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Abstract—This paper presents an AI based method for im-
proving poorly performing quality prediction models. The
method improves automatically the usability of the low quality
alarm predictions in the web based quality monitoring tool
that provides decision support for users. The tool enables
the utilization of the models that suffer from the lack of
information because of a long time gap to the predicted future.
The reliability of the presented alarms in a monitoring tool will
be improved by reducing the amount of false alarms.

1. Introduction

Smart city focuses on applying next-generation tech-
nology to every-day life, environmental protection, public
security, city services and other fields. The concept is based
on the use of information and communication technology to
sense, analyse and integrate the key information to the core
systems in running cities. The technology of intelligent anal-
ysis and decision support is one of the key challenges when
constructing a smart city [1]. Solutions to this challenge
can be searched from the industrial applications where the
intelligent data analysis and decision support already exist
in process-wide or even plant-wide use.

Smart cities consist of smart sensing components that
can be located in infrastructures, buildings, electricity and
water distribution, transportation, services, surveillance and
healthcare [2]. By making a city smart it is possible to
mitigate the problems generated by the urban population
growth and rapid urbanization. Smart city is more efficient,
sustainable, equitable and livable [3].

Advanced systems to improve and automate processes
within a city may help to save the scarce resources. We
need more intelligent systems for water and electricity
distribution, buildings and homes, energy sensing, demand
prediction based on weather conditions, occupancy and user
context, indoor monitoring, smart building evacuation, mon-
itoring bridges and seismic activity, environmental monitor-
ing, intelligent transportation, public services, such as, law
enforcement and fire fighting, and health care [2]. Public
spaces monitoring enables the providing of services to the
citizens. Alert announcers are the application layer that
notify the users of specific events, warnings and alarms [4].

As the increasing number of sensors enabling IoT pro-
duce information that can be utilized for providing services
to the citizens, it is still not common to have advanced plat-
forms of systems for live monitoring and inferring of urban
process parameters. With advanced sensing and computation
capabilities, it is possible to gather and evaluate the data in
real time to extract the information and convert it to usable
knowledge, which will turn the city smart [5].

Sensors are a crucial component of any intelligent con-
trol system [2]. Modern manufacturing process produces
constantly collected sensor data in massive amounts. Today’s
industry builds its competitiveness on quality management,
delivery reliability and resource efficiency, which are de-
pendent on the effective usage of the data collected from
different sources.

Knowledge engineering and data mining have enabled
the development of new types of manufacturing systems.
Future manufacturing is able to adapt to demands of ag-
ile manufacturing, including rapid response to changing
customer requirements, concurrent design and engineering,
lower cost of small volume production, outsourcing of sup-
ply, distributed manufacturing, just-in-time delivery, real-
time planning and scheduling, increased demands for pre-
cision and quality, reduced tolerance for errors, in-process
measurements and feedback control [6]. Smart manufac-
turing will bring solutions to existing challenges, but the
current industry utilizes generally the information from its
environment and in best cases only the first level of knowl-
edge (Figure 1). The progress in industrial data utilization
is enabled with novel intelligent data processing methods.

There are various widely used methods that are able to
monitor the current process variables or product properties
factor-wise. Control charts, statistical process control (SPC)
and automatic process control (APC) are in everyday use
for process monitoring and adjustment. Statistical models
give another angle to quality monitoring, as they can be
used to predict the future outcome of a process, which in
its turn enables planning of the process and the production
as a whole [7], [8]. Statistical prediction models have been
utilized also in smart city related applications; a driving
coach system can assist the driver for more fuel- efficient
driving by predicting the fuel consumption with city map



Figure 1. The evolution of data to knowledge requires novel methods for intelligent data processing that enable the shift to smart manufacturing.

data, weather and context information [9].

However, the full potential of the essential knowledge
within the data cannot be utilised with limited capacity to
process the incessant information flow. In some cases, the
accuracy of the model may not be satisfactory due to the
absence of related data. With the help of AI, it might be
possible to benefit even from an ill-performing model by
comparing prediction results to existing knowledge about
the data.

Manufacturing has benefited from the field of data min-
ing in several areas, including engineering design, man-
ufacturing systems, decision support systems, shop floor
control and layout, fault detection, quality improvement,
maintenance, and customer relationship management [10].
Information collected from large number of different sources
is difficult to comprehend, and thus in today’s manufactur-
ing, there is a need for intelligent data processing. Decision
support systems (DSS) become intelligent when combined
with AI tools such as fuzzy logic, case-based reasoning,
evolutionary computing, artificial neural networks (ANN),
and intelligent agents [11], [12].

Kano and Nakagawa suggest that when product quality
improvement is pursued, the process monitoring system
should have at least following functions: it should be able to
predict product quality from operating conditions, to derive
better operating conditions that can improve the product
quality, and to detect faults or malfunctions for preventing
undesirable operation [13]. Usability of the quality models
correlates with the benefits, the tool can afford. Xu et al.
show that when the massive amount of real-time data flow
is to be analysed, currently strong big data analytics skills
are needed from the end user [14]. Yet, the employment of
experts concentrate on the core area of the industry, which

in turn, generate a demand for intelligent tools for decision
support.

Trust and dependence on automatic decision support
systems may have negative consequences, such as, over
reliance and misuse of the system. In the case of very low
level of trust, the system may be disused entirely [15], [16],
[17]. Thus, the reliability of the system has a key role in
the system design.

In this paper, we present a method for AI enhanced
models in quality monitoring. Our intelligent support for
decision-making combines the predictions of the quality
models with the diagnostics of the process data. Especially
during online monitoring, when the reaction time is limited,
it is important to deliver the automatic interpretation of the
results to the user. The method helps to reduce the amount
of false positives in prediction, and thus, to increase the
reliability of the tool and to reduce the unnecessary cognitive
load of the user.

2. AI enhanced quality model

2.1. Prediction model

In industrial applications, high nonlinearity and nu-
merous interactions between process settings challenge the
model performance. Furthermore, for the user the value is
not just in the prediction but also in the information about
the effects of the process variables to the predicted quality
property. Additionally, with online system the functionality
of the tool will suffer, if the models were not capable of
processing observations with missing data that cannot be
fully avoided.



Over the years, neural networks have been a popular
method for modelling data with complex relations between
variables [18], [19]. Lately, ensemble algorithms have risen
to challenge them with equal accuracy, faster learning, ten-
dency to reduce bias and variance, and also lower tendency
to over-fit. Seni and Elder state that ensemble methods have
been called the most influential development in Data Mining
and Machine Learning in the past decade [20].

Gradient boosting machines are a family of powerful
machine learning techniques that has been successfully ap-
plied to a wide range of practical applications [21]. Boosted
regression trees are suitable for classification as well, and
they are capable of handling different types of predictors
and accommodating missing data, there is no need for prior
transformation of variables, they can fit complex nonlinear
relationships, and automatically handle interactions between
predictors [22]. For quality prediction, we used the gener-
alized boosted regression models (GBM). The details about
the method can be found in [23].

2.2. Model improvement

Powerful modelling methods do not guarantee the reli-
able results, if the training data fails to represent adequately
well the relationships of the observed phenomenon. How-
ever, the cost effects of the predictions can motivate to use
the model anyway. With classification models, the trade-
off between sensitivity and specificity affects the model
selection. In industrial applications, the presence of false
positives will have cost effects as well as the failing in
recognition of true positives, and thus, their number should
be reduced.

For each product group, we collected a pool of good
products. These products have a combination of highly
influential process variables with safer value settings. We
used actual products instead of aggregate information (e.g.,
average) of the variables. This way, the combination of
variable settings is realistic. In this application, we divided
the products to five groups based on the similarity of their
production practices and mechanical properties. We selected
the most influential process variables that will be used in
similarity calculation with the help of GBM model.

We used following steps for reducing the number of false
positives:

Step 1. A GBM model for selected quality property will
be trained. The model will be utilised for quality predic-
tion, and it will also provide information about the most
influential process variables that affect the quality. When
a prediction indicates a defect for a product, the process
settings will be examined and the reliability of the prediction
will be improved during the following steps.

Step 2. The most influential variables of the good prod-
ucts will be compared to the current product with predicted
defect. For each variable, the distance to the safe zone will
be calculated. The user could inspect the differences visually
as well, but when reducing the number of false positives,
the procedure of finding the variables not locating in the
safe zone is automatic.

Step 3. The alarm for defect risk will be presented only,
if the inspected product actually has alarming values for
variables that have a high impact on the quality property.
The user will get also information about the factors causing
the risk, and thus, safer process settings can be selected
according to the automatic recommendations.

3. Experiments

3.1. Data

In manufacturing, the cost effectiveness is one of the
factors that affect the competitiveness. Our Methods pro-
posed in this paper enable the reduction of costs that may be
caused by the unnecessary shipping of the products between
the plant sites and by the defects that may lead to rejection
or quality grade reduction, for example.

The data was collected at the Outokumpu Stainless Oy
in Tornio, Finland during 1.2.2016-4.4.2017 and it consists
of 8026 observations with 98 variables, including process
settings, chemical composition and information of the sur-
face quality. Additional test set with 2441 observations
was collected during 1.6-31.10.2017. The roughness located
at the edge-zones of the stainless steel strip is a quality
property that can be detected only after the polishing of the
finished product. The defect can originate already during the
hot rolling, but after that the product will go through cold
rolling, different surface treatments and finally polishing,
and these following process steps may also worsen the
defect. The plants for hot and cold rolling locate in different
countries, and thus, it would be crucial to find the products
that do not meet the quality requirements already before the
shipping.

There are several factors that reduce the accuracy of the
prediction models. First of all, the prediction need to be done
at the early state of the process steps, and thus some of the
affecting variables have to be left out from the model. Also,
some of the process variables cannot be measured accurately
with available devices. Finally, the predicted quality vari-
able is measured with inexact method. In this application,
the roughness is detected with visual inspection made by
humans, and the severity of the defect is evaluated with
a nine-class rating scale. Only the information about the
presence of the roughness defect was usable for prediction.

3.2. Quality presentation

During steel manufacturing, the process is monitored
with a web-based online quality monitoring tool (QMT)
that will give an alarm for products with increased risk
for defected surface based on the quality prediction model
[24]. Figure 2 presents the schematic figure of the QMT
prototype. The transfer of the information from the man-
ufacturing process to the end users is presented in the
following four steps that are 1) data acquisition, 2) data
storage, 3) information analysis and 4) information delivery.
In most advanced visualizations in our tool, the information



has been refined to knowledge with automatic interpretation
of the results. We built the GBM models and intelligent
visualizations of the rootcauses with free statistical program
R.

For quality prediction model, we used 70% of the data
for training and 30% for model validation. We secured the
independence between training and validation data sets by
selecting observations in batches. Also, the proportion of
the product types was preserved. An independent test set of
2441 observations was used for final testing of the model.

The relative influence of each input variable in GBM
models tells about the strength of their impact on the quality
property. The ten most influential variables in roughness
models can be found in Table 1. We used this information
when selecting the variables for further analysis of the
results. GBM models provide also visualized impact of each
input on the dependent variable with partial dependence
plots (PDP). Figure 3 presents the effect of the most influ-
ential variable on the roughness. An increase on the specific
force on the fifth pass will increase the surface roughness
as well. PDP plots have educational value, when the user
wants to learn more about the manufacturing process.

TABLE 1. RELATIVE INFLUENCE OF THE PROCESS VARIABLES IN THE

ROUGHNESS MODEL.

Variable Rel. influence
Specific force 5 11.4665
Cr 11.0681
Cropshear temp. 8.4040
Nb 6.1541
Shift of working roll 9 6.0464
Bending 10 5.7175
Ti 5.1868
Specific force 9 5.1124
Specific force 3 5.0455
Thickness 11 4.7733

The results of the original prediction model are presented
in Table 2, where defected products have value 1 and high
quality products have value 0. It can be seen that the
model performance suffers from the factors that reduce the
accuracy, the model either fails to recognise correctly a high
number of defected products, or produces a high number
of false alarms. The usability of the tool is poor, because,
the high number of false alarms; in worst product groups
the number of false positives exceeds the number of true
positives.

TABLE 2. THE ORIGINAL PREDICTION MODEL PERFORMANCE IN

TRAINING, VALIDATION AND TEST SETS.

Measured
0 1

Pred. 0 5007 80
Pred. 1 65 298

Measured
0 1

0 2351 87
1 46 92

Measured
0 1

0 2376 11
1 38 16

In our tool, when the quality prediction model produces
an alarm for roughness, the product will be compared to
the corresponding group of good products automatically.
Among all process variables, We selected the observed ones

based on their importance in the prediction model; high
impact in the model correlates with the impact in the defect
prediction, and thus, high impact variables are the best
candidates to cause the defect, should the distance to the
good ones be significant. Parallel coordinates [25] visualize
effectively the difference between the selected product and
the pool of good products. Figure 4 present the difference
between the observed product and the pool of good products
(grey) in two cases. True positive product (solid black)
diverges from the good products for several variables, while
false positive (dashed black) looks quite similar to the good
ones.

The parallel coordinate visualization is available for the
user as well. Thus, it is possible to learn, what are the factors
that increase the risk of defects and how to improve the
process in the future. Also, the user can select the predictions
of the original model for quality visualization, if preferred.

After the distance calculation, our method produced the
alarm only if the product had variable values diverging from
the corresponding ones of the good products. As a result,
we were able to reduce the number of false positives. Table
3 presents the final results for different product groups. One
product group with no defected products or false positives
has been left out. There are the results for both validation
and test set, because, the number of defected products was
quite low for the test set. It can be seen that the number
of false positives (FP) can be reduced significantly without
losing true positives (TP). The group 4 is especially suscep-
tible to the defect, and there is a definite need for the quality
prediction model in manufacturing. In the test set, the AI
enhanced prediction model will reduce the percentage of
FPs from 48% to 20%. In validation set the percentage is
dramatically better.

TABLE 3. THE RESULTS IN THE NUMBER OF REDUCED FALSE

POSITIVES AND THE PRESERVED TRUE POSITIVES FOR VALIDATION

(UPPER) AND TEST (LOWER) SETS.

GROUP1 GROUP2 GROUP3 GROUP4
FP 12 → 1 8 → 2 9 → 4 17 → 2
TP 5 → 5 2 → 2 14 → 14 71 → 45

FP 2 → 1 - 13 → 6 15 → 2
TP - - - 16 → 8

4. Conclusions

In this paper, we present an AI based method for alarm
management in situations where the performance of the
prediction models is weak because of lacking information.
This method is useful especially when predicted alarms are
needed quite early in order to be able to adjust variables
causing the trouble. The application is from industrial en-
vironment, where the utilization of multiple sensors data is
common, and thus, it can provide cross-discipline solutions
to challenges in smart environments as well. Analogous
applications can be found in smart city environment, where
monitoring systems can produce alarms when scarce re-
sources should be saved, for example.



Figure 2. The prototype of QMT.

Figure 3. The visualization of the effect of specific force on fifth pass on
surface roughness.

Our method enables the automatic improvement of the
usability of the defect risk predictions made at the early state
of the manufacturing process, when the accuracy of the mod-
els suffers because of the lack of information of the future
process steps. This way, the products with high risk can be
recognized and cost-effectively rerouted. Furthermore, the
user can find root-causes for the reduced quality and learn
how to improve the process.

The web based quality monitoring tool provides decision
support for users in different roles in manufacturing. Cur-
rently, the tool is in online test use at Outokumpu, Tornio.

The test period provides valuable users’ feedback that can
be utilized in the further development of the tool. Users will
evaluate also the possibility to move towards fully automatic
process control with cognitive systems that are based on
smart decision support with statistical prediction models.

Acknowledgments

The Quality Monitoring Tool was developed in a co-
operation with VTT Technical Research Centre of Finland,
Ltd.

References

[1] K. Su, J. Li, and H. Fu, “Smart city and the applications,” in
Proc. International Conference on Electronics, Communications and
Control (ICECC 2011), 2011, pp. 1028–1031.

[2] G. Hancke, B. Silva, and G. Hancke, “The role of advanced sensing
in smart cities,” Sensors, vol. 13, pp. 393–425, 2013.

[3] H. Chourabi, T. Nam, S. Walker, R. Gil-Garcia, S. Mellouli, K. Na-
hon, T. Pardo, and H. Scholl, “Understanding smart cities: an integra-
tive framework,” in Proc. Hawaii International Conference on System
Sciences, 2012, pp. 2289–2297.

[4] L. Filipponi, A. Vitaletti, G. Landi, V. Memeo, G. Laura, and P. Pucci,
“Smart city: an event driven architecture for monitoring public spaces
with heterogeneous sensors,” in Proc. International Conference on
Sensor Technologies and Applications, 2010, pp. 281–286.

[5] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information
framework for creating a smart city through internet of things,” IEEE
Internet of Things Journal, vol. 1, no. 2, pp. 112–121, 2014.

[6] I. Dumitrache and S. Caramihai, “The intelligent manufacturing
paradigm in knowledge society,” in Knowledge Management. InTech,
2010, pp. 36–56.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.44

2.09

 968

1014

−31

 70

606064

680029

1858

2707

−0.0108

 0.4961

401

779

0.802

1.408

1.17

1.82

201

882

−0.00231

 0.51085

345

782

300

539

0.375

0.565

424

704

Figure 4. The parallel coordinates visualize the difference between the good products and the observed product having an increased predicted risk for
failure (good products (grey), observed true positive (solid black), false positive (dashed black).

[7] I. Juutilainen, S. Tamminen, and J. Röning, “A tutorial to develop-
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