
Prive-HD: Privacy-Preserved Hyperdimensional
Computing

Behnam Khaleghi, Mohsen Imani, Tajana Rosing
CSE Department, UC San Diego, La Jolla, CA 92093, USA

{bkhaleghi, moimani, tajana}@ucsd.edu

Abstract—The privacy of data is a major challenge in machine
learning as a trained model may expose sensitive information of
the enclosed dataset. Besides, the limited computation capability
and capacity of edge devices have made cloud-hosted inference
inevitable. Sending private information to remote servers makes
the privacy of inference also vulnerable because of susceptible
communication channels or even untrustworthy hosts. In this
paper, we target privacy-preserving training and inference of
brain-inspired Hyperdimensional (HD) computing, a new learn-
ing algorithm that is gaining traction due to its light-weight com-
putation and robustness particularly appealing for edge devices
with tight constraints. Indeed, despite its promising attributes,
HD computing has virtually no privacy due to its reversible
computation. We present an accuracy-privacy trade-off method
through meticulous quantization and pruning of hypervectors,
the building blocks of HD, to realize a differentially private
model as well as to obfuscate the information sent for cloud-
hosted inference. Finally, we show how the proposed techniques
can be also leveraged for efficient hardware implementation.

I. INTRODUCTION

The efficacy of machine learning solutions in performing
various tasks has made them ubiquitous in different application
domains. The performance of these models is proportional
to the size of the training dataset. Thus, machine learning
models utilize copious proprietary and/or crowdsourced data,
e.g., medical images. In this sense, different privacy concerns
arise. The first issue is with model exposure [1]. Obscurity is
not considered a guaranteed approach for privacy, especially
parameters of a model (e.g., weights in the context of neural
networks) that might be leaked through inspection. Therefore,
in the presence of an adversary with full knowledge of the
trained model parameters, the model should not reveal the
information of constituting records.

Second, the increasing complexity of machine learning
models, on the one hand, and the limited computation and
capacity of edge devices, especially in the IoT domain with
extreme constraints, on the other hand, have made offloading
computation to the cloud indispensable [2], [3]. An immediate
drawback of cloud-based inference is compromising client data
privacy. The communication channel is not only susceptible to
attacks, but an untrusted cloud itself may also expose the data
to third-party agencies or exploit it for its benefits. Therefore,
transferring the least amount of information while achieving
maximal accuracy is of utmost importance. A traditional
approach to deal with such privacy concerns is employing
secure multi-party computation that leverages homomorphic

encryption whereby the device encrypts the data, and the host
performs computation on the ciphertext [4]. These techniques,
however, impose a prohibitive computation cost on edge
devices.

Previous work on machine learning, particularly deep neural
networks, have come up with generally two approaches to pre-
serve the privacy of training (model) or inference. For privacy-
preserving training, the well-known concept of differential
privacy is incorporated in the training [5], [6]. Differential
privacy, often known as the standard notation of guaranteed
privacy, aims to apply a carefully chosen noise distribution
to make the response of a query (in our concept, the model
being trained on a dataset) over a database randomized enough
so the singular records remain indistinguishable whilst the
query result is fairly accurate. Perturbation of partially pro-
cessed information, e.g., the output of the convolution layer
in neural networks, before offloading to a remote server is
another trend of privacy-preserving studies [7], [8], [9] that
target the inference privacy. Essentially, it degrades the mutual
information of the conveyed data. This approach degrades
the prediction accuracy and requires (re)-training the neural
network to compensate the injected noise [7] or analogously
learning the parameters of a noise that can be tolerated by the
network [9], [10], which are not always feasible, e.g., when
the model is inaccessible.

In this paper, for the first time, we scrutinize Hyperdimen-
sional (HD) computing from a privacy perspective. HD is a
novel efficient learning paradigm that imitates the brain func-
tionality in cognitive tasks, in the sense that the human brain
computes with patterns of neural activity rather than scalar
values [11], [12], [13], [14]. These patterns and underlying
computations can be realized by points and light-weight op-
erations in a hyperdimensional space, i.e., by hypervectors of
∼10,000 dimensions. Similar to other statistical mechanisms,
the privacy of HD might be preserved by noise injection, where
formally the granted privacy budget is directly proportional
to the amount of the introduced noise and indirectly to the
sensitivity of mechanism. Nonetheless, as a query hypervector
(HD’s raw output) has thousands of w-bits dimensions, the
sensitivity of the HD model can be extremely large, which
requires a tremendous amount of noise to guarantee differential
privacy, which significantly reduces accuracy. Similarly, the
magnitude of each output dimension is large (each up to
2w), so is the intensity of the required noise to disguise the

ar
X

iv
:2

00
5.

06
71

6v
1

 [
cs

.L
G

]
 1

4
M

ay
 2

02
0

transferring information for inference. Therefore, we require
more prudent approaches to augment HD with differentially
private training as well as blurring the information of offloaded
inference.

Our main contributions are as follows. We show the privacy
breach of HD and introduce different techniques including
well-devised hypervector (query and/or class) quantization and
dimension pruning to reduce the sensitivity, and consequently,
the required noise to achieve a differentially private HD model.
We also target inference privacy by showing how quantizing
the query hypervector, during inference, can achieve good pre-
diction accuracy as well as multifaceted power efficiency while
significantly degrading the Peak Signal-to-Noise Ratio (PSNR)
of reconstructed inputs (i.e., diminishing useful transferred
information). Finally, we propose an approximate hardware
implementation that benefits from the aforementioned innova-
tions for further performance and power efficiency.

II. PRELIMINARY

A. Hyperdimensional Computing

Encoding is the first and major operation involved in both
training and inference of HD. Assume that an input vector
(an image, voice, etc.) comprises Div dimensions (elements
or features). Thus, each input ~Viv can be represented as (1).
‘vi’s are elements of the input, where each feature vi takes
value among f0 to f`iv−1. In a black and white image, there
are only two feature levels (`iv = 2), and f0 = 0, and f1 = 1.

~Viv = 〈v0, v1, · · · , vDiv−1〉
|vi| ∈ F = {f0, f1, · · · f`iv−1}

(1)

Varied HD encoding techniques with different accuracy-
performance trade-off have been proposed [11], [15]. Equation
(2) shows analogous encodings that yield accuracies similar to
or better than the state of the art [15].

~H =

Div−1∑
k=0

|vk|∈F · ~Bk (2a)

~H =

Div−1∑
k=0

~Lvk · ~Bk (2b)

‘ ~Bk’s are randomly chosen hence orthogonal bipolar base
hypervectors of dimension Dhv ' 104 to retain the spa-
tial or temporal location of features in an input. That is,
~Bk ∈ {−1,+1}Dhv and δ(~Bk1 , ~Bk2) ' 0, where δ denotes
the cosine similarity: δ(~Bk1 , ~Bk2) =

~Bk1 ·~Bk2
‖~Bk1‖·‖~Bk2‖

. Evidently,
there are Div fixed base/location hypervectors for an input
(one per feature). The only difference of the encodings in
(2a) and (2b) is that in (2a) the scalar value of each input
feature vk (mapped/quantized to nearest f in F) is directly
multiplied in the corresponding base hypervector ~Bk. However,
in (2b), there is a level hypervector of the same length (Dhv)
associated with different feature values. Thus, for kth feature
of the input, instead of multiplying f|vk| ' |vk| by location

vector ~Bk, the associated hypervector ~Lvk performs a dot-
product with ~Bk. As both vectors are binary, the dot-product
reduces to dimension-wise XNOR operations. To maintain the
closeness in features (to demonstrate closeness in original
feature values), ~L0 and ~L`iv−1 are entirely orthogonal, and
each ~Lk+1 is obtained by flipping randomly chosen Dhv2·`iv bits
of ~Lk.

Training of HD is simple. After generating each encoding
hypervector ~Hl of inputs belonging to class/label l, the class
hypervector ~Cl can be obtained by bundling (adding) all ~Hls.
Assuming there are J inputs having label l:

~Cl =

J∑
j

~Hlj (3)

Inference of HD has a two-step procedure. The first step
encodes the input (similar to encoding during training) to
produce a query hypervector ~H. Thereafter, the similarity (δ)
of ~H and all class hypervectors are obtained to find out the
class with highest similarity:

δ(~H, ~Cl) =
~H · ~Cl

‖ ~H ‖ · ‖ ~Cl‖
=

∑Dhv−1
k=0 hk · clk√∑Dhv−1

k=0 h2
k ·
√∑Dhv−1

k=0 cl
2
k

(4)

Note that
√∑Dhv−1

k=0 h2
k is a repeating factor when comparing

with all classes, so can be discarded. The
√∑Dhv−1

k=0 cl
2
k factor

is also constant for a classes, so only needs to be calculated
once.

Retraining can boost the accuracy of the HD model
by discarding the mispredicted queries from corresponding
mispredicted classes, and adding them to the right class.
Retraining examines if the model correctly returns the label l
for an encoded query ~H. If the model mispredicts it as label
l′, the model updates as follows.

~Cl = ~Cl + ~H
~Cl′ = ~Cl′ − ~H

(5)

B. Differential Privacy

Differential privacy targets the indistinguishability of a
mechanism (or algorithm), meaning whether observing the
output of an algorithm, i.e., computations’ result, may disclose
the computed data. Consider the classical example of a sum
query f(n) =

∑n
1 g(xi) over a database with xis being the

first to nth rows, and g(xi) ∈ {0, 1}, i.e., the value of each
record is either 0 or 1. Although the function f does not
reveal the value of an arbitrary record m, it can be readily
obtained by two requests as f(m) − f(m − 1). Speaking
formally, a randomized algorithmM is ε-indistinguishable or
ε-differentially private if for any inputs D1 and D2 that differ
in one entry (a.k.a adjacent inputs) and any output S of M,
the following holds:

Pr[M(D1) ∈ S] ≤ eε · Pr[M(D2) ∈ S] (6)

v1

v2

viv-1 ×

×

× B0,0 B0,1 B0,Dhv

B1,0 B1,1 B1,Dhv

Biv-1,1 Biv-1,2

+

+Biv-1,Dhv

+

H0 H1 HDhv

Fig. 1. Encoding presented in Equation (2a).

This definition guarantees that observing D1 instead of D2

scales up the probability of any event by no more than eε.
Evidently, smaller values of non-negative ε provide stronger
guaranteed privacy. Dwork et al. have shown that ε-differential
privacy can be ensured by adding a Laplace noise of scale
Lap(∆f

ε) to the output of algorithm [5]. ∆f , defined as `1
norm in Equation (7), denotes the sensitivity of the algorithm
which represents the amount of change in a mechanism’s out-
put by changing one of its arguments, e.g., inclusion/exclusion
of an input in training.

∆f = ‖f(D1)− f(D2)‖1 (7)

Dwork et al. have also introduced a more amiable δ-
approximate ε-indistinguishable privacy guarantee, which al-
lows the ε-privacy to be broken by a probability of δ [16].

M(D) = f(D) + G(0,∆f2σ2) (8)

G(0,∆f2σ2) is Gaussian noise with mean zero and standard
deviation of ∆f ·σ. Both f and G are Dhv|C| dimensions, i.e.,
|C| output class hypervectors of Dhv dimensions. Here, ∆f =
‖f(D1)− f(D2)‖2 is `2 norm, which relaxes the amount of

additive noise. f meets (ε, δ)-privacy if δ ≥ 4
5e
− (σε)2

2 [1].
Achieving small ε for a given δ needs larger σ, which by (8)
translates to larger noise.

III. PROPOSED METHOD: PRIVE-HD

A. Privacy Breach of HD

In contrast to the deep neural networks that comprise non-
linear operations that somewhat cover up the details of raw
input, HD operations are fairly reversible, leaving it zero
privacy. That is, the input can be reconstructed from the
encoded hypervector. Consider the encoding of Equation (2a),
which is also illustrated by Fig. 1. Multiplying each side of
the equation to hypevector ~B0, for each dimension j gives:

~Hj · B0,j =

Div−1∑
k=0

(|vk| · Bk,j) · B0,j =

|v0| · B2
0,j +

Div−1∑
k=1

|vk|Bk,jB0,j = |v0|+
Div−1∑
k=1

|vk|Bk,jB0,j

(9)

Fig. 2. Original and retrieved handwritten digits.

B0,j ∈ {−1,+1}, so B2
0,j = 1. Summing all dimensions

together yields:

Dhv−1∑
j=0

~Hj · B0,j = Dhv · |v0|+
Div−1∑
k=1

(
|vk|

Dhv−1∑
j=0

Bk,j · B0,j

)
(10)

As the base hypervectors are orthogonal and especially Dhv
is large,

∑Dhv−1
j=0 Bk,j · B0,j ' 0 in the right side of Equation

(10). It means that every feature |vm| can be retrieved back
by |vm| =

~H· ~Bm
Dhv . Note that without lack of generality we

assumed |vm| = fvm , i.e., features are not normalized or
quantized. Indeed, we are retrieving the features (‘fi’s), that
might or might not be the exact raw elements. Also, although
we showed the reversibility of the encoding in (2a), it can
easily be adjusted to the other HD encodings. Fig. 2 shows
the reconstructed inputs of MNIST samples by using Equation
(10) to achieve each of 28× 28 pixels, one by one.

That being said, the encoded hypervector ~H sent for cloud-
hosted inference can be inspected to reconstruct the original
input. This reversibility also breaches the privacy of the HD
model. Consider that, according to the definition of differential
privacy, two datasets D1 and D2 differ by one input. If we
subtract all class hypervectors of the models trained over D1

and D2, the result (difference) will exactly be the encoded
vector of the missing input (remember from Equation (3)
that class hypervectors are simply created by adding encoded
hypervectors of associated inputs). The encoded hypervector,
hence, can be decoded back to obtain the missing input.

B. Differentially Private HD Training

Let fD1 and fD2 be models trained with encoding of
Equation (2a) over datasets that differ in a single datum
(input) present in D2 but not in D1. The outputs (i.e., class
hypervectors) of f(D1) and f(D2) thus differ in inclusion of
a single Dhv−dimension encoded vector that misses from a
particular class of f(D1). The other class hypervectors will
be the same. Each bipolar hypervector ~Lvk · ~Bk (see Equation
(2) or Fig. 1) constituting the encoding ~H is random and
identically distributed, hence according to the central limit
theorem ~H is approximately normally distributed with µ = 0
and σ2 = Div , i.e., the number of vectors building ~H. In `1
norm, however, the absolute value of the encoded ~H matters.
Since ~H has normal distribution, mean of the corresponding
folded (absolute) distribution is:

µ| ~H| = σ

√
2

π
e−

µ2

2σ2 + µ(1− Φ(−µ
σ

)) =

√
2Div
π

(11)

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

In
fo

rm
at

io
n

Number of dimensions

Class A

0.75

0.80

0.85

0.90

0.95

1.00

0 1000 2000 3000 4000 5000 6000

In
fo

rm
at

io
n

Number of dimensions (reduction)

Class A
Class B

(a) (b)

Fig. 3. Impact of increasing (left) and reducing (right) effectual dimensions.

The `1 sensitivity will therefore be ∆f = ‖ ~H‖1 =
√

2Div
π ·

Dhv . For the `2 sensitivity we indeed deal with a squared
Gaussian (chi-squared) distribution with freedom degree of
one, thus:

∆f = ‖ ~H‖2 =
√
Dhv · µ′ =

√
Dhv · σ2 =

√
Dhv · Div

(12)
Note that the mean of the chi-squared distribution (µ′) is
equal to the variance (σ2) of the original distribution of ~H.
Both Equation (11) and (12) imply a large noise to guar-
antee privacy. For instance, for a modest 200-features input
(Div = 200) the `2 sensitivity is 103

√
2 while a proportional

noise will annihilate the model accuracy. In the following, we
articulate the proposed techniques to shrink the variance of
the required noise. In the rest of the paper, we only target
Gaussian noise, i.e., (ε, δ)−privacy, since in our case it needs
a weaker noise.

1) Model Pruning: An immediate observation from Equa-
tion (12) is to reduce the number of hypervectors dimension,
Dhv to mollify the sensitivity, hence, the required noise. Not
all the dimensions of a class hypervector have the same
impact on prediction. Remember, from Equation (4), that
prediction is realized by a normalized dot-product between
the encoded query and class hypervectors. Intuitively, we may
prune out the close-to-zero class elements as their element-
wise multiplication with query elements leads to less-effectual
results. Notice that this concept (i.e., discarding a major
portion of the weights without significant accuracy loss) does
not readily hold for deep neural networks as the impact of
those small weights might be amplified by large activations
of previous layers. In HD, however, information is uniformly
distributed over the dimensions of the query hypervector, so
overlooking some of the query’s information (the dimensions
corresponding to discarded less-effectual dimensions of class
hypervectors) should not cause unbearable accuracy loss.

We demonstrate the model pruning as an example in Fig. 3
(that belongs to a speech recognition dataset). In Fig. 3(a),
after training the model, we remove all dimensions of a
certain class hypervector. Then we increasingly add (return) its
dimensions starting from the less-effectual dimensions. That is,
we first restore the dimensions with (absolute) values close to
zero. Then we perform a similarity check (i.e., prediction of a
certain query hypervector via normalized dot-product) to figure
out what portion of the original dot-product value is retrieved.
As it can be seen in the same figure, the first 6,000 close-to-

80

82

84

86

88

90

92

94

0 2 4 6 8 10 12 14 16 18 20

A
cc

u
ra

cy
 (

%
)

Epoch

10K, L100
1K, L50
1K, L100
0.5K, L50
0.5K, L100

Fig. 4. Retraining to recover accuracy loss.

zero dimensions only retrieve 20% of the information required
for a fully confident prediction. This is because of the uniform
distribution of information in the encoded query hypervector:
the pruned dimensions do not correspond to vital information
of queries. Fig. 3(b) further clarifies our observation. Pruning
the less-effectual dimensions slightly reduces the prediction
information of both class A (correct class, with an initial
total of 1.0) and class B (incorrect class). As more effectual
dimensions of the classes are pruned, the slope of information
loss plunges. It is worthy of note that in this example the ranks
of classes A and B have been retained.

We augment the model pruning by retraining explained
in Equation (5) to partially recover the information of the
pruned dimensions in the remaining ones. For this, we first
nullify s% of the close-to-zero dimensions of the trained
model, which perpetually remain zero. Therefore, during the
encoding of query hypervectors, we do not anymore need
to obtain the corresponding indexes of queries (note that
operations are dimension-wise), which translates to reduced
sensitivity. Thereafter, we repeatedly iterate over the training
dataset and apply Equation (5) to update the classes involved
in mispredictions. Fig. 4 shows 1-2 iteration(s) is sufficient
to achieve the maximum accuracy (the last iteration simple
shows the maximum of previous ones). In lower dimension,
decreasing the number of levels (`iv in Equation (1), denoted
by L in the legend), achieves slightly higher accuracy as
hypervectors lose the capacity to embrace fine-grained details.

2) Encoding Quantization: Previous work on HD com-
puting have introduced the concept of model quantization for
compression and energy efficiency, where both encoding and
class hypervectors are quantized at the cost of significant
accuracy loss [17]. We, however, only target quantizing the
encoding hypervectors since the sensitivity is merely deter-
mined by the `2 norm of encoding. Equation (13) shows the
1-bit quantization of encoding in (2a). The original scalar-
vector product, as well as the accumulation, is performed in
full-precision, and only the final hypervector is quantized. The
resultant class hypervectors will also be non-binary (albeit
with reduced dimension values).

~Hq1 = sign
(Div−1∑

k=0

|vk|∈F · ~Bk
)

(13)

Fig. 5 shows the impact of quantizing the encoded hy-
pervectors on the accuracy and the sensitivity of the same
speech recognition dataset trained with such encoding. In

88

89

90

91

92

93

94

1 2 3 4 5 6 7 8 9 10

A
c

c
u

r
a

c
y

 (
%

)

Dimensions (×1000)

(a)

bipolar ternary

ternary(biased) 2-bit
20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

S
e

n
s
it

iv
it

y

Dimensions (×1000)

(b)

bipolar ternary
ternary(biased) 2-bit

Fig. 5. Accuracy-sensitivity trade-off of encoding quantization.

10,000 dimensions, the bipolar (i.e., ±1 or sign) quantization
achieves 93.1% accuracy while it is 88.1% in previous work
[17]. This improvement comes from the fact that we do
not quantize the class hypervectors. We then leveraged the
aforementioned pruning approach to simultaneously employ
quantization and pruning, as demonstrated in Fig. 5(a). In
Dhv = 1000, the 2-bit quantization ({−2,±1, 0}) achieves
90.3% accuracy, which is only 3% below the full-precision
full-dimension baseline. It should note be noted that the small
oscillations in specific dimensions, e.g., lower accuracy in
5,000 dimensions compared to 4,000 dimensions in bipolar
quantization, are due to randomness of the initial hypervectors
and non-orthogonality that show up in smaller space.

Fig. 5(b) shows the sensitivities of the corresponding
models. After quantizing, the number of features, Div (see
Equation (12)), does not matter anymore. The sensitivity of a
quantized model can be formulated as follows.

∆f = ‖ ~H‖2 = (
∑
k∈|q|

pk · Dhv · k2)1/2 (14)

pk shows the probability of k (e.g., ±1) in the quantized
encoded hypervector, so pk · Dhv is the total occurrence
of k quantized encoded hypervector. The rest is simply the
definition of `2 norm. As hypervectors are randomly generated
and i.i.d, the distribution of k ∈ |q| is uniform. That is, in the
bipolar quantization, roughly Dhv/2 of encoded dimensions
are 1 (or −1). We therefore also exploited a biased quanti-
zation to give more weight for p0 in the ternary quantization,
dubbed as ‘ternary (biased)’ in Fig. 5(b). Essentially the biased
quantization assigns a quantization threshold to conform to
p−1 = p1 = 1

4 , while p0 = 1
2 . This reduces the sensitivity

by a factor of

√
Dhv

4 +
Dhv

4√
Dhv

3 +
Dhv

3

= 0.87×. Combining quantizatoin

and pruning, we could shrink the `2 sensitivity to ∆f = 22.3,
which originally was

√
104 · 617 = 2484 for the speech recog-

nition with 617-features inputs. In Section IV we will examine
the impact of adding such noise on the model accuracy for
varied privacy budgets.

C. Inference Privacy

Building upon the multi-layer structure of ML, IoT devices
mostly rely on performing primary (e.g., feature extraction)
computations on the edge (or edge server) and offload the
decision-making final layers to the cloud [2], [3]. To tackle the
privacy challenges of offloaded inference, previous work on

75

80

85

90

95

0 2 4 6 8 10

A
cc

u
ra

cy
 (

%
)

No. of unmasked dimensions (×1000)

Original Decoded Quantized

Quantized

+5K mask

Quantized

+9K mask

PSNR = 23.6 PSNR = 13.1

Fig. 6. Impact of inference quantization and dimension masking on PSNR
and accuracy.

DNN-based inference generally inject noise on the offloaded
computation. This necessitates either to retrain the model to
tolerate the injected noise distribution [7], or analogously,
learn the parameters of a noise that maximally perturbs the
information with preferably small impact on the accuracy [9],
[10].

In Section III-A we demonstrated how the original feature
vector can be reconstructed from the encoding hypervectors.
Inspired by the encoding quantization technique explained
in the previous section, we introduce a turnkey technique
to obfuscate the conveyed information without manipulat-
ing or even accessing the model. Indeed, we observed that
quantizing down to 1-bit (bipolar) even in the presence of
model pruning could yield acceptable accuracy. As shown in
Fig. 5(a), 1-bit quantization only incurred 0.25% accuracy
loss. These models, however, were trained by accumulating
quantized encoding hypervectors. Intuitively, we expect that
performing inference with quantized query hypervectors but
on full-precision classes (class hypervectors generated by non-
quantized encoding hypervectors) should give the same or
better accuracy as quantizing is nothing but degrading the
information. In other words, in the previous case, we deal
with checking the similarity of a degraded query with classes
built up also from degraded information, but now we check the
similarity of a degraded query with information-rich classes.

Therefore, instead of sending the raw data, we propose
to perform the light-weight encoding part on the edge and
quantize the encoded vector before offloading to the remote
host. We call it inference quantization do distinguish between
encoding quantization, as inference quantization targets a full-
precision model. In addition, we also nullify a specific portion
of encoded dimensions, i.e., mask out them to zero, to further
obfuscate the information. Remember that our technique does
not need to modify or access to the trained model.

Fig. 6 shows the impact of inference 1-bit quantization
on the speech recognition model. When only the offloaded
information (i.e., query hypervector with 10,000 dimensions)
is quantized, the prediction accuracy is 92.8%, which is merely

LUT6

(MAJ)

LUT6

(MAJ)

LUT6

(MAJ)

LUT6

3

LUT6
3

LUT6

3

3
a
b
c
d
e
f

a0
a1
b0
b1
c0
c1

Level 1

(a) Bipolar Quantization (b) Ternary Quantization

Adder

Tree 3-bit
adder

3-bit
adder 3-bit

adder

3

3

1 bit

3

Fig. 7. Principal blocks of FPGA implementation.

0.5% lower than the full-precision baseline. By masking out
5,000 dimensions, the accuracy is still above 91%, while the
reconstructed image becomes blurry. While the reconstructed
image (from a typical encoded hypervector) has a PSNR of
23.6 dB, in our technique, it shrinks to 13.1.

D. Hardware Optimization

The simple bit-level operations involved in the proposed
techniques and dimension-wise parallelism of the computation
makes FPGA a highly efficient platform to accelerate privacy-
aware HD computing [18], [17]. We devise efficient imple-
mentations to further improve the performance and power.
We adopt the encoding of Equation (2b) as it provides better
optimization opportunity.

For the 1-bit bipolar quantization, a basic approach is
adding up all bits of the same dimension, followed by a
final sign/threshold operation. This is equivalent to a majority
operation between ‘−1’s and ‘+1’s. Note that we can represent
−1 by 0, and +1 by 1 in hardware, as it does not change
the logic behind. We shrink this majority by approximating it
as partial majorities. As shown by Fig. 7(a), we use 6-input
look-up tables (LUT-6) to obtain the majority of every six bits
(out of div bits), which are binary elements making a certain
dimension. In the case an LUT has equal number of 0 and
1 inputs, it breaks the tie randomly (predetermined) We can
repeat this till log div stages but that would degrade accuracy.
Thus, we use majority LUTs only in the first stage, so the
next stages are typical adder-tree [18]. This approach is not
exact, however, in practice it imposes < 1% accuracy loss due
to inherent error tolerance of HD, especially we use majority
LUTs only in the first stage, so the next stages are typical
adder-tree [18]. Total number of LUT-6s will be:

nLUT6 =
div
6

+
1

6
(

log div∑
i=1

div
3
× i

2i−1
) ' 7

18
div (15)

which is 70.8% less than 4
3div required in the exact adder-

tree implementation.
For the ternary quantization, we first note that each di-

mension can be {0,±1}, so requires two bits. The minimum
(maximum) of adding three dimensions is therefore −3 (+3),

which requires three bits, while typical addition of three 2-
bit values requires four bits. Thus, as shown in Fig. 7(b),
we can pass numbers (dimensions) a1a0, b1b0 and c1c0 to
three LUT-6 to produce the 3-bit output. Instead of using an
exact adder-tree to sum up the resultant div3 three-bits, we use
saturated adder-tree where the intermediate adders maintain a
bit-width of three through truncating the least-significant bit of
output. In a similar fashion to Equation (15), we can show that
this technique uses ' 2div LUT-6, saving 33.3% compared to
' 3div in the case of using exact adder-tree to sum up div
ternary values.

IV. RESULTS

A. Differentially Private Training

We evaluate the privacy metrics of the proposed techniques
by training three models on different categories: the same
speech recognition dataset (ISOLET) [19] we used within the
paper, the MNIST handwritten digits dataset, and Caltech web
faces dataset (FACE) [20]. The goal of training evaluation is
to find out the minimum ε with affordable impact on accuracy.
Similar to [1], we set the δ parameter of the privacy to
10−5 (which is reasonable especially the size of our datasets
are smaller than 105). Accordingly, for a particular ε, we
can obtain the σ factor of the required Gaussian noise (see
Equation (8)) from δ ≥ 4

5e
− (σε)2

2 [1]. We iterate over different
values of ε to find the minimum while the prediction accuracy
remains acceptable.

Fig. 8(a)–(c) shows the obtained ε for each training model
and corresponding accuracy. For instance, for the FACE model
(Fig. 8(b)), ε = 1 (labeled by eps1) gives an accuracy within
1.4% of the non-private full-precision model. Shown by the
same figure, slightly reducing ε to 0.5 causes significant
accuracy loss. This figure also reveals where the minimum
ε is obtained. For each ε, using the proposed pruning and
ternary quantization, we reduce the dimension to decrease the
sensitivity. At each dimension, we inject a Gaussian noise
with standard deviation of ∆f · σ with σ obtainable from
δ = 10−5 = 4

5e
− (σε)2

2 , which is ∼4.75 for a demanded
ε = 1. ∆f of different quantization schemes and dimensions is
already discussed and shown by Fig. 5. When the model has
large number of dimensions, its primary accuracy is better,
but on the other hand has higher sensitivity (∝

√
Dhv). Thus,

there is a trade-off between dimension reduction to decrease
sensitivity (hence, noise) and inherent accuracy degradation as-
sociated with dimension reduction itself. For FACE model, we
see that optimal number of dimension to yield the minimum ε
is 7,000. It should be noted that although there is no prior work
on HD privacy (and few works on DNN training privacy) for a
head-to-head comparison, we could obtain a single digit ε = 2
for the MNIST dataset with ∼1% accuracy loss (with 5,000
ternary dimensions), which is comparable to the differentially
private DNN training over the MNIST in [1] that achieved the
same ε with ∼ 4% accuracy loss. In addition, differentially
private DNN training requires very large number of training
epochs where the per-epoch training time also increases (e.g.,

70

75

80

85

90

95

0 2 4 6 8 10

A
cc

u
ra

cy
 (

%
)

No. of Dimensions (×1000)

eps 8 eps 9
60

70

80

90

100

0 2 4 6 8 10

A
cc

u
ra

cy
 (

%
)

No. of Dimensions (×1000)

eps 0.5 eps 1
60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

A
cc

u
ra

cy
 (

%
)

Size of dataset (normalized)

ISOLET FACE MNIST

65
70
75
80
85
90
95

0 2 4 6 8 10

A
cc

u
ra

cy
 (

%
)

No. of Dimensions (×1000)

eps 1 eps 2

FACE

(a) (b) (c) (d)

Fig. 8. Investigating the optimal ε, dimensions and impact of data size in the benchmark models.

70

75

80

85

90

95

0 2 4 6 8 10

A
cc

u
ra

cy
 (

%
)

Dimensions (×1000)

(a)

ISOLET FACE MNIST

0
2
4
6
8

10
12
14
16

0 2 4 6 8 10

M
SE

 (
N

o
rm

al
iz

ed
)

Dimensions (×1000)

(b)

ISOLET FACE MNIST

Fig. 9. Impact of inference quantization (left) and dimension masking on
accuracy and MSE.

by 4.5× in [1]) while we readily apply the noise after building
up all class hypervectors. We also do not retrain the noisy
model as it violates the concept of differential privacy.

Fig. 8(d) shows the impact of training data size on the
accuracy of the FACE differentially private model. Obviously,
increasing the number of training inputs enhances the model
accuracy. This due to the fact that, because of quantization
of encoded hypervectors, the class vectors made by their
bundling have smaller values. Thus, the magnitude of induced
noise becomes comparable to the class values. As more data
is trained, the variance of class dimensions also increases,
which can better bury the same amount of noise. This can be
considered a vital insight in privacy-preserved HD training.

B. Privacy-Aware Inference

Here we show a similar result of Fig. 6 on HD models
trained on different datasets. Fig. 9(a) shows the impact of
bipolar quantization of encoding hypervectors on the predic-
tion accuracy. As discussed in Section III-C, here we merely
quantize the encoded hypervectors (to be offloaded to cloud
for inference) while the class hypervectors remain intact.
Without pruning the dimensions, the accuracy of ISOLET,
FACE, and MNIST degrades by 0.85% on average, while the
mean squared error of the reconstructed input increases by
2.36×, compared to the data reconstructed (decoded) from
conventional encoding. Since the dataset of ISOLET and
FACE are extracted features (rather than raw data), we cannot
visualize them, but from Fig. 9(b) we can observe that ISOLET
gives a similar MSE error to MNIST (for which the visualized
data can be seen in Fig. 6) while the FACE dataset leads to
even higher errors.

In conjunction with quantizing the offloaded inference, as
discussed before, we can also prune some of the encoded
dimensions to further obfuscate the information. We can see
that in the ISOLET and FACE models, discarding up to 6,000

TABLE I
COMPARING THE PRIVE-HD ON FPGA VERSUS RASPBERRY PI AND GPU

Raspberry Pi GPU Prive-HD (FPGA)
Throughput Energy Throughput Energy Throughput Energy

ISOLET 19.8 0.155 135, 300 8.9× 10−4 2, 500, 000 2.7× 10−6

FACE 11.9 0.266 104, 079 1.2× 10−3 694, 444 4.7× 10−6

MNIST 23.9 0.129 140, 550 8.5× 10−4 3, 125, 000 3.0× 10−6

dimensions leads to a minor accuracy degradation while the
increase of their information loss (i.e., increased MSE) is
considerable. In the case of MNIST, however, accuracy loss
is abrupt and does not allow for large pruning. However, even
pruning 1,000 of its dimensions (together with quantization)
reduces the PSNR to ∼15, meaning that reconstruction of our
encoding is highly lossy.

C. FPGA Implementation

We implemented the HD inference using the proposed en-
coding with the optimization detailed in Section III-D. We im-
plemented a pipelined architecture with building blocks shown
in Fig. 7(a) as in the inference we only used binary (bipolar)
quantization. We used a hand-crafted design in Verilog HDL
with Xilinx primitives to enable efficient implementation of
the cascaded LUT chains. Except the proposed approximate
adders, the rest of implementation follows an architecture
similar to [18]. Table I compares the results of Prive-HD on
Xilinx Kintex-7 FPGA KC705 Evaluation Kit, versus software
implementation on Raspberry Pi 3 embedded processor and
NVIDIA GeForce GTX 1080 Ti GPU. Throughout denotes
number of inputs processed per second, and energy indicates
energy (in Joule) of processing a single input. All benchmarks
have have the same number of dimensions in different plat-
forms. For FPGA, we assumed that all data resides in the
off-chip DRAM, otherwise the latency will be affected but
throughout remains intact as off-chip latency is eliminated
in the computation pipeline. Thanks to the massive bit-level
parallelism of FPGA with relatively low power consumption
(∼7W obtained via Xilinx Power Estimator, compared to 3W
of Raspberry Pi obtained by Hioki 3334 power meter, and
120W of GPU obtained through NVIDIA system management
interface), the average inference throughput of Prive-HD is
105,067× and 15.8× of Raspberry Pi and GPU, respectively.
Prive-HD improves the energy by 52,896× and 288× com-
pared to Raspberry Pi and GPU, respectively.

V. CONCLUSION

In this paper, we disclosed the privacy breach of hyperdi-
mensional computing and presented a privacy-preserving train-
ing scheme by quantizing the encoded hypervectors involved
in training, as well as reducing their dimensionality, which
together enable employing differential privacy by relieving
the required amount of noise. We also showed that we can
leverage the same quantization approach in conjunction with
nullifying particular elements of encoded hypervectors to
obfuscate the information transferred for untrustworthy cloud
(or link) inference. We also proposed hardware optimization
for efficient implementation of the quantization schemes by
essentially using approximate cascaded majority operations.
Our training technique could address the discussed challenges
of HD privacy and achieved single-digit privacy metric. Our
proposed inference, which can be readily employed in a trained
HD model, could reduce the PSNR of an image dataset to
below 15 dB with affordable impact on accuracy. Eventually,
we implemented the proposed encoding on an FPGA platform
which achieved 15.8× speed-up and 288.8× energy efficiency
over an optimized GPU implementation.

ACKNOWLEDGEMENTS

This work was supported in part by CRISP, one of six
centers in JUMP, an SRC program sponsored by DARPA, in
part by SRC-Global Research Collaboration grant, and also
NSF grants #1527034, #1730158, #1826967, and #1911095.

REFERENCES

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar
et al., “Deep learning with differential privacy,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 308–318.

[2] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2017, pp. 328–339.

[3] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for
the internet of things with edge computing,” IEEE network, vol. 32,
no. 1, pp. 96–101, 2018.

[4] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in International Conference on
Machine Learning, 2016, pp. 201–210.

[5] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Theory of cryptography
conference. Springer, 2006, pp. 265–284.

[6] F. McSherry and I. Mironov, “Differentially private recommender sys-
tems: Building privacy into the netflix prize contenders,” in Proceedings
of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2009, pp. 627–636.

[7] J. Wang, J. Zhang, W. Bao, X. Zhu, B. Cao, and P. S. Yu, “Not just pri-
vacy: Improving performance of private deep learning in mobile cloud,”
in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 2407–2416.

[8] S. A. Osia, A. S. Shamsabadi, S. Sajadmanesh, A. Taheri, K. Katevas,
H. R. Rabiee et al., “A hybrid deep learning architecture for privacy-
preserving mobile analytics,” IEEE Internet of Things Journal, 2020.

[9] F. Mireshghallah, M. Taram, P. Ramrakhyani, A. Jalali, D. Tullsen,
and H. Esmaeilzadeh, “Shredder: Learning noise distributions to protect
inference privacy,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2020, pp. 3–18.

[10] F. Mireshghallah, M. Taram, A. Jalali, A. T. Elthakeb, D. Tullsen,
and H. Esmaeilzadeh, “A principled approach to learning stochastic
representations for privacy in deep neural inference,” arXiv preprint
arXiv:2003.12154, 2020.

[11] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognitive computation, vol. 1, no. 2, pp. 139–159, 2009.

[12] M. Schmuck, L. Benini, and A. Rahimi, “Hardware optimizations of
dense binary hyperdimensional computing: Rematerialization of hyper-
vectors, binarized bundling, and combinational associative memory,”
ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 15, no. 4, pp. 1–25, 2019.

[13] A. Mitrokhin, P. Sutor, C. Fermüller, and Y. Aloimonos, “Learning sen-
sorimotor control with neuromorphic sensors: Toward hyperdimensional
active perception,” Science Robotics, vol. 4, no. 30, p. eaaw6736, 2019.

[14] P. Neubert, S. Schubert, and P. Protzel, “An introduction to hyperdimen-
sional computing for robotics,” KI-Künstliche Intelligenz, pp. 1–12.

[15] M. Imani, Y. Kim, S. Riazi, J. Messerly, P. Liu, F. Koushanfar et al., “A
framework for collaborative learning in secure high-dimensional space,”
in 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD). IEEE, 2019, pp. 435–446.

[16] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor,
“Our data, ourselves: Privacy via distributed noise generation,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2006, pp. 486–503.

[17] S. Salamat, M. Imani, B. Khaleghi, and T. Rosing, “F5-hd: Fast flexible
fpga-based framework for refreshing hyperdimensional computing,” in
Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2019, pp. 53–62.

[18] M. Imani, S. Salamat, B. Khaleghi, M. Samragh, F. Koushanfar, and
T. Rosing, “Sparsehd: Algorithm-hardware co-optimization for efficient
high-dimensional computing,” in 2019 IEEE 27th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 2019, pp. 190–198.

[19] “Uci machine learning repository,” http://archive.ics.uci.edu/ml/datasets/
ISOLET.

[20] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” 2007.

http://archive.ics.uci.edu/ml/datasets/ISOLET
http://archive.ics.uci.edu/ml/datasets/ISOLET

	I Introduction
	II Preliminary
	II-A Hyperdimensional Computing
	II-B Differential Privacy

	III Proposed Method: Prive-HD
	III-A Privacy Breach of HD
	III-B Differentially Private HD Training
	III-B1 Model Pruning
	III-B2 Encoding Quantization

	III-C Inference Privacy
	III-D Hardware Optimization

	IV Results
	IV-A Differentially Private Training
	IV-B Privacy-Aware Inference
	IV-C FPGA Implementation

	V Conclusion
	References

