP generated valid proof. This
proof can detect any deletion of past data. However, after
colluding with the user, CSP can produce invalid proof. This
invalid proof will still detect the removal of data, which was
in user’s storage before the colluding point but will not work
for the data, which the user owned after collusion.
C̄ŪĪ Finally, a malicious user can collude with a CSP and an
investigator to prove her honest. Even all of the three parties
collude, they cannot come up with any invalid evidence for
which a valid proof has already been published by the CSP.
However, they can alter the new evidence when the CSP is
dishonest and publishes invalid proof of the new evidence.

In the last three cases, where the CSP is also dishonest we
can ensure the I4 and I5 integrity properties by PPDP. As the
published hash of bloom filter is signed with the CSP’s private
key, it cannot repudiate the proof (I5). After decrypting the
signed value, if it matches with the hashed bloom filter value,
the CSP cannot repudiate the published value. Additionally, if
the CSP comes up with a false PPDPu in place of a published



PPDPu, then it will be easily detected. In that case, the H(DSu)
of the published PPDPu and the H(DSu) of the false PPDPu
will not be same.

The published bloom filter contains the hash of all the
previous evidence. If the published bloom filter contains the
hash of a file, then the CSP cannot deny hosting that file (I4)
when the probability of false positive rate is zero.

Besides the integrity properties, our system also ensures the
two confidentiality properties – C1 and C2, which will ensure
cloud user’s privacy. A CSP publishes the hashed value of the
bloom filter and the signature of that. As the hash function
ensures the one-way property, adversaries will not be able to
know about the bloom filter content from the hash value (C1).
As the CSP publishes the PPDP everyday, adversaries can try
to know about the evidence change-history from the regularly
published proof. However, it is not possible to know about the
change-history from the hashed value.

We can defend the repudiation by user attack for multi-
tenancy case by using the advanced version of PPDP generation,
where the user’s signature of the file is stored. As the key for
the signature is private to the user, nobody other than the user
can sign a file using the secret key. So, if a positive match
found for a signature of an evidence, the user cannot repudiate
the file possession.

C. Evaluation
To evaluate the feasibility and the performance of our scheme,

we first set up a ftp server in an Amazon EC2 micro instance.
Then we implemented our proof-of-concept application using
JDK 1.6 and MySQL Community Server - 5.1.53. We upload
files from a personal computer with Intel Core-i5-24305 CPU @
2.40 GHz processor and 8GB RAM. We configured the Bloom
filter with 0.01% false positive probability for 1000 element and
used seven hash functions to maintain this configuration. We
used RSA (1024 bit) for signature generation and SHA-1(160
bit) hash function for hashing. As the unique information of a
user, we used the user’s email address. We created a directory
watcher, which watches the directories of each users. Whenever
any new file is uploaded to user’s directory, we hash that file
along with the user information and insert into the latest bloom
filter entry of that user.
Associated Overhead: For PPDP generation, we follow the
option B of the process flow, i.e., we did not check the the
number of elements in bloom filter before inserting the proof.
To check the overhead of inserting the proof of a file in our
system, we first upload 1000 files to our ftp server and measure
time for each file. File size was distributed in log normal
distribution. The lowest and the highest file size was 693 KB
and 13843 KB respectively. Then we again upload the files to
the server, but now in a directory which is being watched by
our directory watcher. This time, we calculate the time of each
file including the time to insert the proof of the file. From the
difference of the this two time, we calculate the % overhead
associated with inserting the proof of the file. We run our
experiment for several times to measure the average overhead.
Finally, we run the same experiment for signature-based Bloom
filter. Figure 3 depicts our findings. Without signature, the
overhead varies from 2.1959755% to 0.132992189% and when
the file size crosses 4.5 MB, it varies from 0.2% to 0.3%,

which is significantly low. For signature-based Bloom filter the
overhead varies from 0.137635076% to 3.733947515% and
after 6 MB, it varies between 0.3% to 0.6%. So there is a slight
increase in overhead for the signature-based Bloom filter.
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Fig. 3: % Overhead associated with time needed to insert the PPDP.

Proof Checking: To measure the performance of proof
checking, we consider both the true positive matching and
true negative matching. By true negative matching, we mean
that the file was not present in the PPDP and our system detects
it correctly. And by true positive matching, we mean that the
file was actually present in the PPDP and the application detects
the presence correctly. To test the true negative matching time,
we use the same file set, that we have used to measure the
overhead. First, we choose such a PPDP, that the files are not
present in that proof. Then we run the proof checking program
with all the files and measure the time to find a true negative
match. We run this test several times to get the average time.
Figure 4 depicts our result. From the graph, we can observe
that the time increases with the file size. The more the file size
is, the more time is required.
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Fig. 4: Average time required for true negative matching.

Before measuring the true positive matching time, we first



insert all the files in our system. That means the latest PPDP
contains the proof of all the files. We select this last proof
and run the proof checking program again for all the files. We
find a true positive match for all of the files and note the time.
Figure 5 illustrates the average time for finding a true positive
match for different file size. From the graph, we can state that
the finding true positive matching time also depends on the
file size. For larger file size we need higher time.
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Fig. 5: Average time required for true positive matching.

In both true positive and negative matching, the required time
increases with the increasing file size. And the reason behind
that is the hashing time. The time of hashing is proportional
with the file size. In our program, to calculate the bit positions,
we used 7 hash functions. Hence, it is obvious that the matching
time will increase with the increase in file size.
Storage Overhead: In our experiment, we used 0.01 false
positive probability for 1000 elements, which require 10099
bits, i.e., 1262.375 byte. We maintain one bloom filter for one
user. Also we are publishing the Bloom filter every day, i.e.,
we need 1262.375 byte storage for each user everyday. For n
number of users we need n*1262.375 byte storage everyday.
This is significantly low, because implementing our scheme
will ensure the preservation of data possession proof without
preserving the file itself. For example, if on average every user
deletes 5 mega bytes file daily, then everyday our scheme will
save n*4.99 mega byte storage, but still preserves the proof of
data possession.

V. DISCUSSION

In this section, we discuss the applicability of PPDP scheme
in cloud forensics and how it can contribute in build a regulatory
compliant cloud.

A. Application in Cloud Forensics
The above scheme will be applicable in cloud forensics and

help the investigators to justify the evidence. In our scheme,
CSPs will play a vital role. When storing a file in disk, they
need to do some additional work and need to provide a new
feature in management console to publish and verify the proof
of past data. Storing the proof will need some extra storage
for the CSP, but on the other side they can earn money from

forensic agency by providing forensics-as-a-service. As in this
way, the CSPs do not need to store the evidence itself, only
need to store the proof of the evidence, it will actually quite
cost effective way to provide forensic-as-a-service. This is a
continuous synchronization approach, but without preserving
the data. If a malicious user deletes her secret data from the
cloud environment, the CSPs can still preserve the proof of the
record without preserving the data itself. Later, if an inspector
gets the same data from any other source, he can check whether
the data was owned by a particular malicious user or not. If a
malicious investigator produces some false evidence, the user
will also get the chance to prove it false. For cloud storage
service, users will get the facility to verify the integrity of their
data. If a user is suspicious about the integrity of a file, he can
check the validity of the file from the management console.

Publishing the signed hash of a Bloom filter also ensures the
trustworthiness of the CSP. If any user or investigator objects
about the honesty of the CSP, it can defence this claim by
providing the Bloom filter content to the court. If the hash
of this Bloom filter content is same as the published hash
(H(DS)), then we can treat the CSP as honest. If the CSP is
not trustworthy and change the Bloom filter content, then the
Bloom filter content submitted to the court cannot produce the
same H(DS), which was signed and published previously.

B. Regulatory Compliant Cloud
The Sarbanes-Oxley (SOX) Act 2002 mandates public

companies to provide disclosure and accountability of their
financial reporting, subject to independent audits [17]. While
this act introduced major changes to the regulation of financial
practice and corporate governance, it also brings new challenges
for cloud computing. The SOX act mandates that the financial
information must be reside in an auditable storage, which
the CSPs do not provide. Business organization cannot move
their financial information to cloud infrastructure as it does
not comply with the act. The SOX act mandates accurate
financial disclosure [18]. However, in today’s cloud infras-
tructure, auditors cannot verify the authenticity of financial
reports provided by the corporations. PPDP-enabled cloud
infrastructure can provide this functionality. Implementing our
scheme will help the auditors to verify whether a corporation
actually possesses the records or it produces false reports.
Hence, implementing the PPDP scheme will be a big step
towards building a SOX-compliant cloud. Building a SOX-
compliant cloud will open a new business model in cloud
computing and also the business organizations can reduce their
investment in buying SOX-compliant storage.

VI. RELATED WORK

Cloud forensics is a relatively new topic. Several researchers
have proposed solutions to overcome some of the challenges of
cloud forensics. Delport et al. focused on isolating an instance
to mitigate the multi-tenancy issue [19]. Isolation is necessary
because it helps to protect evidence from contamination. The
first proposed technique is instance relocation. The second
technique is server farming, which can be used to re-routing the
request between user and node. The third technique is failover,
where there is at least one server that is replicating another.
The last approach of isolating an instance is to place it in a



sandbox. To overcome the problem of volatile data, Birk et al.
mentioned about the possibility of continuous synchronization
of the volatile data with a persistent storage [4]. They also
proposed that the CSP can provide network, process, and access
logs through a read-only API to get necessary logs from all the
three cloud service models. However, they did not provide any
guideline or any practical implementation of the procedures.

Provenance provides the history of an object. By implement-
ing secure provenance, we can get some important forensic
information, e.g., who owns the data at a given time, who
accesses the data and when. Secure provenance can be useful
for ensuring the chain of custody in cloud forensics as it can
provide the chronological access history of evidence, how it
was analysed, and preserved. There have been some works for
secure provenance in cloud computing [20], [21], but no CSP
has implemented this mechanism yet.

There are other important challenges orthogonal to our
work. To overcome the data acquisition problem, Dykstra et
al. recommended a cloud management plane for using in the
IaaS model [22]. From the console panel, customers, as well as
investigators can collect VM image, network, process, database
logs, and other digital evidence, which cannot be collected in
other ways. The problem with this solution is that, it requires
an extra level of trust – investigators must trust the management
plane. Virtual Machine Introspection (VMI) can also be helpful
in forensic investigation. Using this process, the investigators
can execute a live forensic analysis of the system, while keeping
the target system unchanged [23].

Though the above solutions are important for cloud forensics,
none of the existing research efforts in cloud forensics address
the problem of proving past data possession. In this paper, we
take the first step towards providing a solution for the past
data possession. Combining all the previous solutions and our
scheme will drive towards building a forensic-enabled cloud.

VII. CONCLUSION AND FUTURE WORK

With the increasing use of cloud computing, cloud forensics
has attracted the attention of the security and forensics research
community. Researchers have explored the challenges and
proposed some solutions to mitigate the challenges. Several
researchers proposed continuous synchronization of cloud data
to overcome the forensic investigation challenges, though no
scheme has been proposed yet about continuous synchroniza-
tion. PPDP can be the solution of continuous synchronization.
It will allow users and investigators to verify the possession
of incriminating evidence by a suspect at a past time. In this
paper, we proposed a scheme of PPDP, described how it can be
utilized in cloud forensics, and provided the performance of our
scheme by a proof-of-concept application. Our experimental
result indicates that the overhead associated with generating the
proof of evidence is very low and practically implementable
by the CSP.

In future, we will implement our scheme on our own cloud
platform using a open source framework. By implementing
our private cloud platform, we can perform more sophisticated

tests and will be able to make a practically usable application.
After our successful implementation, we will collaborate with
a CSP to deploy the scheme in a real-life cloud infrastructure.
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